初一數學實數教案(優(yōu)質13篇)

格式:DOC 上傳日期:2023-12-03 09:38:11
初一數學實數教案(優(yōu)質13篇)
時間:2023-12-03 09:38:11     小編:LZ文人

教案不僅是教師備課的重要內容,也是教學評估和記錄學生學習情況的依據。教案的設計要注重教學方法的多樣性,能夠激發(fā)學生的學習興趣。最后,希望大家能夠通過編寫教案,提高課堂教學效果,促進學生的全面發(fā)展。

初一數學實數教案篇一

2.學習如何找出實際問題中的已知數和未知數,并分析它們之間的數量關系,列出方程;。

3.通過具體的例子感受一些常用的相等關系式.

【對話探索設計】。

〖探索1〗。

(1)某校前年購買計算機x臺,去年購買的數量是前年的2倍,今年購買的數量又是去年的2倍,去年購買的計算機的數量是________;今年購買的計算機的數量是________;三年總共購買的數量是_________.

解:設前年購買計算機x臺,那么,。

設計(1)是讓學生感受列代數式是列方程的基礎.

去年購買的計算機的數量是________;。

今年購買的計算機的數量是________;。

根據關系:三年共購買計算機140臺(關系式:前年購買量+去年購買量+今年購買量=140臺),列得方程:。

____________________________.

合并得________________.

系數化為1得______________.

答:______________________.

歸納:總量等于各部分量的和是一個基本的相等關系.

〖探索2〗。

(1)把一些書分給某班學生閱讀,如果每人分3本,則剩余20本,若這個班級有x名學生,則這些書有_______本.

(2)把一些書分給某班學生閱讀,如果每人分4本,則還缺20本,若這個班級有x名學生,則這些書有_______本.

解:設這個班級有x名學生,。

根據第一關系,這批書共_________________本;。

根據第二關系,這批書共_________________本;。

這批書的總數是個定值,表示它的兩個不同的式子應該相等.

熟悉這些關系有助于列方程.

根據這一相等關系列得方程:。

________________________.

想一想,怎樣解這個方程?

歸納:表示同一個量的兩個不同的式子相等,這也是我們列方程經常用到的相等關系.

〖練習〗。

1.(1)同樣大的實驗田,噴灌的用水量是漫灌的25%,若漫灌要用水x噸,則改用噴灌只需_________噸.

解:設第二塊地(漫灌)用水x噸,。

第一塊地(噴灌)用水________噸.

根據關系:兩塊地共用水300噸,可列方程:。

__________________________________.

解得___________.

答:___________________________.

〖作業(yè)〗。

p79.練習,p84.1,6。

〖補充作業(yè)〗。

1.按要求列出方程:。

(1)x的1.2倍等于36;(2)y的四分之一比y的2倍大24.

2.某廠去年的產量是前年的2倍還多150噸,若去年的產量是950噸,求前年的產量.

根據去年的產量是950噸列方程:__________________.

解得___________.答_________________________.

初一數學實數教案篇二

一、學習與導學目標:

情感態(tài)度:通過師生、生生合作學習,促進交流,激發(fā)興趣。

二、學程與導程活動:

a、準備活動:

1、師生游戲“唱反調”:我們知道在小學學過的0以外的數前面加上負號“-”的數就是負數?,F在我說一個正數,你們給它添上“-”號說出來,我如果說一個負數,你們反過來說出對應的正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。

2、上述“唱反調”的兩個數3與-3,1與-1,-1/2與1/2……,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的`距離相等,真可謂從原點背道而馳“唱反調”)。

提問:數軸上與原點距離是4的點有幾個?這些點表示的數是多少?

歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。

b、學習概念:

1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(oppositenumber)。也就是說3的相反數是-3,-3的相反數是3??梢姡合喾磾凳浅蓪Τ霈F的,不能單獨存在。

一般地,a和-a互為相反數?!?a”可讀成“a的相反數”。

2、在數軸上看,表示相反數的兩個點和原點有什么關系?(關于原點對稱)。

3、從上述意義上看,你看如何規(guī)定0的相反數更為合理?

商討得:0的相反數仍是0,即0的相反數等于它本身。

c、應用舉例:

1、兩人一組,一人任說一個有理數,請同伴說出它的相反數。

2、如果a=-a,那么表示數a的點在數軸上的什么位置?a=?(a=0)。

3、在正數前面添上“-”號,就得到這個數的相反數,同樣地,在任意一個數前面添上“-”號,新的數就表示原數的相反數,如:-(+5)=-5,-(-5)=5,-0=0。

4、化簡下列各數p124練習,你愿意繼續(xù)嘗試化簡下列各式嗎?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)。

你能試著總結規(guī)律嗎?(括號內外同號結果為正,括號內外異號結果為負)。

5、若a=-5,則-a=;若-x=7,則x=。

三、筆記與板書提綱:

課題應用舉例中的2。

活動引例應用舉例中的4(學生練習)。

概念。

四、練習與拓展選題:

1、教科書p18/3;。

2、如圖是正方形紙盒的側面展示圖,請你在正方形內分別填上6個不同的數,使折成正方體后相對的面上的兩個數互為相反數(寫出滿足條件的一種情形即可)。

初一數學實數教案篇三

教學目的:

理解一元一次方程解簡單應用題的方法和步驟;并會列一元一次方程解簡單應用題。

重點、難點。

1、重點:弄清應用題題意列出方程。

2、難點:弄清應用題題意列出方程。

教學過程。

一、復習。

1、什么叫一元一次方程?

2、解一元一次方程的理論根據是什么?

二、新授。

分析:等量關系;a盤現有鹽=b盤現有鹽。

檢驗所求出的解是否合理。培養(yǎng)學生自覺反思求解過程和自覺檢驗方程的解是否正確的良好習慣。

1.題目中有哪些已知量?

(1)參加搬磚的初一同學和其他年級同學共65名。

(2)初一同學每人搬6塊,其他年級同學每人搬8塊。

(3)初一和其他年級同學一共搬了1400塊。

2.求什么?初一同學有多少人參加搬磚?

3.等量關系是什么?

初一同學搬磚的塊數十其他年級同學的搬磚數=1400。

三、鞏固練習。

教科書第12頁練習1、2、3。

四、小結。

列方程解應用題的關鍵在于抓住能表示問題含意的一個主要等量關系,對于這個等量關系中涉及的量,哪些是已知的,哪些是未知的,用字母表示適當的未知數(設元),再將其余未知量用這個字母的代數式表示,最后根據等量關系,得到方程,解這個方程求得未知數的值,并檢驗是否合理。最后寫出答案。

五、作業(yè)。

初一數學實數教案篇四

1.通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關內容的認識,積累數學活動經驗。

2.能用適當的圖形和語言表示自己的思考結果。

本堂內容的重點是七巧板的制作和拼擺,難點是拼圖所要表現的幾何圖形,對已學過的平行,垂直及角等有關內容的有機聯系和語言表達。

引導活動討論

引導:意在教師講解七巧板的歷史,七巧板制作的方法。

活動:人人參與制作七巧板,拼擺七巧板的圖案。

討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。

啟發(fā)式教學

先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。

利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學交流,與老師交流。

(1) 你的拼圖用了什么形狀的板?你想表現什么?

(2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關系表示出來。

(3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。

通過學生的展示,教師作適時的評價,樹立榜樣,培養(yǎng)學生之間的競爭意識。

介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的圖案,激發(fā)學生的創(chuàng)造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發(fā)揮學生的創(chuàng)造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。

由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現的內容,與所學的知識的聯系,呈現平行,垂直及角的有關知識。

通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關內容的認識,積累數學活動的經驗,提高了空間觀念和觀察、分析、概括表達的能力。

利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環(huán)境。

(一)知識回顧 (三)例題解析 (五)課堂小結

(二)觀察發(fā)現 (四)課堂練習 練習設計

初一數學實數教案篇五

1.重點:

(1)了解多邊形及其有關概念,理解正多邊形及其有關概念.

(2)區(qū)別凸多邊形和凹多邊形.

2.難點:

多邊形定義的準確理解.

一、新課講授

投影:圖形見課本p84圖7.3一l.

你能從投影里找出幾個由一些線段圍成的圖形嗎?

上面三圖中讓同學邊看、邊議.

在同學議論的基礎上,老師給以總結,這些線段圍成的圖形有何特性?

(1)它們在同一平面內.

(2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.

這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?

提問:三角形的定義.

你能仿照三角形的定義給多邊形定義嗎?

1.在平面內,由一些線段首位順次相接組成的圖形叫做多邊形.

如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)

2.多邊形的邊、頂點、內角和外角.

3.多邊形的對角線

連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.

讓學生畫出五邊形的所有對角線.

4.凸多邊形與凹多邊形

看投影:圖形見課本p85.7.3―6.

5.正多邊形

由正方形的特征出發(fā),得出正多邊形的概念.

各個角都相等,各條邊都相等的多邊形叫做正多邊形.

二、課堂練習

課本p86練習1.2.

三、課堂小結

引導學生總結本節(jié)課的相關概念.

四、課后作業(yè)

課本p90第1題.

備用題:

一、判斷題.

1.由四條線段首尾順次相接組成的圖形叫四邊形.()

2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()

3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側,叫做四邊形.()

4.在同一平面內,四條線段首尾順次連接組成的圖形叫四邊形.()

二、填空題.

1.連接多邊形的線段,叫做多邊形的對角線.

2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.

3.各個角,各條邊的多邊形,叫正多邊形.

三、解答題.

1.畫出圖(1)中的六邊形abcdef的所有對角線.

初一數學實數教案篇六

難點:正確理解有理數與數軸上點的對應關系.

1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

2.用“射線”能不能表示有理數?為什么?

3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內容――數軸.

與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

在此基礎上,給出數軸的定義,即規(guī)定了原點、正方向和單位長度的直線叫做數軸.

通過上述提問,向學生指出:數軸的三要素――原點、正方向和單位長度,缺一不可.

例1畫一個數軸,并在數軸上畫出表示下列各數的點:

例2指出數軸上a,b,c,d,e各點分別表示什么數.

課堂練習

示出來.

2.說出下面數軸上a,b,c,d,o,m各點表示什么數?

1.在下面數軸上:

(1)分別指出表示-2,3,-4,0,1各數的點.

(2)a,h,d,e,o各點分別表示什么數?

2.在下面數軸上,a,b,c,d各點分別表示什么數?

3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一數學實數教案篇七

教學目標:了解總體、個體、樣本及樣本容的概念以及抽樣調查的意義,明確在什么情況下采用抽樣調查或全面調查,進一步熟悉對數據的收集、整理、描述和分析。

教學重點:對概念的理解及對數據收集整理。

教學難點:總體概念的理解和隨機抽樣的合理性。

教學過程:

一、情景創(chuàng)設,引入新課。

二、新課。

1.抽樣調查的意義。

在上述問題中,由于學生人數比較多,全面調查花費的時間長,消耗的人力、物力大,因此需要尋求既省時又省力又能解決問題的方法,這就是抽樣調查。

抽樣調查:抽取一部分對象進行調查的方法,叫抽樣調查。

2.總體、個體、樣本、樣本容量的意義。

總體:所要考察對象的全體。

個體:總體的每一個考察對象叫個體。

樣本:抽取的部分個體叫做一個樣本。

樣本容量:樣本中個體的數目。

3.抽樣的注意事項。

下面是某同學抽取樣本數量為100的調查節(jié)目統計表:

表中的數據信息也可以用條形統計圖或扇形統計圖來描述。

初一數學實數教案篇八

教學目標:

1、知識目標:初步認識角,知道角的各部分名稱,知道角的大小與兩邊叉開大小有關,與兩邊的長短無關。

2、能力目標:培養(yǎng)學生動手操作能力,使學生學會畫角、做角,能從實物或平面圖形中辨認角。

3、情感目標:培養(yǎng)學生學習數學的興趣,以及認真傾聽他人意見,虛心向他人學習的習慣。并讓學生體會到數學源于實踐的思想.

教學重點:初步認識角,知道角的各部分名稱,學會畫角和能從實物或平面圖形中辨認角。

教學難點:初步認識到角的大小與兩邊叉開大小有關,與邊的長短無關。

教具學具:課件、手工紙、活動角。

教學流程。

一、創(chuàng)設情境,導入新課:

生:三角形。

師:對,三角形是我們以前學過的平面圖形中的一種。在三角形中你能找到什么?

生:角。

師:角也是平面圖形中的一種,這節(jié)課我們就來學習和研究角。

板書:角的初步認識。

二、聯系實際,整體感知角。

1、師:角無處不在,在我們的校園中就有很多,不信你就試著找找吧!(多媒體演示:美麗校園的主題圖。突出:門窗上的角、鐘面上的角、操場中場地的角、小朋友做操時上下肢組成的角……)。

2、師:同學們觀察得很仔細,找到了這么多角。在我們的日常生活中許多物品上也有角,我們一起來看看。(多媒體出示圖:剪刀、飲料吸管和水管實物圖片,指出在物品上顯出角)。

3、師:在我們的教室中也有角你能找一找,并試著把它找出來嗎。

三、抽象圖形,形成表象。

1、指名指角。

生:不是,這是個點。

4、想看看老師是怎樣指得嗎?(師示范指角)。

5、師:請同學們從身邊選取一個角,像老師這樣來指一指。

四、自主探究,創(chuàng)造角。

1、師:剛才我們認識了角,你們想不想自己動手創(chuàng)造一個角。

2、學生用不規(guī)則的紙折角。

3、集體交流自己創(chuàng)造的角,完整的指出每個角。

4、摸摸你折的角有什么感覺和發(fā)現?

5、學生匯報。

6、師:尖尖的地方是角的頂點,兩條直直的線是角的邊。

五、動手操作,畫畫角。

2、教師示范畫角,邊畫邊講解怎么畫角。(課件演示)。

3、學生嘗試畫角,指幾名同學板畫。(學生看書,勾畫出畫角的方法,邊畫邊讀。)。

小結:角是由一個頂點和兩條邊組成的。

六、游戲活動,比比角。

師:想玩游戲嗎?我們就來玩一個超級變變變的游戲。

1、師:變變變,把角變大,變更大。變變變,把角變小,變更小。

2、小組內玩這個游戲,并說說發(fā)現了什么?

3、指名匯報:角的大小與角的兩條邊張開的大小有關,張開的越大,角就越大,張開的越小,角就越小。

4、同桌兩人把角張開同樣的角度,看看會發(fā)現什么?

5、生匯報:角的大小和邊的長短無關。

6、師總結。

七、鞏固練習。

課件演示;練習八中第7題。

八、課堂總結。

同學們,這節(jié)課我們一起認識了角,動手做了角,畫了角,還在生活中找到了很多的角,其實,只要你善于觀察,生活中處處都有數學。

初一數學實數教案篇九

課件簡介:。

新課導入。

這兩把折扇中,哪一把形成的角度大?與折扇的大小有關系嗎?

教學目標。

知識與能力。

1.理解兩個角的和、差、倍、分的`意義;。

2.掌握角平分線的概念;。

3.會比較角的大小,會用量角器畫一個角等于已知角.

過程與方法。

1.通過讓親自動手演示比較角的大小,畫一個角等于已知角等,培養(yǎng)訓練動手操作能力.

2.通過角的和、差、倍、分的意義,角平分線的意義,進一步訓練幾何語言的表達能力及幾何識圖能力,培養(yǎng)其空間觀念.

情感態(tài)度與價值觀。

通過具體實物演示對角的大小進行比較這一由感性認識上升到理性認識的過程,培養(yǎng)嚴謹的科學態(tài)度,進行辯證唯物主義思想教育.

初一數學實數教案篇十

2.會用計算器求數的平方根;。

重點:用計算器進行數的.加、減、乘、除、乘方和開方的計算;。

難點:乘方和開方運算;。

1.計算器的使用介紹(科學計算器)。

2.用計算器進行加、減、乘、除、乘方、開方運算。

例1用計算器求下列各式的值.

(1)(-3.75)+(-22.5)(2)51.7(-7.2)。

解(1)。

(-3.75)+(-22.5)=-26.25。

(2)。

51.7(-7.2)=-372.24。

說明輸入數據時,按鍵順序與寫這個數據的順序完全相同,但輸入負數時,符號轉換鍵要放在數據之后鍵入.

用計算器求值。

1.9.23+10.22.(-2.35)×(-0.46)。

答案1.37.82.1.081。

初一數學實數教案篇十一

3、使學生初步理解數形結合的思想方法。

重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數。

難點:正確理解有理數與數軸上點的對應關系。

一、從學生原有認知結構提出問題。

1、小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

2、用“射線”能不能表示有理數?為什么?

3、你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內容——數軸。

二、講授新課。

讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度。在0上10個刻度,表示10℃;在0下5個刻度,表示—5℃。

與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零。具體方法如下(邊說邊畫):

四、小結。

指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的`方法。

本節(jié)課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究。

初一數學實數教案篇十二

用因式分解法解一元二次方程.

難點。

讓學生通過比較解一元二次方程的多種方法感悟用因式分解法使解題更簡便.

一、復習引入。

(學生活動)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。

老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數應為12,12的一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.

二、探索新知。

(學生活動)請同學們口答下面各題.

(老師提問)(1)上面兩個方程中有沒有常數項?

(2)等式左邊的各項有沒有共同因式?

(學生先答,老師解答)上面兩個方程中都沒有常數項;左邊都可以因式分解.

因此,上面兩個方程都可以寫成:

(1)x(2x+1)=0(2)3x(x+2)=0。

因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現降次的?)。

因此,我們可以發(fā)現,上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現降次,這種解法叫做因式分解法.

例1解方程:

思考:使用因式分解法解一元二次方程的條件是什么?

解:略(方程一邊為0,另一邊可分解為兩個一次因式乘積.)。

練習:下面一元二次方程解法中,正確的是()。

c.(x+2)2+4x=0,∴x1=2,x2=-2。

d.x2=x,兩邊同除以x,得x=1。

三、鞏固練習。

教材第14頁練習1,2.

四、課堂小結。

本節(jié)課要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.

(2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.

五、作業(yè)布置。

教材第17頁習題6,8,10,11。

初一數學實數教案篇十三

人教版義務教育課程實驗教科書數學四年級下冊p82頁。

教學目標。

1、讓學生通過動手實踐、自主探索、合作交流發(fā)現三角形任意兩邊之和大于第三邊。

2、能判斷給定長度的三條線段是否圍成三角形,能運用三角形任意兩邊之和大于第三邊這一知識解決生活中的簡單的實際問題,感受到生活中處處有數學。

3、通過學習發(fā)展學生的空間觀念,使學生體驗成功的喜悅,激發(fā)學生學習數學的興趣。

教具、學具準備。

多媒體課件,不同長度不同顏色的小棒若干根,實驗表格。

教學過程。

一、創(chuàng)設情境,導入新課。

師:(出示課件)同學們看,圖上這些地方你們都熟悉嗎?

(我們的學校、鼓樓商場還有學校后門的建設銀行。)。

師:老師從學校大門口到建行去取錢,有幾條路可走?猜一猜我會走哪條路呢?為什么?

師:老師在銀行取了錢后,現在要去鼓樓商場購物,又有幾條路可走?我會走哪條路?

師:老師現在要回學校,我又有幾條路可走?我又會選擇哪條路呢?

師:同學們你們?yōu)槭裁凑J為在三角形的線路中走其中一條邊的線路比走另外兩條邊組成的線路近呢?把你的想法在小組里交流一下。

(學生困惑,沉默不語。)。

師:今天我們就用數學的方法來研究一下,看看在三角形中,三邊的關系是怎樣的?

(板書課題:三角形的三邊關系)。

二、設疑激趣,動手探究。

師:(設疑)用小棒代替線段。請看,老師這兒有紅、藍、黃色的小棒若干根,任意拿三種顏色的小棒能圍成一個三色的三角形嗎?(學生會出現能圍成和不能圍成兩種情況。)。

師:有兩種意見,到底誰的猜測是正確的呢?讓我們動手操作后再談自己的發(fā)現。

師:我請一位同學上來任意拿出不同顏色的三根小棒,看看能不能圍成三角形?

(學生上臺演示,其他同學看。)。

師:這位同學圍成三角形了嗎?(根據學生的情況將數據填在表格中)你們想不想試試?

師:請拿出老師為你們準備的小棒,要求用三種顏色的小棒圍三角形。看看哪些長度的小棒能圍成三角形,哪些長度的小棒不能圍成三角形。

同桌分工合作,一個同學圍三角形,然后讀出小棒上標出的長度;另一個同學作記錄。

(單位:厘米)。

能圍成三角形的三根小棒(紅、藍、黃)的長度分別是:

不能圍成三角形的三根小棒(紅、藍、黃)的長度分別是:

你的重大發(fā)現:

三、匯報交流,發(fā)現規(guī)律。

讓每組同學匯報圍成和圍不成三角形的數據。

根據學生的情況,進行課件演示能圍成和不能圍成兩種情況。(不能圍成又有兩種情況:兩條邊之和等于第三邊的情況;兩邊之和小于第三邊的情況)。

師:到底什么樣長度的三根小棒可以圍成三角形呢?

結論一:兩邊之和大于第三邊。

師:同學們都同意這個結論嗎?有不同意見嗎?

師:看來同學們發(fā)現的這個結論不夠全面。還能怎么修改一下呢?

進一步得出結論二:三角形任意兩邊之和大于第三邊。

師:這個結論全面嗎?是否適合任何一個三角形呢?請同學們任意畫一個或擺一個三角形,量出三邊的長度,驗證一下。

師:同學們真了不起,通過大家的共同努力,發(fā)現了一個有關三角形的三邊關系的重要結論,那就是:三角形中任意兩邊之和大于第三邊。

四、學以致用,解決問題。

1、解釋老師所行路線的原因。

2、判斷。

五、全課小結。

【本文地址:http://mlvmservice.com/zuowen/17087532.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔