一個(gè)好的教案應(yīng)該包括課前預(yù)習(xí)、教學(xué)目標(biāo)、教學(xué)步驟和評(píng)價(jià)等內(nèi)容。編寫(xiě)教案需要注重培養(yǎng)學(xué)生的學(xué)習(xí)興趣和實(shí)踐能力。小編整理了一些編寫(xiě)教案的技巧和方法,希望對(duì)大家有所啟發(fā)。
小學(xué)數(shù)學(xué)一元二次方程教案篇一
1、知識(shí)與技能目標(biāo):認(rèn)識(shí)一元二次方程,并能分析簡(jiǎn)單問(wèn)題中的數(shù)量關(guān)系列出一元二次方程。
2、過(guò)程與方法:學(xué)生通過(guò)觀察與模仿,建立起對(duì)一元二次方程的感性認(rèn)識(shí),獲得對(duì)代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過(guò)程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識(shí)結(jié)合起來(lái),形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
二、教學(xué)重難點(diǎn)。
重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會(huì)將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
三、教學(xué)過(guò)程。
(一)導(dǎo)入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學(xué)們也都很樂(lè)于助人,好那我們看一看這個(gè)問(wèn)題是什么,然后帶著這個(gè)問(wèn)題開(kāi)始我們今天的學(xué)習(xí)一元二次方程。
(二)新課教學(xué)。
師:我們來(lái)看到這個(gè)題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用ac來(lái)表示上部,bc來(lái)表示下部先簡(jiǎn)單列一下這個(gè)比例關(guān)系,待會(huì)老師下去看看同學(xué)們的式子。
(下去巡視)。
(三)小結(jié)作業(yè)。
師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
四、板書(shū)設(shè)計(jì)。
五、教學(xué)反思。
將本文的word文檔下載到電腦,方便收藏和打印。
小學(xué)數(shù)學(xué)一元二次方程教案篇二
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語(yǔ)句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語(yǔ)句,就要對(duì)方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。
教學(xué)目的。
2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):。
重點(diǎn):。
小學(xué)數(shù)學(xué)一元二次方程教案篇三
(2)掌握一元二次方程的一般形式,會(huì)判斷一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
【教學(xué)過(guò)程】。
(一)創(chuàng)設(shè)情景,引入新課。
由學(xué)生說(shuō)出這幾個(gè)方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個(gè)未知數(shù)、最高次2次、等式兩邊都是整式)。
任一個(gè)一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項(xiàng)系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
(三)小結(jié)。
(四)布置作業(yè)。
小學(xué)數(shù)學(xué)一元二次方程教案篇四
2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
難點(diǎn):對(duì)一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過(guò)實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
2)重點(diǎn)、難點(diǎn)分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語(yǔ)句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語(yǔ)句,就要對(duì)方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。
小學(xué)數(shù)學(xué)一元二次方程教案篇五
一、出示學(xué)習(xí)目標(biāo):
2.通過(guò)自學(xué)探究掌握裁邊分割問(wèn)題。
二、自學(xué)指導(dǎo):(閱讀課本p47頁(yè),思考下列問(wèn)題)。
1.閱讀探究3并進(jìn)行填空;
2.完成p48的思考并掌握裁邊分割問(wèn)題的特點(diǎn);
設(shè)上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
由中下層學(xué)生口答書(shū)中填空,老師再給予補(bǔ)充。
思考:如果換一種設(shè)法,是否可以更簡(jiǎn)單?
設(shè)正中央的長(zhǎng)方形長(zhǎng)為9acm,寬為7acm,依題意得。
9a·7a=(可讓上層學(xué)生在自學(xué)時(shí),先上來(lái)板演)。
效果檢測(cè)時(shí),由同座的同學(xué)給予點(diǎn)評(píng)與糾正。
9.如圖,要設(shè)計(jì)一幅寬20m,長(zhǎng)30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應(yīng)怎樣設(shè)計(jì)彩條的寬帶?(討論用多種方法列方程比較)。
注意點(diǎn):要善于利用圖形的平移把問(wèn)題簡(jiǎn)單化!
三、當(dāng)堂訓(xùn)練:
(只要求設(shè)元、列方程)。
小學(xué)數(shù)學(xué)一元二次方程教案篇六
今天,在教務(wù)處的組織下,我參加了柏老師的九年級(jí)數(shù)學(xué)課——《用因式分解法解一元二次方程》的公開(kāi)課活動(dòng)。
這節(jié)課,柏老師運(yùn)用了“先學(xué)后導(dǎo),分層推進(jìn)”的教學(xué)模式開(kāi)展教學(xué)活動(dòng)。教學(xué)設(shè)計(jì)科學(xué)、嚴(yán)謹(jǐn)、合理。能對(duì)教材內(nèi)容進(jìn)行取舍,不照本宣科。習(xí)題設(shè)計(jì)典型,有梯度。整個(gè)教學(xué)過(guò)程環(huán)環(huán)相扣,層層推進(jìn),最終教學(xué)效果理想。但是我個(gè)人認(rèn)為在具體細(xì)節(jié)上還有有待改進(jìn)的地方:。
1、知識(shí)性錯(cuò)誤。因式分解是指把一個(gè)多項(xiàng)式分解成幾個(gè)整式相乘的形式。柏老師說(shuō)成了分解成單項(xiàng)式相乘的形式。整式既包含單項(xiàng)式也有多項(xiàng)式。
2、整個(gè)教學(xué)過(guò)程中,還是沒(méi)有把學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生,牽著學(xué)生走。不讓學(xué)生大膽的進(jìn)行自主嘗試。其實(shí),我們從后面的課堂檢測(cè)環(huán)節(jié)中可以看出學(xué)生的自主學(xué)習(xí)能力是非常強(qiáng)的。那幾個(gè)比較難的解方程學(xué)生都能用最簡(jiǎn)單的方法求解。
3、從新課前的復(fù)習(xí)環(huán)節(jié)可以看出學(xué)生對(duì)已經(jīng)學(xué)過(guò)的概念記憶不清楚,對(duì)每節(jié)課所學(xué)的知識(shí)點(diǎn)不清。我們每節(jié)課的教學(xué)環(huán)節(jié)里基本都有“學(xué)習(xí)目標(biāo)”出示和“歸納小結(jié)”的環(huán)節(jié)。這兩個(gè)環(huán)節(jié)看似不起眼,但細(xì)細(xì)推敲來(lái),它們的作用就是讓學(xué)生清楚到底學(xué)什么和學(xué)到了什么,這兩個(gè)環(huán)節(jié)教學(xué)到位了,學(xué)生對(duì)所學(xué)知識(shí)也就是茶壺里煮餃子——心中有數(shù)了。
4、在“后導(dǎo)”環(huán)節(jié)要注重發(fā)揮學(xué)生的.自主、合作學(xué)習(xí)能力。因?yàn)閷W(xué)生在先學(xué)環(huán)節(jié)已經(jīng)掌握的一定的知識(shí)和能力,這時(shí)候教師適時(shí)的放手,讓學(xué)生通過(guò)自主學(xué)習(xí),掌握知識(shí),從而才能水到渠成的對(duì)知識(shí)進(jìn)行歸納總結(jié)。就不會(huì)像本節(jié)課在歸納小結(jié)時(shí)這么牽強(qiáng)。
5、教師對(duì)教材鉆研不透徹。后面的六個(gè)解方程練習(xí)題是本節(jié)課的課后練習(xí)題,必然是都可以因式分解法來(lái)求解的。但是老師在個(gè)別輔導(dǎo)時(shí)強(qiáng)調(diào)用其他解法。
小學(xué)數(shù)學(xué)一元二次方程教案篇七
了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡(jiǎn)單題目.
1.通過(guò)設(shè)置問(wèn)題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關(guān)概念.
3.解決一些概念性的題目.
4.通過(guò)生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問(wèn)題來(lái)激發(fā)學(xué)生的學(xué)習(xí)熱情.
重難點(diǎn)關(guān)鍵。
1.重點(diǎn):一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問(wèn)題.
2.難點(diǎn)關(guān)鍵:通過(guò)提出問(wèn)題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念.
教學(xué)過(guò)程。
一、復(fù)習(xí)引入。
學(xué)生活動(dòng):列方程.
如果假設(shè)門(mén)的高為x尺,那么,這個(gè)門(mén)的寬為_(kāi)______尺,根據(jù)題意,得________.
整理、化簡(jiǎn),得:__________.
問(wèn)題(2)如圖,如果,那么點(diǎn)c叫做線段ab的黃金分割點(diǎn).
如果假設(shè)ab=1,ac=x,那么bc=________,根據(jù)題意,得:________.
整理得:_________.
如果假設(shè)剪后的正方形邊長(zhǎng)為x,那么原來(lái)長(zhǎng)方形長(zhǎng)是________,寬是_____,根據(jù)題意,得:_______.
整理,得:________.
老師點(diǎn)評(píng)并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
二、探索新知。
學(xué)生活動(dòng):請(qǐng)口答下面問(wèn)題.
(1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?
(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子?
老師點(diǎn)評(píng):(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程.
因此,像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的.最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過(guò)整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.
一個(gè)一元二次方程經(jīng)過(guò)整理化成ax2+bx+c=0(a0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫(xiě)出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)等.
解:去括號(hào),得:
移項(xiàng),得:4x2-26x+22=0。
其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.
例2.(學(xué)生活動(dòng):請(qǐng)二至三位同學(xué)上臺(tái)演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫(xiě)出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).
分析:通過(guò)完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.
解:去括號(hào),得:
x2+2x+1+x2-4=1。
移項(xiàng),合并得:2x2+2x-4=0。
其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4.
三、鞏固練習(xí)。
教材p32練習(xí)1、2。
四、應(yīng)用拓展。
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.
證明:m2-8m+17=(m-4)2+1。
∵(m-4)20。
(m-4)2+10,即(m-4)2+10。
不論m取何值,該方程都是一元二次方程.
五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))。
本節(jié)課要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.
六、布置作業(yè)。
小學(xué)數(shù)學(xué)一元二次方程教案篇八
學(xué)習(xí)目標(biāo):
2、進(jìn)一步培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
學(xué)習(xí)重點(diǎn):
學(xué)習(xí)難點(diǎn):
如何分析題意,找出等量關(guān)系,列方程。
學(xué)習(xí)過(guò)程:
一、復(fù)習(xí)提問(wèn):
二、探索新知。
1、情境導(dǎo)入。
2、合作探究、師生互動(dòng)。
教師引導(dǎo)學(xué)生運(yùn)用方程解決問(wèn)題:
三、例題學(xué)習(xí)。
說(shuō)明:題目中求平均每月增長(zhǎng)的百分率,直接設(shè)增長(zhǎng)的百分率為x,好處在于計(jì)算簡(jiǎn)便且直接得出所求。
(小組合作交流教師點(diǎn)撥)。
時(shí)間基數(shù)降價(jià)降價(jià)后價(jià)錢(qián)。
第一次600600x600(1―x)。
第二次600(1―x)600(1―x)x600(1―x)2。
(由學(xué)生寫(xiě)出解答過(guò)程)。
四、鞏固練習(xí)。
五、課堂總結(jié):
1、善于將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,嚴(yán)格審題,弄清各數(shù)據(jù)間相互關(guān)系,正確列出方程。
2、注意解方程中的巧算和方程兩個(gè)根的取舍問(wèn)題。
六、反饋練習(xí):
a、x+(1+x)x=20%b、(1+x)2=20%。
c、(1+x)2=1、2d、(1+x%)2=1+20%。
2、某工廠計(jì)劃兩年內(nèi)降低成本36%,則平均每年降低成本的百分率是()。
小學(xué)數(shù)學(xué)一元二次方程教案篇九
第二步:將左端的二次三項(xiàng)式分解為兩個(gè)一次因式的積;。
第三步:方程左邊兩個(gè)因式分別為0,得到兩個(gè)一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來(lái)說(shuō),一元二次方程往往可以用這樣2種方法解答,特別是對(duì)配方來(lái)說(shuō),它可能更實(shí)用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來(lái),不過(guò)我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號(hào)5-1)/2或x=(-根號(hào)5-1)/2。
小練習(xí)。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當(dāng)x=________時(shí),y的值為0;當(dāng)x=________時(shí),y的值等于24.6.方程x2+2ax-b2+a2=0的解為_(kāi)_________.
小學(xué)數(shù)學(xué)一元二次方程教案篇十
(一)創(chuàng)設(shè)情景,引入新課。
由學(xué)生說(shuō)出這幾個(gè)方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個(gè)未知數(shù)、最高次2次、等式兩邊都是整式)。
練習(xí)。
2:一元二次方程的一般形式(形如ax+bx+c=0)。
任一個(gè)一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項(xiàng)系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
練習(xí)。
(三)小結(jié)。
(四)布置作業(yè)。
小學(xué)數(shù)學(xué)一元二次方程教案篇十一
新課程要求培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)與能力,作為數(shù)學(xué)教師,我們要充分利用已有的生活經(jīng)驗(yàn),把所學(xué)的數(shù)學(xué)知識(shí)用到現(xiàn)實(shí)中去,體會(huì)數(shù)學(xué)在現(xiàn)實(shí)中應(yīng)用價(jià)值。
本章節(jié)的應(yīng)用基本上是以學(xué)生熟悉的'現(xiàn)實(shí)生活為問(wèn)題的背景,讓學(xué)生從具體的問(wèn)題情境中抽象出數(shù)量關(guān)系,歸納出變化規(guī)律,并能用數(shù)學(xué)符號(hào)表示,最終解決實(shí)際問(wèn)題。這類注重聯(lián)系實(shí)際考查學(xué)生數(shù)學(xué)應(yīng)用能力的問(wèn)題,體現(xiàn)時(shí)代性,并且結(jié)合社會(huì)熱點(diǎn)、焦點(diǎn)問(wèn)題,引導(dǎo)學(xué)生關(guān)注國(guó)家、人類和世界的命運(yùn)。既有強(qiáng)烈的德育功能,又可以讓學(xué)生從數(shù)學(xué)的角度分析社會(huì)現(xiàn)象,體會(huì)數(shù)學(xué)在現(xiàn)實(shí)生活中的作用。
對(duì)教學(xué)過(guò)程進(jìn)行反思,既有成功的一面,又有不足之處。需改進(jìn)的方面有:
1、由于怕完不成任務(wù),給學(xué)生獨(dú)立思考時(shí)間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問(wèn)。例如p46有多種解法,課后一些學(xué)生與老師交流,但課上沒(méi)有得到充分的展示。
2、只考慮捕捉學(xué)生的思維亮點(diǎn),一生列錯(cuò)了方程,老師沒(méi)有給予及時(shí)糾正。導(dǎo)致使一些同學(xué)陷入誤區(qū)。3、有些問(wèn)題講的過(guò)于快,理解較慢的同學(xué)跟不上。
小學(xué)數(shù)學(xué)一元二次方程教案篇十二
一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過(guò)一元二次方程的學(xué)習(xí),就可以對(duì)上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對(duì)數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對(duì)其他學(xué)科也有重要的意義。
2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)。
九年義務(wù)教育大綱對(duì)這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對(duì)學(xué)生的理解和接受知識(shí)的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
知識(shí)目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標(biāo):通過(guò)一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問(wèn)題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義的觀點(diǎn)。
3、重點(diǎn),難點(diǎn)及確定重難點(diǎn)的依據(jù)。
“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。
二、教材處理。
在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對(duì)概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對(duì)學(xué)生中存在的這些問(wèn)題,本節(jié)課突出對(duì)教學(xué)概念形成過(guò)程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。
三、教學(xué)方法和學(xué)法。
教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問(wèn)題解決。
四、教學(xué)手段。
采用投影儀。
五、教學(xué)程序。
1、新課導(dǎo)入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)。
(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))。
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問(wèn)題引出一元二次方程,可以幫助學(xué)生認(rèn)識(shí)到一元二次方程是來(lái)源于客觀需要的)。
設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程。
小學(xué)數(shù)學(xué)一元二次方程教案篇十三
一元二次方程的應(yīng)用是在學(xué)習(xí)了前面的一元二次方程的解法的基礎(chǔ)上,結(jié)合實(shí)際問(wèn)題,討論了如何分析數(shù)量關(guān)系,利用相等關(guān)系來(lái)列方程,以及如何解答。
列方程解決實(shí)際問(wèn)題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
在本章教學(xué)中我注意分散教學(xué)難點(diǎn),比如說(shuō),在學(xué)習(xí)增長(zhǎng)率問(wèn)題時(shí),我先設(shè)計(jì)了這樣一組練習(xí):一個(gè)車(chē)間二月份生產(chǎn)零件500個(gè),三月份比二月份增產(chǎn)10%,三月份生產(chǎn)xx個(gè)零件,如果四月份想再增產(chǎn)10%,四月份生產(chǎn)零件xx個(gè)。如果增產(chǎn)的百分率是x,那三月份和四月份各能生產(chǎn)零件多少個(gè)?通過(guò)分散教學(xué)難點(diǎn),引導(dǎo)學(xué)生理解題意,從而達(dá)到滿意的教學(xué)效果。
在本章教學(xué)中我還注意對(duì)學(xué)生進(jìn)行學(xué)法的指導(dǎo)。比如說(shuō),在做習(xí)題7.12第2題時(shí),有的同學(xué)想象不出圖形,就應(yīng)引導(dǎo)他們畫(huà)出示意圖;在比如學(xué)習(xí)最后一個(gè)例題時(shí),面對(duì)那么多的量,并且是運(yùn)動(dòng)中的量,許多學(xué)生無(wú)從下手,此時(shí)就要引導(dǎo)學(xué)生把量在圖形中先標(biāo)示出來(lái),在慢慢分析題中的數(shù)量關(guān)系。在分析問(wèn)題時(shí),要強(qiáng)調(diào)當(dāng)設(shè)完未知數(shù),那它就是已知數(shù),參與量的標(biāo)示。
總之,在教學(xué)中通過(guò)學(xué)生的自主探究、小組間的合作交流、教師的及時(shí)點(diǎn)撥,進(jìn)一步提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
將本文的word文檔下載到電腦,方便收藏和打印。
小學(xué)數(shù)學(xué)一元二次方程教案篇十四
2.知道的一般形式,會(huì)把化成一般形式。
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):的概念和它的一般形式。
難點(diǎn):對(duì)的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過(guò)實(shí)例引出的概念,介紹了的一般形式以及中各項(xiàng)的名稱。
1.了解整式方程和的概念;
2.知道的一般形式,會(huì)把化成一般形式。
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):。
重點(diǎn):。
1.的有關(guān)概念。
2.會(huì)把化成一般形式。
難點(diǎn):的含義.
第12頁(yè)。
小學(xué)數(shù)學(xué)一元二次方程教案篇十五
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
教學(xué)建議:
1.教材分析:
1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過(guò)實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
2)重點(diǎn)、難點(diǎn)分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語(yǔ)句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語(yǔ)句,就要對(duì)方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。
將本文的word文檔下載到電腦,方便收藏和打印。
小學(xué)數(shù)學(xué)一元二次方程教案篇十六
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
難點(diǎn):對(duì)一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過(guò)實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
2)重點(diǎn)、難點(diǎn)分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語(yǔ)句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語(yǔ)句,就要對(duì)方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。
教學(xué)目的。
2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):。
重點(diǎn):。
【本文地址:http://mlvmservice.com/zuowen/16876513.html】