無論是工作上的計劃,還是生活中的計劃,都需要我們認(rèn)真思考和制定。在執(zhí)行過程中,根據(jù)需要適時調(diào)整計劃,保持靈活性。注意,這些范文只是作為參考,具體的計劃需根據(jù)自身情況進(jìn)行調(diào)整和定制。
二次函數(shù)教學(xué)計劃篇一
從課本的體系來看,這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實際問題中對定義域的限制。
完成這節(jié)課后,靜下心來準(zhǔn)備寫個教學(xué)反思。重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個實際問題,由此引出了二次函數(shù),我才意識其實這節(jié)課的重點實際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗,從而形成定義”上,有了這個認(rèn)識,一切變得簡單了!
對于實際問題的選擇,我將4個問題整和于同一個實際背景下,這樣設(shè)計既能引起學(xué)生興趣,也盡量減少學(xué)生審題的時間,顯得非常有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。
對于練習(xí)的設(shè)計,仍然采取了不重復(fù)的原則性,盡量做到每題針對一個問題,并進(jìn)行及時的小結(jié),也遵循了從開放到封閉的原則,達(dá)到了良好的效果。
對于最后討論題的設(shè)計和提出,是我在進(jìn)行了整個一章的單元備課后發(fā)現(xiàn),我們其實對二次函數(shù)的最值問題是不講的,但是不講并不代表一點都不會涉及到,其中用到的思想方法還是相當(dāng)重要的,在圖象的觀察中也具有了重要的地位,再加上這個問題在進(jìn)行了前面的實際問題的解答之后是呼之欲出的:多種樹——想提高產(chǎn)量——多種幾棵好呢?,所以我設(shè)計了這個探索性的問題:假如你是果園的主人,你準(zhǔn)備多種幾棵?注意這里我并沒有提出最大最小值的問題,但是所有的學(xué)生都能理解到,這是數(shù)學(xué)的魅力。這個問題的提出是整節(jié)課的一個高潮和精華,是學(xué)生學(xué)完二次函數(shù)定義之后,綜合利用函數(shù)的基本知識,代數(shù)式的知識和一元二次方程的知識進(jìn)行的思考,因而他們的想法和說法,不論對錯,不論全面還是有所偏頗,其中都涉及到了重要的數(shù)學(xué)思想方法,而這些恰恰是非常重要的。事實證明學(xué)生的思維真的是非常活躍的,你要你給了足夠的空間,他們總能從各方各面進(jìn)行思考和解釋,我也從中看到了他們智慧的火花,這是很令人欣慰的。
二次函數(shù)教學(xué)計劃篇二
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
這節(jié)課,我們來學(xué)習(xí)二次函數(shù)的三種表達(dá)方式。
二、師生共同研究形成概念
1、用函數(shù)表達(dá)式表示
做一做書本p56矩形的周長與邊長、面積的關(guān)系
鼓勵學(xué)生間的互相交流,一定要讓學(xué)生理解周長與邊長、面積的關(guān)系。
比較全面、完整、簡單地表示出變量之間的關(guān)系
2、用表格表示
做一做書本p56填表
由于運算量比較大,學(xué)生的運算能力又一般,因此,建議把這個表格的一部分?jǐn)?shù)據(jù)先給出來,讓學(xué)生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系
3、用圖象表示
議一議書本p56議一議
關(guān)于自變量的問題,學(xué)生往往比較難理解,講解時,可適當(dāng)多花時間講解。
可以直觀地表示出函數(shù)的變化過程和變化趨勢
做一做書本p57
4、三種方法對比
議一議書本p58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達(dá)式可以比較全面、完整、簡單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點,它們服務(wù)于不同的需要。
在對三種表示方式進(jìn)行比較時,學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵。
二次函數(shù)教學(xué)計劃篇三
讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
:各種隱含條件的挖掘。
:引導(dǎo)發(fā)現(xiàn)法。
(一)診斷補償,情景引入:
(先讓學(xué)生復(fù)習(xí),然后提問,并做進(jìn)一步診斷)。
(二)問題導(dǎo)航,探究釋疑:
(三)精講提煉,揭示本質(zhì):
分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關(guān)系式。
解由題意,得點b的坐標(biāo)為(0。8,-2。4),
又因為點b在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。
例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解這個方程組,得a=2,b=-1。
(2)因為拋物線的頂點為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
(3)因為拋物線與x軸交于點m(-3,0)、(5,0),
所以設(shè)二此函數(shù)的關(guān)系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
(4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學(xué)們自己完成。
(四)題組訓(xùn)練,拓展遷移:
1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。
2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點的縱坐標(biāo)是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關(guān)系式。
(五)交流評價,深化知識:
確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點坐標(biāo)可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點坐標(biāo)和對稱軸。
二次函數(shù)教學(xué)計劃篇四
學(xué)生的發(fā)展是新課程標(biāo)準(zhǔn)實施的出發(fā)點和回宿,課程改革的重點是面向全體學(xué)生,以學(xué)生的發(fā)展為主體,轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式?!岸魏瘮?shù)的圖像的性質(zhì)”這一課題,通過對傳統(tǒng)教法的改進(jìn),以全新的自主的學(xué)習(xí)方式讓學(xué)生接受題目挑戰(zhàn),充分展示自己的觀點和見解,給學(xué)生創(chuàng)設(shè)一種寬松、愉快、***、***的科研氛圍,讓學(xué)生感受“二次函數(shù)的性質(zhì)”的探究發(fā)現(xiàn)過程,體驗研究過程,體驗成功的快樂。
1、利用計算機(jī)制作動畫(讓學(xué)觀察拋物線的形成過程)培養(yǎng)學(xué)生以運動變化的觀點來觀察題目、分析題目、解決題目的意識。
2、會用描點法畫出二次函數(shù)的圖像,能通過圖像熟悉二次函數(shù)的性質(zhì)。
3、通過具體例子,在探索二次函數(shù)圖像和性質(zhì)的過程中,學(xué)會利用配方法將數(shù)字系數(shù)的二次函數(shù)表達(dá)式表示成:y=a(x-h)^2+k的形式,從而確定二次函數(shù)圖像的頂點和對稱軸。
4、通過一般式與頂點式的互化過程,了解互化的必要性。培養(yǎng)學(xué)生熟悉“事物都是相互聯(lián)系、相互制約”的辯證唯物主義觀點。
5、在經(jīng)歷“觀察、猜測、探索、驗證、應(yīng)用”的過程中,滲透從“形”到“數(shù)”和從“數(shù)”到“形”的轉(zhuǎn)化,培養(yǎng)了學(xué)生的轉(zhuǎn)化、遷移能力,實現(xiàn)感性到理性的升華。
1、通過主動操縱、合作交流、自主評價,改進(jìn)學(xué)生的學(xué)習(xí)方式及學(xué)習(xí)質(zhì)量,激發(fā)學(xué)生的愛好,喚起好奇心與求知欲,點燃起學(xué)生聰明的火花,使學(xué)生積極思維,勇于探索,主動獲取知識。
2、讓學(xué)生在猜想與探究的過程中,體驗成功的快樂,培養(yǎng)他們主動參與的意識、協(xié)同合作的意識、勇于創(chuàng)新和實踐的科學(xué)精神。
1、擬通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生的觀察能力、探索能力、數(shù)形結(jié)合能力、回納概括能力,綜合培養(yǎng)學(xué)生的思維能力及創(chuàng)新能力。
2、培養(yǎng)學(xué)生運用運動變化的觀點來分析、探討題目的意識。
通過研究、、、這幾類函數(shù)圖像,得出平移規(guī)律,并總結(jié)概括出二次函數(shù)的性質(zhì)。
運用題目解決理論指導(dǎo)教學(xué),力求體現(xiàn)“自主學(xué)習(xí)、動手實踐、合作交流”的教學(xué)理念。
計算機(jī)、網(wǎng)絡(luò)。
(1)畫出圖像經(jīng)過了哪些過程?
(2)列表時自變量取了幾個數(shù)?哪幾個數(shù)?
(3)找?guī)孜煌瑢W(xué)展示一下自己畫的圖像。
(4)想一想,列表時如何公道選值?以什么數(shù)為中心?當(dāng)x取互為相反數(shù)的值時,y的值如何?讓學(xué)生結(jié)合老師夸大的作圖留意事項,再畫函數(shù)的圖圖像。
然后老師用畫函數(shù)工具作出的圖像。由學(xué)生觀察作比較。
教會學(xué)生用畫函數(shù)工具畫圖,讓學(xué)生比較兩種畫法,弄清學(xué)生自己所畫的`不足之處.
用幾何畫板呈現(xiàn)已畫好的函數(shù)圖象,讓學(xué)生觀察圖象上的點變化的過程,確認(rèn)函數(shù)值隨著自變量的變化而變化的規(guī)律.
老師作總結(jié).
(3)拋物線與對稱軸的交點叫做拋物線的頂點,那么二次函數(shù)的頂點坐標(biāo)是;。
(4)在對稱軸的左邊隨著的增大而減小;在對稱軸的右邊隨著的增大而增大.
二次函數(shù)教學(xué)計劃篇五
1、上課一開始,我就注重對所學(xué)過的平面直角坐標(biāo)系的有關(guān)知識、平面內(nèi)如何確定點的坐標(biāo)、以及各象限內(nèi)點的坐標(biāo)特征和關(guān)于y軸對稱點的坐標(biāo)特征的復(fù)習(xí)。使學(xué)生在畫二次函數(shù)圖象時描點找得很快、很準(zhǔn)確。在講解拋物線的概念時,出示了同學(xué)們很感興趣的姚明投籃的照片,激發(fā)了學(xué)生的學(xué)習(xí)興趣。為了得出a不同對拋物線圖象和性質(zhì)的影響,在學(xué)生畫完三個圖象后,教師采用“問題導(dǎo)學(xué)”式教學(xué)方法,設(shè)置問題情境,引導(dǎo)學(xué)生自主進(jìn)行觀察、發(fā)現(xiàn)、歸納、反思等數(shù)學(xué)活動,得出二次函數(shù)y=ax2的圖象和性質(zhì),在教學(xué)中,由學(xué)生自己動手,通過列表、描點、連線繪制出二次函數(shù)的圖象,培養(yǎng)了學(xué)生動手動腦的習(xí)慣和綜合分析歸納的能力。
2、小組合作學(xué)習(xí),發(fā)現(xiàn)其中的規(guī)律。鼓勵學(xué)生相互交流自己的想法,并說明理由。如在畫出圖象后,提問學(xué)生“我們可以從圖中觀察到什么”。滲透了數(shù)形結(jié)合的思想,培養(yǎng)了學(xué)生觀察、綜合分析的能力,增加了學(xué)習(xí)的自信心和學(xué)習(xí)的能力。在合作學(xué)習(xí)中,也培養(yǎng)了他們善于與人交流,合作,肯于負(fù)責(zé)任的良好個性品質(zhì)。
3、教師適時地總結(jié)、深化,提高認(rèn)識水平。教師在不斷地總結(jié)中滲透數(shù)學(xué)思想方法,抓住時機(jī)培養(yǎng)學(xué)生思維的深刻性。如這幾個基本函數(shù)的學(xué)習(xí)上一節(jié)課經(jīng)歷了從實例抽象概括出函數(shù)概念,本節(jié)課由函數(shù)的解析式畫出函數(shù)的圖象,總結(jié)出函數(shù)的性質(zhì),再利用所學(xué)知識解決有關(guān)問題。在師生的共同討論中,深化所學(xué)知識,培養(yǎng)學(xué)生具備反省思維的能力。
4、課堂教學(xué)中充分體現(xiàn)了教師和學(xué)生的“雙主作用”,其中“問題導(dǎo)學(xué)”的教學(xué)模式起了重要作用。只有教師創(chuàng)造性的教,學(xué)生才能創(chuàng)造性地學(xué),一旦學(xué)生的學(xué)習(xí)活動充滿創(chuàng)造性的時候,學(xué)習(xí)過程便充滿美的魅力,成為學(xué)生積極進(jìn)取、自我完善的過程。
不足:對y=-x2的讀法,教師讀的不規(guī)范,沒有注意小的細(xì)節(jié)。在總結(jié)二次函數(shù)性質(zhì)時,對于開口寬度,我在備課時用a的絕對值來表示的,a為負(fù)數(shù)時與a為正數(shù)時正好相反,一個學(xué)生說對了,但不是老師要的答案,我當(dāng)時沒有多想,就說他說的不對。忽略了不同的說法。另外老師提出問題后,給學(xué)生去分析、歸納、總結(jié)的時間還不夠,因此本節(jié)課中教師有包辦現(xiàn)象。
二次函數(shù)教學(xué)計劃篇六
在整個中學(xué)數(shù)學(xué)知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點,也是線性數(shù)學(xué)知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
四、要多了解學(xué)生。你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。
三、教師在設(shè)計教學(xué)目標(biāo)時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感.這樣他們才會更有興趣的學(xué)習(xí)下去.
1.質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識,必須鼓勵學(xué)生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3.學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學(xué)生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
1.教學(xué)案例、教學(xué)設(shè)計、教學(xué)實錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計)是事先設(shè)想的教育教學(xué)思路,是對準(zhǔn)備實施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2.教學(xué)案例與教學(xué)實錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實錄是有聞必錄(事實判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識地選擇有關(guān)信息,必須事先進(jìn)行實地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
二次函數(shù)教學(xué)計劃篇七
這節(jié)課是人教版九年級數(shù)學(xué)下冊的一節(jié)探究課。在教學(xué)中我采用了體驗探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導(dǎo)引探"的教學(xué)理念。
整個教學(xué)過程主要分為三部分:
第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學(xué)生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的性質(zhì)等問題。我的設(shè)計目的是讓學(xué)生在復(fù)習(xí)這些知識的過程中體會從函數(shù)圖像來研究函數(shù)性質(zhì)。應(yīng)該說這樣設(shè)計既讓學(xué)生復(fù)習(xí)了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學(xué)生的探究能力。
第二部分是學(xué)習(xí)探究,探求活動前先讓一名學(xué)生讀了學(xué)習(xí)目標(biāo),讓大家?guī)е繕?biāo)去探究。探究活動一是讓學(xué)生在坐標(biāo)紙上畫出二次函數(shù)y=ax2的圖象。畫圖的過程包括列表、描點、連線。列表過程是我引導(dǎo)學(xué)生取點的,其間我引導(dǎo)大家要明確取點注意的事項,比如代表性、易操作性。這樣學(xué)生在下一個環(huán)節(jié)就能游刃有余。學(xué)生在我的引導(dǎo)下順利地畫出了函數(shù)的圖象。緊接著我讓學(xué)生按照學(xué)案的要求自主探討當(dāng)a0時函數(shù)y=ax2的性質(zhì)。探究活動二是獨立畫出函數(shù)y=ax2的圖象,然后是自主探討當(dāng)a0時函數(shù)y=ax2的性質(zhì)。探討函數(shù)的性質(zhì)主要從開口方向、對稱軸、增減性、頂點坐標(biāo)和最值方面入手,讓學(xué)生從特殊函數(shù)來歸納總結(jié)一般函數(shù)的性質(zhì)。應(yīng)該說探究活動二在活動一的基礎(chǔ)上讓學(xué)生鍛煉了自我學(xué)習(xí)的能力,學(xué)生們完成的很好。探索活動三是小組合作活動。觀察自己畫出的兩個圖象,它們代表函數(shù)y=ax2的兩種情況,找出a的符號不同時他們的相同點、不同點和聯(lián)系點。這個環(huán)節(jié)能充分發(fā)揮小組合作的優(yōu)勢,讓學(xué)生在談?wù)撝畜w會分類思想。小組討論完畢后我讓學(xué)生展示他們的成果,大部分學(xué)生躍躍欲試,他們討論的很全面,出乎我的預(yù)料。這里面還有個知識點我是用幾何畫板演示的,就是通過改變a的值讓學(xué)生們觀察圖象的開口方向和開口寬度。幾何畫板在此起到了突破難點的作用,讓我真正體會到了掌握幾何畫板對自己的教學(xué)是多么的有利。第三部分是課堂檢測。最后五分鐘時我讓學(xué)生們獨立完成課堂檢測部分題目。課堂檢測共出了四個小題(基礎(chǔ)題)一個應(yīng)用題(選做題),下課鈴聲響了,大部分的同學(xué)還沒有完成選做題,所以我就讓同桌交換試卷,公布前四個基礎(chǔ)題的答案。從當(dāng)堂的反饋來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識,達(dá)到了學(xué)習(xí)目標(biāo)中的要求。
本課的優(yōu)點主要包括:
1、教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。
2、教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實。
3、能運用現(xiàn)代化的教學(xué)手段教學(xué),尤其是能用幾何畫板等軟件突破重難點。
本課的不足之處表現(xiàn)在:
1、知識的生成過程體現(xiàn)的不夠具體。在活動一中,雖然引導(dǎo)學(xué)生選點和列表,但是沒有在黑板上演示作圖的過程,雖然說明白了選點的注意事項但是學(xué)生還是被動的接受,他們不一定能理解為什么要選那個點。
3、課堂上講的太多。有些過程,讓學(xué)生自主觀察總結(jié)是完全能收到好的效果的,但是我都替學(xué)生總結(jié)了,學(xué)生還是被動的接受。其實這還是思想的問題,說明我沒有真的放開手。真正讓學(xué)生有了空間,他們也會給我們很大的驚喜。
4、學(xué)生在回答問題的過程中我老是打斷學(xué)生。提問一個問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。破壞學(xué)生的思路是我們教師最大的毛病,此頑疾不除,教學(xué)質(zhì)量難以保證。
5、合作學(xué)習(xí)的有效性不夠。其實在演示幾何畫板的過程中,學(xué)生在a0的情況下能得到a越大開口越小,a0的情況下a越小開口越大。但是綜合起來學(xué)生就困難的多了。這個時候不妨讓大家小組討論完成知識的總結(jié)。有這樣一種說法:你我各一個蘋果,交換之后,你我還是一個蘋果;你我各有一種思想,交換之后,你我卻有了兩種思想。這很形象地說出了合作學(xué)習(xí)的好處。教師把學(xué)習(xí)的主動權(quán)交給學(xué)生,把思維的過程還給學(xué)生,問題在分組討論中得以共同解決。只有真正把自主、探究、合作的`學(xué)習(xí)方式落到實處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會發(fā)展的公民。
二次函數(shù)教學(xué)計劃篇八
1、學(xué)習(xí)圖像之前,讓學(xué)生正確畫平面直角坐標(biāo)系,準(zhǔn)備不同顏色的彩筆。
2、每節(jié)課基本都是學(xué)生自己畫圖、比較、討論、總結(jié)。本節(jié)畫出的圖像比較,和上節(jié)學(xué)習(xí)的圖像比較,和小組其他同學(xué)比較,看形狀、看開口、看對稱軸、看頂點有什么相同點和不同的地方,盡可能自己總結(jié)函數(shù)的圖像。
3、小組展示成果,其他小組聽、評和補充??偨Y(jié)出頂點形式的圖像性質(zhì)。
4、畫出函數(shù)的圖像,根據(jù)圖像確定ahk的數(shù)值。
5、注意二次函數(shù)的對稱性,步驟是列表、描點、連線。取值時從對稱軸開始取,注意左右對稱取值。
二次函數(shù)教學(xué)計劃篇九
在整個中學(xué)數(shù)學(xué)知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點,也是線性數(shù)學(xué)知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
四、要多了解學(xué)生。你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
二次函數(shù)教學(xué)計劃篇十
1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點。
2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:
(1)y=x2的圖象的圖象有什么特點。(答:具有對稱性。)。
(2)如何判斷y=x2的圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)。
二次函數(shù)教學(xué)計劃篇十一
1、教材所處的地位:
2、教學(xué)目的要求:
(2)讓學(xué)生學(xué)習(xí)了二次函數(shù)的定義后,能夠表示簡單變量之間的二次函數(shù)關(guān)系;
(3)知道實際問題中存在的二次函數(shù)關(guān)系中,多自變量的取值范圍的要求。
(4)把數(shù)學(xué)問題和實際問題相聯(lián)系,使學(xué)生初步體會數(shù)學(xué)與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用。
3、教學(xué)重點和難點。
本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點:
重點:
(2)能夠表示簡單變量之間的二次函數(shù)關(guān)系.。
難點:
具體的分析、確定實際問題中函數(shù)關(guān)系式。
下面,為了講清重點、難點,使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>
1、教法研究。
教學(xué)中教師應(yīng)當(dāng)暴露概念的再創(chuàng)造過程,鼓勵學(xué)生不但要動口、動腦,而且要動手,學(xué)生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗、猜想,產(chǎn)生對結(jié)論的感知,這不僅讓學(xué)生對所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會主動學(xué)習(xí),學(xué)會研究問題的方法,培養(yǎng)學(xué)生的能力。本節(jié)課的設(shè)計堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強(qiáng)對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。
2、學(xué)法研究。
初中學(xué)生的思維方式往往還是比較具象的,要讓他們在問題的探究過程中充分體驗問題的發(fā)現(xiàn)、解決及最終表述的方式方法,遇到困難可以和同伴、老師進(jìn)行交流甚至爭論,這樣既可以加深學(xué)生對問題的理解又可以讓學(xué)生體驗獲得學(xué)習(xí)的快樂。
3、教學(xué)方式。
(1)由于本節(jié)課的內(nèi)容是學(xué)生在學(xué)習(xí)了《一次函數(shù)》和《正比例函數(shù)》的基礎(chǔ)上的加深,所以可以利用學(xué)生已有的知識在問題一、二中放手讓學(xué)生先去探究探究兩個問題中的變量之間的關(guān)系,在得到具體的關(guān)系式后,再引導(dǎo)學(xué)生觀察關(guān)系式都有著什么樣的特點,可以和多項式中的二次三項式或一元二次方程比較認(rèn)識,并最終得出二次函數(shù)的一般式及二次項系數(shù)的取值為什么不為零的道理。
(2)要特別提醒學(xué)生注意:二次函數(shù)是解決實際生活生產(chǎn)的一個很有效的模板,因而對二次函數(shù)解析式中自變量的取值范圍一定要從理論上和實際中加以綜合討論和認(rèn)定。
(3)可以多讓學(xué)生解決實際生活中的一些具有二次函數(shù)關(guān)系的實例來加深和提高學(xué)生對這一關(guān)系模型的理解。
這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。
1、溫故知新—揭示課題。
由回顧所學(xué)過的正比例函數(shù),一次函數(shù)入手,引入函數(shù)大家庭中還會認(rèn)識那一種函數(shù)呢?再由例子打籃球投籃時籃球運動的軌跡如何?何時達(dá)到最高點?引入二次函數(shù)。
2、自我嘗試、合作探究—探求新知。
通過學(xué)生自己獨立解決運用函數(shù)知識表述變量間關(guān)系,即自我探討環(huán)節(jié);合作探究環(huán)節(jié),學(xué)生間互動,集群體力量,共破難關(guān),來自主探究新知,從而通過觀察,歸納得到二次函數(shù)的解析式,獲取新知。
3、小試身手—循序漸進(jìn)。
本組題目是對新學(xué)的直接應(yīng)用,目的在于使學(xué)生能辨認(rèn)二次函數(shù),準(zhǔn)確指出a、b、c,并應(yīng)用其定義求字母系數(shù)的值,能應(yīng)用二次函數(shù)準(zhǔn)確表示具體問題中的變量間關(guān)系。本組題目的解決以學(xué)生快速解答為主,重點對第2題分析解決方法。這一環(huán)節(jié)主要由學(xué)生處理解決,以檢查學(xué)生的掌握程度。
4、課堂回眸—歸納提高。
本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。
5、課堂檢測—測評反饋。
共有6個題目,由學(xué)生獨自處理第1、2、3、4、5小題,再發(fā)表自己的看法,第6小題可由學(xué)生或獨自或同組交流均可。教師多以巡視為主,注意掌握學(xué)生對本節(jié)的掌握情況。
6、作業(yè)布置。
作業(yè)我選擇“同步作業(yè)”里的題目,其中基礎(chǔ)訓(xùn)練為必做題,全員均做;綜合應(yīng)用為選做題,可供學(xué)有余力的學(xué)生能力提升用。
通過引入實例,豐富學(xué)生認(rèn)識,理解新知識的意義,進(jìn)而擺脫其原型,從而進(jìn)行更深層次的研究,這種“數(shù)學(xué)化”的方法是認(rèn)識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對于學(xué)生的終身發(fā)展也有一定的作用。
二次函數(shù)教學(xué)計劃篇十二
根據(jù)我們學(xué)校人人皆知的船模特色項目設(shè)計了這樣一個情境:
讓班級中的上科院小院士來簡要介紹學(xué)校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學(xué)生在練習(xí)中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。
二次函數(shù)教學(xué)計劃篇十三
學(xué)習(xí)目標(biāo):
1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對函數(shù)性質(zhì)進(jìn)行研究。
3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學(xué)生的運用能力。
學(xué)習(xí)重點:
能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進(jìn)行研究。
學(xué)習(xí)難點:
能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
學(xué)習(xí)過程:
一、學(xué)前準(zhǔn)備。
函數(shù)的三種表示方式,即表格、表達(dá)式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價與購買數(shù)量之間的關(guān)系如下:
x(千克)00。511。522。53。
y(元)0123456。
二、探究活動。
(一)合作探究:
交流完成:
(1)一邊長為xcm,則另一邊長為cm,所以面積為:用函數(shù)表達(dá)式表示:=________________________________。
(2)表格表示:
123456789。
10—。
(3)畫出圖象。
(二)議一議。
(1)在上述問題中,自變量x的取值范圍是什么?
(2)當(dāng)x取何值時,長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請你描述一下y隨x的變化而變化的情況。
點撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請大家互相交流。
(1)因為x是邊長,所以x應(yīng)取數(shù),即x0,又另一邊長(10—x)也應(yīng)大于,即10—x0,所以x10,這兩個條件應(yīng)該同時滿足,所以x的取值范圍是。
(2)當(dāng)x取何值時,長方形的面積最大,就是求自變量取何值時,函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點式。當(dāng)x=—時,函數(shù)y有最大值y最大=。當(dāng)x=時,長方形的面積最大,最大面積是25cm2。
可以通過觀察圖象得知。也可以代入頂點坐標(biāo)公式中求得。。
(三)做一做:學(xué)生獨立思考完成p62,p63的函數(shù)表達(dá)式,表格,圖象問題。
(1)用函數(shù)表達(dá)式表示:y=________。
(2)用表格表示:
(3)用圖象表示:
三、學(xué)習(xí)體會。
本節(jié)課你有哪些收獲?你還有哪些疑問?
四、自我測試。
1、把長1。6米的鐵絲圍成長方形abcd,設(shè)寬為x(m),面積為y(m2)。則當(dāng)最大時,所取的值是()。
a0。5b0。4c0。3d0。6。
2、兩個數(shù)的和為6,這兩個數(shù)的積最大可能達(dá)到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。
【本文地址:http://mlvmservice.com/zuowen/16855003.html】