2023年高一數(shù)學(xué)教學(xué)計劃(十五篇)

格式:DOC 上傳日期:2023-03-18 11:11:02
2023年高一數(shù)學(xué)教學(xué)計劃(十五篇)
時間:2023-03-18 11:11:02     小編:zxfb

時間就如同白駒過隙般的流逝,我們的工作與生活又進入新的階段,為了今后更好的發(fā)展,寫一份計劃,為接下來的學(xué)習(xí)做準(zhǔn)備吧!相信許多人會覺得計劃很難寫?以下是小編為大家收集的計劃范文,僅供參考,大家一起來看看吧。

高一數(shù)學(xué)教學(xué)計劃篇一

本節(jié)課是北師大版數(shù)學(xué)(必修2)第二章《解析幾何初步》第一節(jié)《1.2直線的方程》第一部分《直線方程的點斜式》內(nèi)容。

直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式

、兩點式都是由點斜式推出的`。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題求直線方程問題。在引入,過程中要讓學(xué)生弄清

直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。

在推導(dǎo)直線方程的點斜式時,根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。

知識與技能:

(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;

(2)能正確利用直線的點斜式、斜截式公式求直線方程。

(3)體會直線的斜截式方程與一次函數(shù)的關(guān)系。

過程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學(xué)生

通過對比理解截距與距離的區(qū)別。

情態(tài)與價值觀:通過讓學(xué)生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化

等觀點,使學(xué)生能用聯(lián)系的觀點看問題。

重點:直線的點斜式方程和斜截式方程。

難點:直線的點斜式方程和斜截式方程的應(yīng)用。

要點:運用數(shù)形結(jié)合的思想方法,幫助學(xué)生分析描述幾何圖形。

1.教學(xué)方法的選擇:啟發(fā)、引導(dǎo)、討論.

創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的探究性

學(xué)習(xí)活動。

2.通過讓學(xué)生觀察、討論、辨析、畫圖,親身實踐,調(diào)動多感官去體驗數(shù)學(xué)建模的思想;學(xué)生要學(xué)會用數(shù)形結(jié)合的方法建立起代數(shù)問題與幾何問題

間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:

①.讓學(xué)生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評析解題對錯,從而提高學(xué)生的參與意識和數(shù)學(xué)表達(dá)能力。

②.分組討論。

高一數(shù)學(xué)教學(xué)計劃篇二

本節(jié)課是x教版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修(x)的第一節(jié)課。該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化。教材通過一個實際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中。同時,通過對《xx》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《xx》和選修內(nèi)容《xx》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系。

一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的`學(xué)習(xí),處理了空間中點、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識,因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想。這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ)。

1、知識與技能

①通過具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性。

②了解空間直角坐標(biāo)系,掌握空間點的坐標(biāo)的確定方法和過程。

③感受類比思想在探究新知識過程中的作用。

2、過程與方法

①結(jié)合具體問題引入,誘導(dǎo)學(xué)生探究。

②類比學(xué)習(xí),循序漸進。

3、情感態(tài)度與價值觀

通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學(xué)生體會數(shù)學(xué)的實踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間。

4、教學(xué)重點

本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點確立為“空間直角坐標(biāo)系的理解”。

5、教學(xué)難點

先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會用坐標(biāo)刻畫平面內(nèi)任意點的位置的方法,進而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出“第三根軸”的建立,進而感受逐步發(fā)展得到“空間直角坐標(biāo)系”的建立,再逐步掌握利用坐標(biāo)表示空間任意點的位置??偟脕碚f,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論。

高一數(shù)學(xué)教學(xué)計劃篇三

一、設(shè)計理念

新課標(biāo)指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只是接受、記憶、模仿、練習(xí),教師應(yīng)引導(dǎo)學(xué)生自主探究、合作學(xué)習(xí)、動手操作、閱讀自學(xué),應(yīng)注重提升學(xué)生的數(shù)學(xué)思維能力,注重發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識。

二、教材分析

本節(jié)課選自人教版《普通高中課程標(biāo)準(zhǔn)實驗教課書》必修1,第一章1.1.2集合間的基本關(guān)系。集合是數(shù)學(xué)的基本和重要語言之一,在數(shù)學(xué)以及其他的領(lǐng)域都有著廣泛的應(yīng)用,用集合及對應(yīng)的語言來描述函數(shù),是高中階段的一個難點也是重點,因此集合語言作為一種研究工具,它的學(xué)習(xí)非常重要。本節(jié)內(nèi)容主要是集合間基本關(guān)系的學(xué)習(xí),重在讓學(xué)生類比實數(shù)間的關(guān)系,來進行探究,同時培養(yǎng)學(xué)生用數(shù)學(xué)符號語言,圖形語言進行交流的能力,讓學(xué)生在直觀的基礎(chǔ)上,理解抽象的概念,同時它也是后續(xù)學(xué)習(xí)集合運算的知識儲備,因此有著至關(guān)重要的作用。

三、學(xué)情分析

【年齡特點】:

假設(shè)本次的授課對象是普通高中高一學(xué)生,高一的學(xué)生求知欲強,精力旺盛,思維活躍,已經(jīng)具備了一定的觀察、分析、歸納能力,能夠很好的配合教師開展教學(xué)活動。

【認(rèn)知優(yōu)點】

一方面學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,初步掌握了集合的三種表示法,對于本節(jié)課的學(xué)習(xí)有利一定的認(rèn)知基礎(chǔ)。

【學(xué)習(xí)難點】

但是,本節(jié)課這種類比實數(shù)關(guān)系研究集合間的關(guān)系,這種類比學(xué)習(xí)對于學(xué)生來說還有一定的難度。

四、教學(xué)目標(biāo)

? 知識與技能:

1. 理解子集、v圖、真子集、空集的概念。

2. 掌握用數(shù)學(xué)符號語言以及v圖語言表示集合間的基本關(guān)系。

3. 能夠區(qū)分集合間的包含關(guān)系與元素與集合的屬于關(guān)系。

? 過程與方法:

1. 通過類比實數(shù)間的關(guān)系,研究集合間的關(guān)系,培養(yǎng)學(xué)生類比、觀察、

分析、歸納的能力。

2. 培養(yǎng)學(xué)生用數(shù)學(xué)符號語言、圖形語言進行交流的能力。

? 情感態(tài)度與價值觀:

1.激發(fā)學(xué)生學(xué)習(xí)的興趣,圖形、符號所帶來的魅力。

2.感悟數(shù)學(xué)知識間的聯(lián)系,養(yǎng)成良好的思維習(xí)慣及數(shù)學(xué)品質(zhì)。

五、教學(xué)重、難點

重點:

集合間基本關(guān)系。

難點:

類比實數(shù)間的關(guān)系研究集合間的關(guān)系。

六、教學(xué)手段

ppt輔助教學(xué)

七、教法、學(xué)法

? 教法:

探究式教學(xué)、講練式教學(xué)

遵循“教師主導(dǎo)作用與學(xué)生主體地位相結(jié)合的”教學(xué)規(guī)律,引導(dǎo)學(xué)生自主探究,合作學(xué)習(xí),在教學(xué)中引導(dǎo)學(xué)生類比實數(shù)間關(guān)系,來研究集合間的關(guān)系,降低了學(xué)生學(xué)習(xí)的難度,同時也激發(fā)了學(xué)生學(xué)習(xí)的興趣,充分體現(xiàn)了以學(xué)生為本的教學(xué)思想。

? 學(xué)法:

自主探究、類比學(xué)習(xí)、合作交流

教師的“教”其本質(zhì)是為了“不教”,教師除了讓學(xué)生獲得知識,提高解題能力,還應(yīng)該讓學(xué)生學(xué)會學(xué)習(xí),樂于學(xué)習(xí),充分體現(xiàn)“以學(xué)定教”的教學(xué)理念。通過引導(dǎo)學(xué)生類比學(xué)習(xí),同學(xué)間的合作交流,讓學(xué)生更好的學(xué)習(xí)集合的知識。

八、課型、課時

課型:新授課

課時:一課時

九、教學(xué)過程

(一)教學(xué)流程圖

(二)教學(xué)詳細(xì)過程

1..回顧就知,引出新知

問題一:實數(shù)間有相等、不等的關(guān)系,例如5=5,3﹤7,那么集合之間會有什么關(guān)系呢?

2.合作交流,探究新知

問題二:大家來仔細(xì)觀察下面幾個例子,你能發(fā)現(xiàn)集合間的關(guān)系嗎?

(1)a={1,2,3},b={1,2,3,4,5};

(2)設(shè)a為新華中學(xué)高一(2)班女生的全體組成集合;b為這個班學(xué)生的全體組成集合;

(3)設(shè)c={x∣x是兩條邊相等的三角形},d={x∣x是等腰三角形}

【師生活動】:學(xué)生觀察例子后,得出結(jié)論,在(1)中集合a中的任何一個元素都是集合b中的元素,教師總結(jié),這時我們說集合a與集合b 有包含關(guān)系。(2)中的集合也是這種關(guān)一般地,對于兩個集合a,b,如果集合a中任意一個元素都是集合b中的'元素,我們就說這兩集合有包含關(guān)系,稱集合a為集合b 的子集,記作:a?b(b?a),讀作a含于b或者b包含a.

在數(shù)學(xué)中我們經(jīng)常用平面上封閉的曲線內(nèi)部代表集合,這樣上述集合a與集合b的包含關(guān)系,可以用下圖來表示:

問題三:你能舉出幾個集合,并說出它們之間的包含關(guān)系嗎?

【師生活動】:學(xué)生自己舉出些例子,并加以說明,教師對學(xué)生的回答進行補充。

問題四:對于題目中的第3小題中的集合,你有什么發(fā)現(xiàn)嗎?

【師生活動1】:在(3)由于兩邊相等的三角形是等腰三角形,因此集合c,d都是所有等腰三角形的集合,集合c中任意一個元素都是集合d的元素 ,同時集合d任意一個元素都是集合c的元素,因此集合c與集合d相等,記作:c=d。

用集合的概念對相等做進一步的描述:

如果集合a是集合b 子集,且集合b是集合a的子集,此時集合a與集合b的元素一樣,因此集合a與集合b 相等,記作a=b。

強調(diào):如果集合a?b,但存在元素x∈b, 且x?a,我們稱集合a是集合b的真子集,記作:a?b

【師生活動2】:教師引導(dǎo)學(xué)生以(1)為例,指出a?b,但4∈b, 4?a,教師總結(jié)所以集合a是集合b的真子集。

【師生活動】?,并規(guī)定空集是任何集合的

4.思維拓展,討論新知

問題六:包含關(guān)系{a}?a與屬于關(guān)系a∈a有什么區(qū)別?請大家用具體例子來說明

【師生活動1】:學(xué)生以(1)為例{1,2}?a,2∈a,說明前者是集合之間的關(guān)系,后者是

問題七:經(jīng)過以上集合之間關(guān)系的學(xué)習(xí),你有什么結(jié)論?

【師生活動】:師生討論得出結(jié)論:

(1)任何一個集合都是它本身的子集,即a?a

5.練習(xí)反饋,培養(yǎng)能力

例1寫出集合{a,b}的所有子集,并指出哪些是真子集

例2用適當(dāng)?shù)姆柼羁?/p>

(1)a_{a,b,c}

(2){0,1}_n

(3){2,1}_{x∣x2-3x+2=0}

6.課堂小結(jié),布置作業(yè)

這節(jié)課你學(xué)到了哪些知識?

小結(jié) 知識上:

能力上:

情感上:

作業(yè):必做題:p8,3

思考題:實數(shù)間有運算,那集合呢?

十、板書設(shè)計

十一、教學(xué)反思

高一數(shù)學(xué)教學(xué)計劃篇四

1.通過高速公路上的實際例子,引起積極的思考和交流,從而認(rèn)識到生活中處處可以遇到變量間的依賴關(guān)系.能夠利用初中對函數(shù)的認(rèn)識,了解依賴關(guān)系中有的是函數(shù)關(guān)系,有的則不是函數(shù)關(guān)系.

2.培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的'態(tài)度.

在于讓學(xué)生領(lǐng)悟生活中處處有變量,變量之間充滿了關(guān)系

教學(xué)難點:培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的態(tài)度

探究交流法

(一)、知識探索:

閱讀課文p25頁。實例:書上在高速公路情境下的問題。

在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關(guān)系?

2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關(guān)系,兩種依賴關(guān)系都有函數(shù)關(guān)系嗎?

問題小結(jié):

1.生活中變量及變量之間的依賴關(guān)系隨處可見,并非有依賴關(guān)系的兩個變量都有函數(shù)關(guān)系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應(yīng),才稱它們之間有函數(shù)關(guān)系。

2.構(gòu)成函數(shù)關(guān)系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應(yīng)。

3.確定變量的依賴關(guān)系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。

(二)、新課探究——函數(shù)概念

1.初中關(guān)于函數(shù)的定義:

2.從集合的觀點出發(fā),函數(shù)定義:

給定兩個非空數(shù)集a和b,如果按照某個對應(yīng)關(guān)系f,對于a中的任何一個數(shù)x,在集合b中都存在確定的數(shù)f(x)與之對應(yīng),那么就把這種對應(yīng)關(guān)系f叫做定義在a上的函數(shù),記作或f:a→b,或y=f(x),x∈a.;

此時x叫做自變量,集合a叫做函數(shù)的定義域,集合{f(x)︱x∈a}叫作函數(shù)的值域。習(xí)慣上我們稱y是x的函數(shù)。

定義域,值域,對應(yīng)法則

4.函數(shù)值

當(dāng)x=a時,我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。

高一數(shù)學(xué)教學(xué)計劃篇五

高一共四個教學(xué)班,共計160余人。楊文國帶高一(一)班,高一(二)班;張忠杰帶高一(三)班和高一(四)班。其中各班期末八校聯(lián)考的成績分別為:50.6分,32.8分,27.2分,34.5分,總平36.9分。學(xué)期中途因張忠杰離開學(xué)校導(dǎo)致頻繁更換老師,(三)班、(四)班的成績因而受到影響。期末由王山任(三)班、(四)班的數(shù)學(xué)老師。

上學(xué)期工作在學(xué)生學(xué)習(xí)的落實環(huán)節(jié)上做得不太扎實,這將是本學(xué)期重點改進的地方。

1.一周學(xué)習(xí)早知道。明確目標(biāo)更能確定努力的方向。為了讓學(xué)生學(xué)習(xí)更有目的性,有效性和積極性,每周第一節(jié)課給出一周的`教學(xué)進度,學(xué)習(xí)目標(biāo)和過關(guān)要求。不僅老師要做到對所教內(nèi)容清楚明了,也要讓學(xué)生對所學(xué)內(nèi)容做到每周學(xué)習(xí)目標(biāo)清晰化。

2.落實每周測試過關(guān)制。周測內(nèi)容與一周學(xué)習(xí)目標(biāo)及一周的講授內(nèi)容緊密相連。未盡力而又沒有過關(guān)的學(xué)生將按事先說明的措施給予處罰。以便讓學(xué)生重視課堂學(xué)習(xí),重視平時作業(yè),重視一周的學(xué)習(xí)過程。做到讓學(xué)生每周學(xué)習(xí)過程精細(xì)化。 3.根據(jù)學(xué)生學(xué)力狀況進行分層次的培優(yōu)補差。

周次,學(xué)習(xí)內(nèi)容

目標(biāo)要求

1. 必修4 第一章三角函數(shù):第1至3節(jié)

周期,角的推廣及表示,弧度制及互化

2. 軍訓(xùn)

3. 第4節(jié):正弦函數(shù)

單位圓,正弦函數(shù)定義,象限符號,誘導(dǎo)公式,五點法畫圖像,圖像及性質(zhì)。

4. 第5節(jié):余弦函數(shù),第6節(jié):正切函數(shù)

余弦函數(shù)正切函數(shù)定義,象限符號,誘導(dǎo)公式,圖像及性質(zhì)

5. 第7節(jié):xasiny的圖像,第8節(jié):同角的基本關(guān)系。

圖像變換規(guī)律,同角三角函數(shù)的基本關(guān)系及其運用。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。

6. 第二章:平面向量:第1節(jié)至第2節(jié)

向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運算

7. 第3節(jié)至第5節(jié)

數(shù)乘向量,基本定理,向量運算的鞏固訓(xùn)練,平面向量的坐標(biāo)表示及運算。數(shù)量積的應(yīng)用。

8. 第5節(jié)至第7節(jié)

數(shù)量積的應(yīng)用及坐標(biāo)表示,向量應(yīng)用舉例。習(xí)題課,章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。

9. 第三章:三角恒等變換:第1節(jié)至第2節(jié)

兩角和差的公式得推導(dǎo),記憶及靈活運用,二倍角公式得來源及運用。期中復(fù)習(xí)。

10. 期中考試

期中復(fù)習(xí),期中考試。

11. 第三章 第3節(jié):三角函數(shù)的簡單應(yīng)用

試卷講評改錯,簡單應(yīng)用,三角恒等變換的綜合習(xí)題課,練習(xí),章節(jié)復(fù)習(xí),必修4基本測試。

12. 五一長假

13. 必修3 第一章:統(tǒng)計。第1節(jié)至第5節(jié)

統(tǒng)計的程序,統(tǒng)計圖,統(tǒng)計方案設(shè)計,普查與抽樣,抽樣方法,分層抽樣與系統(tǒng)抽樣,花統(tǒng)計圖表及讀統(tǒng)計圖表,數(shù)字特征:平均數(shù),中位數(shù),眾數(shù),級差,方差的意義及計算分析,

14. 第6節(jié)至第9節(jié)

樣本對總本的估計及相應(yīng)的數(shù)字特征的計算分析,統(tǒng)計實踐活動,變量的相關(guān)性及例題分析,最小二乘估計。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。

15. 第二章:算法初步:第1節(jié)至第3節(jié)

基本思想,基本結(jié)構(gòu)及設(shè)計,排序問題。

16. 第4節(jié):幾種基本語句

條件語句,循環(huán)語句,復(fù)習(xí)三角函數(shù)的基本內(nèi)容,章節(jié)復(fù)習(xí),三角函數(shù)與算法初步過關(guān)測試。

17. 第三章:概率:第1節(jié)至第2節(jié)

頻率,概率,古典概率,概率計算公式。

18. 第2節(jié)至第3節(jié)

建概率模型,互斥事件,習(xí)題課節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。

19. 期末復(fù)習(xí)

20. 期末復(fù)習(xí),期末考試

高一數(shù)學(xué)教學(xué)計劃篇六

1.知識與技能目標(biāo)

(1). 掌握集合的兩種表示方法;能夠按照指定的方法表示一些集合.

(2).發(fā)展學(xué)生運用數(shù)學(xué)語言的能力;培養(yǎng)學(xué)生分析、比較、歸納的邏輯思維能力.

2.過程與方法目標(biāo)

①通過實例抽象概括集合的共同特征,從而引出集合的概念是本節(jié)課的重要任務(wù)之一。因此教學(xué)時不僅要關(guān)注集合的基本知識的學(xué)習(xí),同時還要關(guān)注學(xué)生抽象概括能力的培養(yǎng)。

②教學(xué)過程中應(yīng)努力創(chuàng)造培養(yǎng)學(xué)生的思維能力,提高學(xué)生理解掌握概念的能力,訓(xùn)練學(xué)生分析問題和處理問題的能力

情感態(tài)度與價值觀目標(biāo) 感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴(yán)密謹(jǐn)慎的集合語言描述問題的習(xí)慣;學(xué)習(xí)從數(shù)學(xué)的角度認(rèn)識世界;通過合作學(xué)習(xí)增強合作意識;培養(yǎng)數(shù)學(xué)的特有文化——簡潔精煉,體會從感性到理性的思維過程。

2、教材分析 本節(jié)課位于我?,F(xiàn)行教材≤中等職業(yè)教育國家規(guī)劃教材≥數(shù)學(xué)第一章第一節(jié)≤集合≥的第二課時,這節(jié)課主要學(xué)習(xí)集合的表示方法。

集合語言是現(xiàn)代數(shù)學(xué)的基本語言。通過集合語言的學(xué)習(xí),有利于學(xué)生簡明準(zhǔn)確地表達(dá)學(xué)習(xí)的數(shù)學(xué)內(nèi)容。集合的初步知識是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是中職數(shù)學(xué)學(xué)習(xí)的出發(fā)點。

在中職數(shù)學(xué)中,這部分知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)。例如,在后續(xù)學(xué)習(xí)的集合的相關(guān)內(nèi)容和第二章≤不等式≥、

第三章≤函數(shù)≥,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集,都離不開集合。也是研究數(shù)學(xué)問題不可缺少的工具。這一課在本章的學(xué)習(xí)有很重要的意義,也是本章后續(xù)學(xué)習(xí)和后續(xù)學(xué)習(xí)的基礎(chǔ),起到承上啟下的作用。

3、學(xué)情分析

學(xué)生在初中階段的學(xué)習(xí)中,雖然已經(jīng)有了對集合的初步認(rèn)知,由于中職學(xué)生的現(xiàn)狀,學(xué)生基礎(chǔ)比較弱,學(xué)習(xí)習(xí)慣比較差,根據(jù)我校的現(xiàn)行教材結(jié)合學(xué)生的實際情況,為了培養(yǎng)學(xué)

生良好的學(xué)習(xí)習(xí)慣,打好基礎(chǔ),對集合的兩種表示方法:列舉法和描述法通過講練結(jié)合、不斷地鞏固練習(xí)、提高練習(xí)來達(dá)到標(biāo)準(zhǔn)要求,鼓勵學(xué)生理解的基礎(chǔ)上記憶的學(xué)習(xí)方法來學(xué)習(xí)。

本節(jié)課采用新知識講授課的教學(xué)模式,教學(xué)策略為先熟悉再深入,采用啟發(fā)式、講練結(jié)合等教學(xué)方法,并采用多媒體教學(xué)手段輔助教學(xué)。

3、教學(xué)重難點

重點:列舉法、描述法。

難點:運用集合的三種常用表示方法正確表示一些簡單的集合

4、教學(xué)方法:實例歸納、學(xué)生的自主探究、主動參與與教師的引導(dǎo)相結(jié)合,充分體現(xiàn)學(xué)生在課堂中的主體作用和教師的主導(dǎo)作用。

5、教學(xué)手段:多媒體輔助教學(xué)——主要是利用多媒體展示圖片來增加學(xué)生的學(xué)習(xí)興趣和對集合知識的直觀理解。

6、教學(xué)思路:

7、教學(xué)過程

7.1創(chuàng)設(shè)情境,引入課題

【活動】多媒體展示:1、草原一群大象在緩步走來。

2、藍(lán)藍(lán)的天空中,一群鳥在飛翔

3、一群學(xué)生在一起玩。

引導(dǎo)學(xué)生舉出一些類似的例子問題

在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是一群大象、一群鳥、一群學(xué)生)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合,即是一些研究對象的總體。

【設(shè)計意圖】通過多媒體展示,極大地調(diào)動起了學(xué)生的積極性,吸引學(xué)生的注意力,設(shè)置輕松的.學(xué)習(xí)氣氛。

7.2步步探索,形成概念

【活動1】觀察下列對象:

①1~20以內(nèi)的所有質(zhì)數(shù);

②我國從1991—20xx年的13年內(nèi)所發(fā)射的所有人造衛(wèi)星

③金星汽車廠20xx年生產(chǎn)的所有汽車;

④20xx年1月1日之前與我國建立外交關(guān)系的所有國家;

⑤所有的正方形;

⑥到直線l的距離等于定長d的所有的點;

⑦方程x2+3x—2=0的所有實數(shù)根;

⑧新華中學(xué)20xx年9月入學(xué)的所有的高一學(xué)生。

師生共同概括8個例子的特征,得出結(jié)論,給出集合的含義:把研究對象統(tǒng)稱為元素,常用小寫字母啊a,b,c….表示,把一些元素組成的總體叫做集合,常用大寫字母a,b,c….來表示。

【設(shè)計意圖】使學(xué)生自己明確集合的含義,培養(yǎng)學(xué)生的概括能力。

【活動2】要求每個學(xué)生舉出一些集合的例子,選出具有代表性的幾個問題,比

如:

1)a={1,3},3、5哪個是a的元素?

2)b={身材較高的人},能否表示成集合?

3)c={1,1,3}表示是否準(zhǔn)確?

4)d={中國的直轄市},e={北京,上海,天津,重慶}是否表示同一集合?

5)f={a,b,c}與g={c,b,a}這兩個集合是否一樣?

【分析】1)1,3是a的元素,5不是

2)我們不能準(zhǔn)確的規(guī)定多少高算是身材較高,即不能確定集合的元素,

所以b不能表示集合

3)c中有二個1,因此表達(dá)不準(zhǔn)確

4)我們知道e中各元素都是屬于中國的直轄市,但中國的直轄市并不 只有這幾個,因此不相等。

5)f和g的元素相同,只不過順序不同,但還是表示同一個集合

通過上述分析引導(dǎo)學(xué)生自由討論、探究概括出集合中各種元素的特點,并讓學(xué)生再舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,要求說明理由。師生一起得出集合的特征:

1)確定性:某一個具體對象,它或者是一個給定的集合的元素,或者不是該集合的元素,兩種情況必有一種且只有一種成立.

2)互異性:同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素.

3)無序性:集合中的元素沒有順序

4)集合相等:構(gòu)成兩個集合的元素完全一樣

【設(shè)計意圖】引導(dǎo)學(xué)生自主探究得出集合的特征:確定性、互異性、無序性,集合相等,培養(yǎng)學(xué)生的抽象概括能力,同時使學(xué)生能更好的了解集合。

7.3集合與元素的關(guān)系

【問題】高一(4)班里所有學(xué)生組成集合a,a是高一(4)班里的同學(xué),b是

高一(5)班的同學(xué),a、b與a分別有什么關(guān)系?

引導(dǎo)學(xué)生閱讀教科書中的相關(guān)內(nèi)容,思考上述問題,發(fā)表學(xué)生自己的看法。 得出結(jié)論:①如果a是集合a的元素,就說a屬于集合a,記作a∈a。

②如果b不是集合a的元素,就說b不屬于集合a,記作b?a。

再讓學(xué)生舉一些例子說明這種關(guān)系。

【設(shè)計意圖】使學(xué)生發(fā)揮想象,明確元素與集合的關(guān)系。

【活動】熟記數(shù)學(xué)中一些常用的數(shù)集及其記法

引導(dǎo)學(xué)生回憶數(shù)集擴充過程,閱讀教科書第3頁表格中的內(nèi)容,認(rèn)識常用數(shù)集記號。

【設(shè)計意圖】使學(xué)生熟記常用數(shù)集的記號,以免日后做題時混淆。

7.4集合的表示方法

【問題】由以上內(nèi)容我們可以知道用自然語言可以描述一個集合,那么有沒有其他方式表示集合呢?

7.4.1集合的列舉法表示

【活動】嘗試用列舉法第4頁例1中的集合:

1)小于10的所有自然數(shù)組成的集合;

2)方程x2?x的所有實數(shù)根組成的集合;

3)由1到20以內(nèi)的所有素數(shù)組成的集合;

并思考列舉法的特點。

引導(dǎo)學(xué)生閱讀教科書,自主學(xué)習(xí)列舉法,得出答案:

1)a={0,1,2,3,4,5,6,7,8,9}

2)a={0,1}

3)a={2,3,5,7,11,13,17,19}

通過上述講解請同學(xué)說說列舉法的特點:

1)用花括號{}把元素括起來

2)集合的元素可以具體一一列出

【設(shè)計意圖】使學(xué)生學(xué)習(xí)基本了解用列舉法表示集合的方法,并了解列舉法的特點。

7.4.2集合的描述法表示

【活動1】提出教科書中的思考題:

1)你能用自然語言描述集合{2,4,6,8}嗎?

2)你能用列舉法表示不等式x—7<3的解集嗎?

學(xué)生討論,師生總結(jié):

1)從2開始到8的所有偶數(shù)組成的集合

2)這個集合中的元素不能一一列出,因此不可以用列舉法表示

引導(dǎo)學(xué)生思考、討論用列舉法表示相應(yīng)集合的困難,激發(fā)學(xué)生學(xué)習(xí)描述法的積極性。

引導(dǎo)學(xué)生閱讀教科書中描述法的相關(guān)內(nèi)容,讓學(xué)生討論交流,歸納描述法的特點。

例如2)可以用描述法表示為:a={x?r|x<10}

【設(shè)計意圖】使學(xué)生體會用描述法表示集合的必要性,會用描述法表示集合。

【活動2】引導(dǎo)學(xué)生完成第5頁例2

1) 方程x2?2?0的所有實數(shù)根組成的集合

2) 由大于10小于20的所有整數(shù)組成的集合

討論應(yīng)當(dāng)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?。學(xué)生回答,老師進行總結(jié):

1)描述法:a={ x?r|x2?2?0}

列舉法:

2)描述法:a={ x?z|10

列舉法:a={11,12,13,14,15,16,17,18,19}

【設(shè)計意圖】使學(xué)生掌握好兩種表示法各自的特點,根據(jù)題目靈活選擇。

7.5課堂小結(jié),學(xué)習(xí)反思

【問題】1)集合與元素的含義?

2)集合的特點?

3)集合的不同表示方法

引導(dǎo)學(xué)生整理概括這一節(jié)課所學(xué)的知識

【設(shè)計意圖】歸納整理知識,形成知識網(wǎng)絡(luò),并培養(yǎng)學(xué)生自主對所學(xué)知識進行總結(jié)的能力。

8、作業(yè)布置,鞏固新知

課后作業(yè):習(xí)題1.1a組第4題

課后思考作業(yè): ①結(jié)合實例,試比較用自然語言、列舉法和描述法表示集合時各自的特點和適用的對象。

②自己舉出幾個集合的例子,并分別用自然語言、列舉法和描述法表示出來。

9、板書設(shè)計

1.1.1集合的含義與表示

1、元素的含義:把研究對象統(tǒng)稱為元素

2、集合的含義:一些元素組成的總體。

3、集合元素的三個特性:確定性,互異性,無序性,集合相等

4、元素與集合的關(guān)系:a?a,a?a

5、常用數(shù)集與記法

6、列舉法

7、描述法

8、課堂小結(jié)

高一數(shù)學(xué)教學(xué)計劃篇七

新學(xué)期已開始,為使新學(xué)期的工作有條不紊的進行,使教學(xué)工作更加科學(xué)合理,使學(xué)生對知識的接收更加得心應(yīng)手,特訂新學(xué)期個人教學(xué)計劃如下

加強現(xiàn)代教育理論的學(xué)習(xí),提高自身的素質(zhì),轉(zhuǎn)變教育觀念,以教育科研為先導(dǎo),以培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力為重點,深化課堂教學(xué)改革,大力推進素質(zhì)教育。

本冊教材具有以下幾個明顯的特點:

1。為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點

教科書提供了大量數(shù)學(xué)活動的線索,作為所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點。目的是使學(xué)生能夠在所提供的學(xué)習(xí)情景中,通過探索與交流等活動,獲得必要的發(fā)展。

2,向?qū)W生提供現(xiàn)實,有趣,富有挑戰(zhàn)性的學(xué)習(xí)素材

教科書從學(xué)生實際出發(fā),用他們熟悉或感興趣的問題情景引入學(xué)習(xí)主題,并提供了眾多有趣而富有數(shù)學(xué)含義的問題,以展開數(shù)學(xué)探究。

3,為學(xué)生提供探索,交流的時間與空間

教科書依據(jù)學(xué)生已有的知識背景和活動經(jīng)驗,提供了大量的操作,思考與交流的機會,幫助學(xué)生通過思考與交流,梳理所學(xué)的知識,建立符合個體認(rèn)知特點的知識結(jié)構(gòu)。

4,展現(xiàn)數(shù)學(xué)知識的形成與應(yīng)用過程

教科書采用"問題情境—建立模型—解釋,應(yīng)用與拓展"的模式展開,有利于學(xué)生更好地理解數(shù)學(xué),應(yīng)用數(shù)學(xué),增強學(xué)好數(shù)學(xué)的.信心。

5,滿足不同學(xué)生的發(fā)展需求

教科書中"讀一讀"給學(xué)生以更多了解數(shù)學(xué),研究數(shù)學(xué)的機會。教科書中的習(xí)題分為兩類:一類面向全體學(xué)生;另一類面向有更多數(shù)學(xué)需求的學(xué)生。

本冊教材從內(nèi)容上看,教學(xué)重點是三角形和四邊形的性質(zhì)定理

和判定定理的應(yīng)用以及一元二次方程的應(yīng)用。教學(xué)難點是對反

比例函數(shù)的理解及應(yīng)用;用試驗或模擬試驗的方法估計一些復(fù)

雜的隨機時間發(fā)生的概率。

1,根據(jù)學(xué)生實際,創(chuàng)造性地使用教材,積極開發(fā)和利用各種教學(xué)資源,為學(xué)生提供豐富多彩的學(xué)習(xí)素材。

2,加強直觀教學(xué),充分利用教具,學(xué)具等多媒體教學(xué),以豐富學(xué)生感知認(rèn)識對象的途徑,促使他們更加樂意接近數(shù)學(xué),更好地理解數(shù)學(xué)。

3,關(guān)注學(xué)生的個體差異,有效的實施有差異的教學(xué),使每個學(xué)生都能得到充分的發(fā)展。

4,加強學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),主要培養(yǎng)學(xué)生的書寫,認(rèn)真分析問題的習(xí)慣。同時注意學(xué)習(xí)態(tài)度的培養(yǎng)。

4月1日——4月20日一元二次方程

5月16日——5月31日反比例函數(shù)

6月1日——6月10日頻率與概率

6月11日——7月11日復(fù)習(xí)考試

>高中數(shù)學(xué)教學(xué)計劃10

本學(xué)期我擔(dān)任高一(5)、(16)班的數(shù)學(xué)教學(xué)工作,本學(xué)期的教學(xué)工作計劃如下。

(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。

(2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達(dá)推理過程的能力。

(3)根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。

(4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。

(6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。

高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:

(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。

(2)集中精力打好基礎(chǔ),分項突破難點。所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進,使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。。

(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。

(4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備

(5)抓好尖子生與后進生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。

(6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。

高一數(shù)學(xué)教學(xué)計劃篇八

準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。

我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(a版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有如下特點:

1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情.

2.問題性:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神.

3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比、化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神.

4.時代性與應(yīng)用性:以具有時代感和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識.

1.選取與內(nèi)容密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的.

2.通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的.學(xué)習(xí)方式.

3.在教學(xué)中強調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣.

高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著.他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望.我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡.從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法.

1、激發(fā)學(xué)生的學(xué)習(xí)興趣.由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。

2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考.

3、加強培養(yǎng)學(xué)生的邏輯思維能力和解決實際問題的能力,提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育.

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力.

5、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng).

高一數(shù)學(xué)教學(xué)計劃篇九

本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用.教學(xué)重點是指數(shù)函數(shù)的圖像與性質(zhì).

這是指數(shù)函數(shù)在本章的位置.

指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實踐.指數(shù)函數(shù)的學(xué)習(xí),一方面可以進一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗數(shù)學(xué)思想與方法應(yīng)用的過程.

指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識還有著一定的現(xiàn)實意義.

1.學(xué)生能從具體實例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號表示,建構(gòu)指數(shù)函數(shù)的概念.

2.學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個冪的大小.

3.學(xué)生運用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗研究函數(shù)的一般方法.

4.在探究活動中,學(xué)生通過獨立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力.

授課班級學(xué)生為南京師大附中實驗班學(xué)生.

1.學(xué)生已有認(rèn)知基礎(chǔ)

學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認(rèn)識.學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴充,具備了進行指數(shù)運算的能力.學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗.學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣.

2.達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)

學(xué)生需要對研究的目標(biāo)、方法和途徑有初步的認(rèn)識,需要具備較好的歸納、猜想和推理能力.

3.難點及突破策略

難點:1. 對研究函數(shù)的一般方法的認(rèn)識.

2. 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面.

突破策略:

1.教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識研究的目標(biāo)與手段.

2.組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進反思.

3.對猜想進行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.

根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式.通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段.

學(xué)生的自主學(xué)習(xí),具體落實在三個環(huán)節(jié):

(1)建構(gòu)指數(shù)函數(shù)概念時,學(xué)生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念.

(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時,學(xué)生自選底數(shù),開展自主研究,并通過匯報交流相互提升.

(3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.

研究函數(shù)的性質(zhì),可以從形和數(shù)兩個方面展開.從圖形直觀和數(shù)量關(guān)系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時應(yīng)用函數(shù)解析式輔以必要的說明和證明.

1.創(chuàng)設(shè)情境建構(gòu)概念

師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個變量之間的關(guān)系.你能用函數(shù)的觀點分析下面的例子嗎?

師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)

[情境問題1]某細(xì)胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個數(shù)為y,如何描述這兩個變量的關(guān)系?

[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個變量的關(guān)系?

[師生活動]引導(dǎo)學(xué)生分析,找到兩個變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.

師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點?你能再舉幾個例子嗎?

〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點?能否寫成一般形式?

[設(shè)計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實際生活的聯(lián)系.引導(dǎo)學(xué)生從具體實例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號表示.初步得到y(tǒng)=ax這個形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴充到實數(shù)后,關(guān)注x∈r時,y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.

[師生活動]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.

[教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn).進而提出這類函數(shù)一般形式y(tǒng)=ax.

方案1:

生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

師:板書學(xué)生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…

師:板書學(xué)生舉例(停頓),好像有不同意見.

生:底數(shù)不能取負(fù)數(shù).

師:為什么?

生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實數(shù)了.

師:我們已經(jīng)將指數(shù)的取值范圍擴充到了r,我們希望這些函數(shù)的定義域就是r.

(若沒有學(xué)生注意到底數(shù)的取值范圍,可引導(dǎo)學(xué)生關(guān)注例舉函數(shù)的定義域.若有同學(xué)提出情境中函數(shù)的定義域應(yīng)為n+,師:我們已經(jīng)將指數(shù)的取值范圍擴充到了r,函數(shù)y=2x和y=0.84x中,能否將定義域擴充為r?你們所舉的例子中,定義域是否為r?)

師:這些函數(shù)有什么共同特點?

生:都有指數(shù)運算.底數(shù)是常數(shù),自變量在指數(shù)位置.

(若有學(xué)生舉出類似y=max的例子,引導(dǎo)學(xué)生觀察,它依然具有自變量在指數(shù)位置的特征.而刻畫這一特點的最簡單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會基本初等函數(shù)的作用.)

師:具備上述特征的函數(shù)能否寫成一般形式?

生:可以寫成y=ax(a>0).

師:當(dāng)a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)

方案2:

生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

師:板書學(xué)生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

生:函數(shù)y=0.5x,y= x,…

師:這些函數(shù)的自變量是什么?它們有什么共同特點?

生:(可用文字語言或符號語言概括)都有指數(shù)運算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.

師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?

生:底數(shù)不能取負(fù)數(shù).

師:為什么?

生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實數(shù)了.

師:為了研究的方便,我們要求底數(shù)a>0.當(dāng)a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)

[階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是r.

[意圖分析]概念教學(xué)應(yīng)當(dāng)讓學(xué)生感受形成過程,了解知識的來龍去脈,那種直接拋出定義后輔以“三項注意”的做法剝奪了學(xué)生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細(xì)枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學(xué)生對概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個由粗到細(xì),由特殊到一般,由具體到抽象的漸進過程,這樣更加符合人們的認(rèn)知心理.

2.實驗探索匯報交流

(1)構(gòu)建研究方法

師:我們定義了一個新的函數(shù),接下來,我們研究什么呢?

生:研究函數(shù)的性質(zhì).

〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?

[設(shè)計意圖]學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對函數(shù)有了初步的認(rèn)識.在此認(rèn)知基礎(chǔ)上,引導(dǎo)學(xué)生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發(fā).教師應(yīng)充分尊重學(xué)生的思維個性,提供自主探究的平臺,通過匯報交流活動達(dá)成共識實現(xiàn)殊途同歸.中學(xué)階段,特別是高一新授課階段,提倡學(xué)生以形象思維作為抽象思維的支撐.

[師生活動]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.

[教學(xué)預(yù)設(shè)]學(xué)生能夠根據(jù)已有知識和經(jīng)驗,在教師的啟發(fā)引導(dǎo)下,明確研究的內(nèi)容以及研究的方法.部分學(xué)生會提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學(xué)生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗證.

師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?

生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.

師:(板書學(xué)生回答)怎樣研究這些性質(zhì)呢?

生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).

生:先研究幾個具體的指數(shù)函數(shù),再研究一般情況.

師:板書“畫圖觀察”,“取特殊值”

(若沒有學(xué)生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會有不同.一次函數(shù)y=kx(k≠0)中,一次項系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無數(shù)多個值,那我們怎么辦呢?)

(若有學(xué)生通過對y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的`性質(zhì),然后再作出圖象加以驗證.師:你的想法也很有道理,不妨試一試.(仍引導(dǎo)學(xué)生從具體指數(shù)函數(shù)圖象入手.))

[意圖分析]學(xué)習(xí)的過程就是一個不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學(xué)生提供由自己提出問題、確定研究方法的機會,逐漸學(xué)會研究問題,促進能力發(fā)展.

(2)自主探究匯報交流

師:我們確定了要研究的對象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.

〖問題3選取數(shù)據(jù),畫出圖象,觀察特點,歸納性質(zhì).

[設(shè)計意圖]若直接規(guī)定底數(shù)取值,對于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學(xué)生對于圖象的認(rèn)識是被動的.若在探究前經(jīng)討論確定底數(shù)取值,由于學(xué)生認(rèn)知水平的差異,仍可能會造成部分學(xué)生被動接受.學(xué)生自主選擇底數(shù),雖有得到片面認(rèn)識的可能,但通過討論交流,學(xué)生能相互驗證結(jié)論,仍能得到正確認(rèn)識.并且學(xué)生能在過程中體會數(shù)據(jù)如何選擇,了解研究方法.

由于描點作圖時列舉點的個數(shù)的限制,學(xué)生對x→∞時函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個數(shù)的限制,學(xué)生對于歸納的結(jié)論缺乏一般性的認(rèn)識.教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗證猜想.

數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節(jié)課的重點是通過對指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動學(xué)生參與研究的每個過程,得到直接體驗.

[師生活動]學(xué)生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).

[教學(xué)預(yù)設(shè)]學(xué)生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實物投影儀展示學(xué)生所畫圖象,學(xué)生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學(xué)生說明過程中,教師引導(dǎo)學(xué)生對結(jié)論進行適當(dāng)?shù)恼f明,進而引導(dǎo)學(xué)生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導(dǎo)學(xué)生關(guān)注列表描點作圖的過程,引導(dǎo)學(xué)生通過反思過程,并通過動態(tài)圖象驗證猜想,促進學(xué)生體會數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導(dǎo)學(xué)生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強加于學(xué)生.對于⑥,要引導(dǎo)學(xué)生在同一坐標(biāo)系中畫出圖象,啟發(fā)學(xué)生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的圖象,先得到具體的例子.對于⑦,在例1第3小題中,會有學(xué)生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢利導(dǎo),也可布置為課后作業(yè),繼續(xù)研究.

生:自主選擇數(shù)據(jù),在坐標(biāo)紙上列表作圖,列出函數(shù)性質(zhì).

師:(巡視,必要時參與討論,及時提示任務(wù),待大部分學(xué)生有結(jié)論后,鼓勵學(xué)生交流,請學(xué)生匯報.)有條理地整理一下結(jié)論,討論交流所得.(同時用實物投影儀展示學(xué)生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)

生:(可能出現(xiàn)的情況)(1)在兩個坐標(biāo)系中畫圖;(2)所取底數(shù)均大于1;(3)兩個底數(shù)大于1,一個底數(shù)小于1;(4)關(guān)于y軸對稱的兩個指數(shù)函數(shù).

師:(過程性引導(dǎo))底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個坐標(biāo)系中畫圖?為什么不也取兩個底數(shù)小于1?

師:(用彩筆描粗圖象,故意出錯)錯在哪里?為什么?

生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(0, 1).

師:(引導(dǎo)學(xué)生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(0, 1).

師:指數(shù)函數(shù)還有其它性質(zhì)嗎?

師:也就是說值域為(0, +∞).

生:指數(shù)函數(shù)是非奇非偶函數(shù).

師:有不同意見嗎?

生:當(dāng)0

(其它預(yù)設(shè):

(1)當(dāng)a>1時,若x>0,則y>1;若x<0,則y<1.

當(dāng)00,則y<1;若x<0 y="">1.

(2)學(xué)生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.

(3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對稱.)

師:(板書學(xué)生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學(xué)生試圖說明結(jié)論的合理性,可提供機會.)大家認(rèn)為底數(shù)a>1或0

[階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):

①定義域為r.

②值域為(0, +∞).

③圖象過定點(0, 1).

④非奇非偶函數(shù).

⑤當(dāng)a>1時,函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;

當(dāng)0

⑥函數(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對稱.

⑦指數(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:

x∈(-∞, 0)時,y=ax圖象在y=bx圖象下方;

x=0時,兩圖象相交;

x∈(0,+∞)時,y=ax圖象在y=bx圖象上方.

[意圖分析]通過探究活動,使學(xué)生獲得對指數(shù)函數(shù)圖象的直觀認(rèn)識.學(xué)生觀察圖象,是對圖形語言的理解;根據(jù)圖象描述性質(zhì),是將圖形語言轉(zhuǎn)化為符號或文字語言.對函數(shù)的理解,是建立在三種語言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報過程中,一方面要通過對探究較深入學(xué)生的具體研究過程的剖析,總結(jié)提升學(xué)習(xí)方法,優(yōu)化學(xué)習(xí)策略;另一方面要關(guān)注部分探究意識與能力都薄弱的學(xué)生的表現(xiàn),鼓勵他們大膽發(fā)言,激勵他們主動參與活動,讓全體學(xué)生成為真正的學(xué)習(xí)主體.自主探究活動能充分激發(fā)學(xué)生的相互學(xué)習(xí)能力,能有效幫助學(xué)生突破難點.

3.新知運用鞏固深化

(方案一)(分析函數(shù)性質(zhì)的用途)

師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對稱性簡化研究.指數(shù)函數(shù)過定點(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?

生:可以求最值,可以比較兩個函數(shù)值的大小.

師:那你能舉出運用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)

生:(舉例并判斷大小.)

師:你考察了哪個指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)

師:以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.(出示例1)

(方案二)

師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

師:(口述并板書)你能比較32與33的大小嗎?

生:直接計算比較.

師:那比較30.2與30.3的大小呢?能不能不計算呢?

生:利用函數(shù)y=3x的單調(diào)性.

師:能具體說明嗎?(引導(dǎo)學(xué)生規(guī)范表達(dá))我們再試一試.

(出示例1)

【例1】比較下列各組數(shù)中兩個值的大?。?/p>

①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

[設(shè)計意圖] 引導(dǎo)學(xué)生運用指數(shù)函數(shù)性質(zhì).對于 32與33的大小比較,學(xué)生更可能計算出冪的值直接比較.變式后,學(xué)生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進而運用指數(shù)函數(shù)單調(diào)性,也可能直接運用單調(diào)性.初步運用新知解決問題,注重題意理解,擴大知識遷移,感悟解題方法,達(dá)到對新知鞏固記憶,加深理解.

[師生活動]學(xué)生板演,教師組織學(xué)生點評.

[教學(xué)預(yù)設(shè)] ①②兩題,學(xué)生能運用指數(shù)函數(shù)單調(diào)性解決.②題學(xué)生可能得到錯誤答案,教師可組織相互點評,規(guī)范表達(dá),正確運用性質(zhì).③學(xué)生可能運用不同方法,應(yīng)給予充分的時間,并在具體問題解決后引導(dǎo)學(xué)生總結(jié)一般方法.

師:(引導(dǎo)學(xué)生規(guī)范表達(dá))你考察了哪個指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?

師:(對③的引導(dǎo))你考慮利用哪個函數(shù)?是y=1.5x還是y=0.8x?這兩個函數(shù)有什么關(guān)聯(lián)?(引導(dǎo)學(xué)生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)

生:它們都過點(0, 1).

師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?

生:比較1.50.3,0.81.2和1的大小.

師:我們找到了一個比大小的中間量.以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.

【例2】

①已知3x≥30.5,求實數(shù)x的取值范圍;

②已知0.2x<25,求實數(shù)x的取值范圍.

[設(shè)計意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時考查指數(shù)函數(shù)的定義域.

4.概括知識總結(jié)方法

〖問題4本節(jié)課我們學(xué)習(xí)了哪些知識?你還學(xué)會了哪些方法?

[設(shè)計意圖] 回顧所學(xué)內(nèi)容,深化認(rèn)知.開放式小結(jié),不同學(xué)生有不同的收獲.

[師生活動]學(xué)生發(fā)言總結(jié),交流所得.

[教學(xué)預(yù)設(shè)]

通過本節(jié)課對指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識和方法:

①指數(shù)函數(shù)的定義與性質(zhì);

②研究函數(shù)的一般方法和步驟.

師:本節(jié)課我們學(xué)習(xí)了什么知識?

生:指數(shù)函數(shù)的定義和性質(zhì).

師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?

生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).

生:然后從幾個具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.

師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會運用這樣的方法研究新的函數(shù).

[意圖分析]課堂總結(jié)不是對所學(xué)知識的簡單回顧,應(yīng)讓學(xué)生在知識、方法和策略上多層次地整理,促進學(xué)生理解所用學(xué)習(xí)方法的合理性與普遍性,使學(xué)生獲得知識與能力的共同進步.

5.分層作業(yè),因材施教

(1)感受理解:課本第54頁,習(xí)題2.2(2):1,2,3,4;

(2)思考運用:運用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?

[設(shè)計意圖]分層布置作業(yè),“感受理解”面向全體學(xué)生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運用”提供學(xué)生運用函數(shù)研究的一般方法自主研究的機會.

一、對于指數(shù)函數(shù)概念的認(rèn)識

指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想.

二、對于培養(yǎng)學(xué)生思維習(xí)慣的考慮

在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣.實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進行觀察和歸納的良好的思維習(xí)慣.對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識水平或教學(xué)要求進行證明或合理的說明.學(xué)生不僅學(xué)到了數(shù)學(xué)知識,也初步體驗了研究問題的基本方法.

三、關(guān)于設(shè)計定位的反思

本節(jié)課的教學(xué)設(shè)計,力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略.如果學(xué)生基礎(chǔ)相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程.、

高一數(shù)學(xué)教學(xué)計劃篇十

本學(xué)期將完成“《數(shù)學(xué)①》必修”和“《數(shù)學(xué)④》必修” (人民教育出版社教a版)的學(xué)習(xí),教學(xué)輔助材料有《三維設(shè)計》和自愿訂閱學(xué)習(xí)方法報部分單元練習(xí)及學(xué)法指導(dǎo)閱讀材料。二、教學(xué)目標(biāo)與要求

(一)前半期完成《數(shù)學(xué)①》主要涉及三章內(nèi)容:

第一章集合與函數(shù)的概念(約13學(xué)時)

通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時的簡潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會用集合語言表示數(shù)學(xué)對象,為以后的學(xué)習(xí)奠定基礎(chǔ)。

1.了解集合的含義,體會元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;

2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;

3.理解補集的含義,會求在給定集合中某個集合的補集;

4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;

5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;

6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識的過程中,培養(yǎng)學(xué)生的思維能力。

第二章函數(shù)的概念與基本初等函數(shù)ⅰ(約14學(xué)時)

教學(xué)本章時應(yīng)立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實驗、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學(xué)會用函數(shù)的思想、變化的觀點分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。

1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;

2.理解有理指數(shù)冪的'意義,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;

3.了解函數(shù)與方程之間的關(guān)系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;

4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。

第三章函數(shù)的應(yīng)用(約9學(xué)時)

結(jié)合實際問題,感受運用函數(shù)概念建立模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的重要性,初步運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題。學(xué)生還將學(xué)習(xí)利用函數(shù)的性質(zhì)求方程的近似解,體會函數(shù)與方程的有機聯(lián)系。

1、結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系。

2、根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。

3、利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。

4、收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應(yīng)用。

(二)后半期完成《數(shù)學(xué)④》主要涉及三章內(nèi)容:

第一章三角函數(shù)(約16學(xué)時)

通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價值,學(xué)會用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;

3.了解三角函數(shù)的周期性;

4.掌握三角函數(shù)的圖像與性質(zhì)。

第二章平面向量(約12學(xué)時)

在本章中讓學(xué)生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、減法和向量數(shù)乘的運算;

3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運算;

4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。

第三章三角恒等變換(約8學(xué)時)

通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動的基礎(chǔ)上,體會向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。

1.掌握兩角和與差的余弦、正弦、正切公式;

2.掌握二倍角的正弦、余弦、正切公式;

3.能正確運用三角公式進行簡單的三角函數(shù)式的化簡、求值和恒等式證明。

根據(jù)學(xué)校對教師的常規(guī)要求,結(jié)合本備課組實際,擬提出以下幾點建議,望老師們自覺執(zhí)行,落實教學(xué)各個環(huán)節(jié),不拉同行的后腿,力求各班級之間平均分的差距達(dá)到學(xué)校要求。

1、做好傳、幫、帶工作,達(dá)到學(xué)校教務(wù)處要求。本組新分1青年教師,中二1人、中一教師2人,高級教師4人,在學(xué)校要求參加集體聽課、交流的教研活動之外,組內(nèi)教師之間不定時地聽隨堂課并交流不少于聽課總數(shù)的半。

2、集體參加組內(nèi)專題備課2—3次,每次中心發(fā)言人應(yīng)有發(fā)言材料準(zhǔn)備,其他教師補充發(fā)言記錄。

3、教師每周全收、批學(xué)生作業(yè)次數(shù)不低于上課總節(jié)數(shù)的五分之三(正常上課沒周收改作業(yè)至少3次。

3、每節(jié)課應(yīng)有教學(xué)目標(biāo)、重點,突出解決的問題和方法、過程。

4、做好教學(xué)反思(每周至少有一次)

高一數(shù)學(xué)教學(xué)計劃篇十一

知識與技能通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進行簡單的應(yīng)用.

過程與方法能夠類比研究一般函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的過程與方法,來研究冪函數(shù)的圖象和性質(zhì).

情感、態(tài)度、價值觀體會冪函數(shù)的變化規(guī)律及蘊含其中的對稱性.

重點從五個具體冪函數(shù)中認(rèn)識冪函數(shù)的一些性質(zhì).

難點畫五個具體冪函數(shù)的圖象并由圖象概括其性質(zhì),體會圖象的變化規(guī)律.

冪函數(shù)定義及其圖象.

一般地,形如 的.函數(shù)稱為冪函數(shù),其中 為常數(shù).

冪函數(shù)的定義來自于實踐,它同指數(shù)函數(shù)、對數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種形式定義的函數(shù),引導(dǎo)學(xué)生注意辨析.

下面我們舉例學(xué)習(xí)這類函數(shù)的一些性質(zhì).

作出下列函數(shù)的圖象:利用所學(xué)知識和方法嘗試作出五個具體冪函數(shù)的圖象,觀察所圖象,體會冪函數(shù)的變化規(guī)律.

定義域

值域

奇偶性

單調(diào)性

定點

師:引導(dǎo)學(xué)生應(yīng)用畫函數(shù)的性質(zhì)畫圖象,如:定義域、奇偶性.

師生共同分析,強調(diào)畫圖象易犯的錯誤.

(1)所有的冪函數(shù)在(0,+)都有定義,并且圖象都過點(1,1);

(2) 時,冪函數(shù)的圖象通過原點,并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時,冪函數(shù)的圖象下凸;當(dāng) 時,冪函數(shù)的圖象上凸;

(3) 時,冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.

例1、求下列函數(shù)的定義域;

例2、比較下列兩個代數(shù)值的大?。?/p>

[例3]討論函數(shù) 的定義域、奇偶性,作出它的圖象,并根據(jù)圖象說明函數(shù)的單調(diào)性.

練習(xí)

1.利用冪函數(shù)的性質(zhì),比較下列各題中兩個冪的值的大?。?/p>

2.作出函數(shù) 的圖象,根據(jù)圖象討論這個函數(shù)有哪些性質(zhì),并給出證明.

3.作出函數(shù) 和函數(shù) 的圖象,求這兩個函數(shù)的定義域和單調(diào)區(qū)間.

4.用圖象法解方程:

1.如圖所示,曲線是冪函數(shù) 在第一象限內(nèi)的圖象,已知 分別取 四個值,則相應(yīng)圖象依次為:.

2.在同一坐標(biāo)系內(nèi),作出下列函數(shù)的圖象,你能發(fā)現(xiàn)什么規(guī)律?

高一數(shù)學(xué)教學(xué)計劃篇十二

使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標(biāo)如下。

1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。

4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。

5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。6、具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

我們所使用的`教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書?數(shù)學(xué)(a版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:

1、“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

2、“問題性”:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。

3、“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

4、“時代性”與“應(yīng)用性”:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識。

1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的。

2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式。

3、在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

兩個班一個普高一個職高,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。班級存在的問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于培養(yǎng)學(xué)生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。

1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。

2、注意從實例出發(fā),從感性提高到理性。注意運用對比的方法,反復(fù)比較相近的概念。注意結(jié)合直觀圖形,說明抽象的知識。注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系。加強復(fù)習(xí)檢查工作。抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

俗話說的好,好的教學(xué)計劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計劃很有必要。

高一數(shù)學(xué)教學(xué)計劃篇十三

本學(xué)期擔(dān)任高一(9)(10)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有120人,初中的基礎(chǔ)參差不齊,但兩個班的學(xué)生整體水平不高;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計劃。

使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標(biāo)如下。

1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的`能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。

4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。

5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

(一)情意目標(biāo)

(1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。

(2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識

(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。

(5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。

(6)讓學(xué)生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。

(二)能力要求培養(yǎng)學(xué)生記憶能力。

(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。

(3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。

2、培養(yǎng)學(xué)生的運算能力。

(1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算能力。

(2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算能力。

(3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性能力。

(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算能力。

我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:

1、進一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

2、被動學(xué)習(xí).許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

高一數(shù)學(xué)教學(xué)計劃篇十四

我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:

1、進一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等。客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

2、被動學(xué)習(xí)。許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán)。表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

3、對自己學(xué)習(xí)數(shù)學(xué)的好差(或成?。┎涣私?,更不會去進行反思總結(jié),甚至根本不關(guān)心自己的成敗。

4、不能計劃學(xué)習(xí)行動,不會安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時監(jiān)控每一步驟,對學(xué)習(xí)結(jié)果不會正確地自我評價。

5、不重視基礎(chǔ)。一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。

此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識和能力,對數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運用數(shù)學(xué)語言來分析問題和表達(dá)思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴(yán)重制約著學(xué)生數(shù)學(xué)成績的提高。

針對我校高一學(xué)生的具體情況,我在高一數(shù)學(xué)新教材教學(xué)實踐與探究中,貫徹“因人施教,因材施教”原則。以學(xué)法指導(dǎo)為突破口;著重在“讀、講、練、輔、作業(yè)”等方面下功夫,取得一定效果。

加強學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。

制定計劃使學(xué)習(xí)目的明確,時間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力。但計劃一定要切實可行,既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。

課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動權(quán)。自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。

上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)?!皩W(xué)然后知不足”,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細(xì)刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。

及時復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對所學(xué)的新知識由“懂”到“會”。

獨立作業(yè)是學(xué)生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學(xué)新知識的理解和對新技能的掌握過程。這一過程是對學(xué)生意志毅力的考驗,通過運用使學(xué)生對所學(xué)知識由“會”到“熟”。

解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考,實在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯的地方拿出來復(fù)習(xí)強化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅持使對所學(xué)知識由“熟”到“活”。

系統(tǒng)小結(jié)是學(xué)生通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識和發(fā)展認(rèn)識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系。以達(dá)到對所學(xué)知識融會貫通的目的。經(jīng)常進行多層次小結(jié),能對所學(xué)知識由“活”到“悟”。

課外學(xué)習(xí)包括閱讀課外書籍與報刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情。

1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內(nèi)涵和外延及辨析概念。例如,集合是數(shù)學(xué)中的一個原始概念,是不加定義的。它從常見的“我校高一年級學(xué)生”、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數(shù)”等事物中抽象出來,但集合的概念又不同于特殊具體的實物集合,集合的確定及性質(zhì)特征是由一組公理來界定的。“確定性、無序性、互異性”常常是“集合”的代名詞。

再如象限角的概念,要向?qū)W生解釋清楚,角的始邊與x軸的非負(fù)半軸重合和與x軸的正半軸重合的細(xì)微差別;根據(jù)定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導(dǎo)學(xué)生從多層次,多角度去認(rèn)識和掌握數(shù)學(xué)概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結(jié)論。如高一新教材(上)等比數(shù)列的前n項和sn。有q≠1和q=1兩種情形;對數(shù)計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規(guī)范。如在解對數(shù)函數(shù)題時,要注意“真數(shù)大于0”的隱含條件;解有關(guān)二次函數(shù)題時要注意二次項系數(shù)不為零的隱含條件等。讀書要鼓勵學(xué)生相互議論。俗語說“議一議知是非,爭一爭明道理”。例如,讓學(xué)生議論數(shù)列與數(shù)集的聯(lián)系與區(qū)別。數(shù)列與數(shù)的集合都是具有某種共同屬性的全體。數(shù)列中的數(shù)是有順序的,而數(shù)集中的元素是沒有順序的;同一個數(shù)可以在數(shù)列中重復(fù)出現(xiàn),而數(shù)集中的元素是沒有重復(fù)的'(相同的數(shù)在數(shù)集中算作同一個元素)。在引導(dǎo)學(xué)生閱讀時,教師要經(jīng)常幫助學(xué)生歸類、總結(jié),盡可能把相關(guān)知識表格化。如一元二次不等式的解情況列表,三角函數(shù)的圖象與性質(zhì)列表等,便于學(xué)生記憶掌握。

2、講。外國有一位教育家曾經(jīng)說過:教師的作用在于將“冰冷”的知識加溫后傳授給學(xué)生。講是實踐這種傳授的最直接和最有效的教學(xué)手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達(dá)到了自動化或半自動化的熟練程度。

每堂新授課中,在復(fù)習(xí)必要知識和展示教學(xué)目標(biāo)的基礎(chǔ)上,老師著重揭示知識的產(chǎn)生、形成、發(fā)展過程,解決學(xué)生疑惑。比如在學(xué)習(xí)兩角和差公式之前,學(xué)生已經(jīng)掌握五套誘導(dǎo)公式,可以將求任意角三角函數(shù)值問題轉(zhuǎn)化為求某一個銳角三角函數(shù)值的問題。此時教師應(yīng)進一步引導(dǎo)學(xué)生:對于一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函數(shù)就呼之欲出了,極大激發(fā)了學(xué)生的學(xué)習(xí)興趣。講課要注意從簡單到復(fù)雜的過程,要讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。鼓勵學(xué)生應(yīng)積極、主動參與課堂活動的全過程,教、學(xué)同步。讓學(xué)生自己真正做學(xué)習(xí)的主人。

例如,講解函數(shù)的圖象應(yīng)從振幅、周期、相位依次各自進行變化,然后再綜合,并盡可能利用多媒體輔助教學(xué),使學(xué)生容易接受。其次講要注重突出數(shù)學(xué)思想方法的教學(xué),注重學(xué)生數(shù)學(xué)能力的培養(yǎng)。例如講到等比數(shù)列的概念、通項公式、等比中項、等比數(shù)列的性質(zhì)、等比數(shù)列的前n項和。可以引導(dǎo)學(xué)生對照等差數(shù)列的相應(yīng)的內(nèi)容,比較聯(lián)系。讓學(xué)生更清楚等差數(shù)列和等比數(shù)列是兩個對偶概念。

3、練。數(shù)學(xué)是以問題為中心。學(xué)生怎么應(yīng)用所學(xué)知識和方法去分析問題和解決問題,必須進行練習(xí)。首先練習(xí)要重視基礎(chǔ)知識和基本技能,切忌過早地進行“高、深、難”練習(xí)。鑒于目前我校高一的生源現(xiàn)狀,基礎(chǔ)訓(xùn)練是很有必要的。課本的例題、練習(xí)題和習(xí)題要求學(xué)生要題題過關(guān);補充的練習(xí),應(yīng)先是課本中練習(xí)及習(xí)題的簡單改造題,這有利于學(xué)生鞏固基礎(chǔ)知識和基本技能。讓學(xué)生通過認(rèn)真思考可以完成。即讓學(xué)生“跳一跳可以摸得著”。一定要讓學(xué)生在練習(xí)中強化知識、應(yīng)用方法,在練習(xí)中分步達(dá)到教學(xué)目標(biāo)要求并獲得再練習(xí)的興趣和信心。例如根據(jù)數(shù)列前幾項求通項公式練習(xí),在新教材高一(上)p111例題2上簡單地做一些改造,便可以變化出各種求解通項公式方法的題目;再如數(shù)列復(fù)習(xí)參考題第12題;就是一個改造性很強的數(shù)學(xué)題,教師可以在上面做很多文章。其次要講練結(jié)合。學(xué)生要練習(xí),老師要評講。多講解題思路和解題方法,其中包括成功的與錯誤的。特別是注意要充分暴露錯誤的思維發(fā)生過程,在課堂造就民主氣氛,充分傾聽學(xué)生意見,哪怕走點“彎路”,吃點“苦頭”;另一方面,則引導(dǎo)學(xué)生各抒己見,評判各方面之優(yōu)劣,最后選出大家公認(rèn)的最佳方法。還可適當(dāng)讓學(xué)生涉及一些一題多解的題目,拓展思維空間,培養(yǎng)學(xué)生思維的多面性和深刻性。

例如,高一(下)p26例5求證??梢詮囊贿呑C到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元法,將無理不等式化為關(guān)于t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標(biāo)系中作出它們的圖像。求兩圖在x軸上方的交點的橫坐標(biāo)為2,最終得解。要求學(xué)生掌握通解通法同時,也要講究特殊解法。最后練習(xí)要增強應(yīng)用性。例如用函數(shù)、不等式、數(shù)列、三角、向量等相關(guān)知識解實際應(yīng)用題。引導(dǎo)學(xué)生學(xué)會建立數(shù)學(xué)模型,并應(yīng)用所學(xué)知識,研究此數(shù)學(xué)模型。

4、作業(yè)。鑒于學(xué)生現(xiàn)有的知識、能力水平差異較大,為了使每一位學(xué)生都能在自己的“最近發(fā)展區(qū)”更好地學(xué)習(xí)數(shù)學(xué),得到最好的發(fā)展,制定“分層次作業(yè)”。即將作業(yè)難度和作業(yè)量由易到難分成a、b、c三檔,由學(xué)生根據(jù)自身學(xué)習(xí)情況自主選擇,然后在充分尊重學(xué)生意見的基礎(chǔ)上再進行協(xié)調(diào)。以后的時間里,根據(jù)學(xué)生實際學(xué)習(xí)情況,隨時進行調(diào)整。

5、輔導(dǎo)。輔導(dǎo)指兩方面,培優(yōu)和補差。對于數(shù)學(xué)尖子生,主要培養(yǎng)其自學(xué)能力、獨立鉆研精神和集體協(xié)作能力。具體做法:成立由三至六名學(xué)生組成的討論組,教師負(fù)責(zé)為他們介紹高考、競賽參考書,并定期提供學(xué)習(xí)資料和咨詢、指導(dǎo)。下面著重談?wù)勓a差工作。輔導(dǎo)要鼓勵學(xué)生多提出問題,對于不能提高的同學(xué)要從平時作業(yè)及練習(xí)考試中發(fā)現(xiàn)問題,跟蹤到人,跟蹤到具體知識。要有計劃,有針對性和目的性地輔導(dǎo),切忌冷飯重抄和無目標(biāo)性。要及時檢查輔導(dǎo)效果,做到學(xué)生人人知道自己存在問題(越具體越好),老師對輔導(dǎo)學(xué)生情況要了如指掌。對學(xué)有困難的同學(xué),要耐心細(xì)致輔導(dǎo),還要注意鼓勵學(xué)生戰(zhàn)勝自己,提高自已的分析和解決問題的能力。

高一數(shù)學(xué)教學(xué)計劃篇十五

函數(shù)是高中數(shù)學(xué)的重要資料,函數(shù)的表示法是“函數(shù)及其表示”這一節(jié)的主要資料之一。學(xué)習(xí)函數(shù)的表示法,不僅僅是研究函數(shù)本身和應(yīng)用函數(shù)解決實際問題所必須涉及的問題,也是加深對函數(shù)概念理解所必須的。同時,基于高中階段所接觸的許多函數(shù)均可用幾種不一樣的方式表示,因而學(xué)習(xí)函數(shù)的表示也是領(lǐng)悟數(shù)學(xué)思想方法(如數(shù)形結(jié)合、化歸等)、學(xué)會根據(jù)問題需要選擇表示方法的重要過程。

學(xué)生在學(xué)習(xí)用集合與對應(yīng)的語言刻畫函數(shù)之前,比較習(xí)慣于用解析式表示函數(shù),但這是對函數(shù)很不全面的認(rèn)識。在本節(jié)中,從引進函數(shù)概念開始,就比較注重函數(shù)的不一樣表示方法:解析法、圖象法、列表法。函數(shù)的不一樣表示法能豐富對函數(shù)的認(rèn)識,幫忙理解抽象的函數(shù)概念。異常是在信息技術(shù)環(huán)境下,能夠使函數(shù)在數(shù)形結(jié)合上得到更充分的表現(xiàn),使學(xué)生更好地體會這一重要的數(shù)學(xué)思想方法。所以,在研究函數(shù)時,應(yīng)充分發(fā)揮圖象直觀的作用;在研究圖象時要注意代數(shù)刻畫,以求思考和表述的精確性。

根據(jù)《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(實驗)和新課改的理念,我從知識、本事和情感三個方面制訂教學(xué)目標(biāo)。

1、明確函數(shù)的三種表示方法(圖象法、列表法、解析法),經(jīng)過具體的實例,了解簡單的分段函數(shù)及其應(yīng)用。

2、經(jīng)過解決實際問題的過程,在實際情境中能根據(jù)不一樣的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),發(fā)展學(xué)生思維本事。

3、經(jīng)過一些實際生活應(yīng)用,讓學(xué)生感受到學(xué)習(xí)函數(shù)表示的必要性;經(jīng)過函數(shù)的解析式與圖象的結(jié)合滲透數(shù)形結(jié)合思想。

(1)初中已經(jīng)接觸過函數(shù)的三種表示法:解析法、列表法和圖象法、高中階段重點是讓學(xué)生在了解三種表示法各自優(yōu)點的基礎(chǔ)上,使學(xué)生會根據(jù)實際情境的需要選擇恰當(dāng)?shù)谋硎痉椒?。所以,教學(xué)中應(yīng)當(dāng)多給出一些具體問題,讓學(xué)生在比較、選擇函數(shù)模型表示方式的過程中,加深對函數(shù)概念的整體理解,而不再誤以為函數(shù)都是能夠?qū)懗鼋馕鍪降摹?/p>

(2)分段函數(shù)很多存在,但比較繁瑣。一方面,要加強用分段函數(shù)模型刻畫實際問題的實踐,另一方面,還能夠經(jīng)過動畫模擬,讓學(xué)生體驗到,分段函數(shù)的問題應(yīng)當(dāng)分段解決,然后再綜合。這也為下一步研究分段函數(shù)的單調(diào)性等性質(zhì)打下伏筆。

(一)、本節(jié)課的教法特點

根據(jù)教學(xué)資料,結(jié)合學(xué)生的具體情景,我采用了學(xué)生自主探究和教師啟發(fā)引導(dǎo)相結(jié)合的教學(xué)方式。在整個的教學(xué)過程中讓學(xué)生盡可能地動手、動腦,調(diào)動學(xué)生進取性,充分地參與學(xué)習(xí)的全過程。倡導(dǎo)學(xué)生主動參與、樂于探究、勤于動手,逐步培養(yǎng)學(xué)生能夠利用函數(shù)來處理信息的`本事。

(二)、本節(jié)課預(yù)期效果

1、經(jīng)過具體的實例,讓學(xué)生體會函數(shù)三種表示法的優(yōu)、缺點。

創(chuàng)造問題情景這種情景的創(chuàng)設(shè)以具體事例出發(fā),印象深刻。所以在引入時先從函數(shù)的三要素入手,強調(diào)要素之一對應(yīng)關(guān)系,然后給出三個具體實例:

(1)炮彈發(fā)射時,距離地面的高度隨時間變化的情景;

(2)用圖表的形式給出臭氧層空洞的面積與時間的關(guān)系;

(3)恩格爾系數(shù)的變化情景。

指出每種對應(yīng)分別以怎樣的形式展現(xiàn)。引出函數(shù)的表示方法這一課題。因為我們這節(jié)課的重點是讓學(xué)生在實際情景中,會根據(jù)不一樣的需要選擇恰當(dāng)?shù)谋硎痉椒?。會選擇的前提是理解,這些完全靠學(xué)生的現(xiàn)實經(jīng)驗,讓學(xué)生自我去發(fā)現(xiàn)各自的優(yōu)劣。這為第一道例題打下基礎(chǔ)。

例1經(jīng)過具體例子,讓學(xué)生用三種不一樣的表示方法來表示的同一個函數(shù),進一步理解函數(shù)概念。把問題交給學(xué)生,學(xué)生獨立完成,并自我檢查發(fā)現(xiàn)問題,加深學(xué)生對三種表示法的深刻理解。學(xué)生思考函數(shù)表示法的規(guī)定。注意本例的設(shè)問,此處“”有三種含義,它能夠是解析表達(dá)式,能夠是圖象,也能夠是對應(yīng)值表。

由于這個函數(shù)的圖象由一些離散的點組成,與以前學(xué)習(xí)過的一次函數(shù)、二次函數(shù)的圖象是連續(xù)的曲線不一樣。經(jīng)過本例,進一步讓學(xué)生感受到,函數(shù)概念中的對應(yīng)關(guān)系、定義域、值域是一個整體、函數(shù)y=5x不一樣于函數(shù)y=5x(x∈{1,2,3,4,5}),前者的圖象是(連續(xù)的)直線,而后者是5個離散的點。由此認(rèn)識到:“函數(shù)圖象既能夠是連續(xù)的曲線,也能夠是直線、折線、離散的點,等等?!辈⒚鞔_:如何確定一個圖形是否是函數(shù)圖象方法

2、讓學(xué)生會根據(jù)不一樣的實例選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù)

例2用表格法表示了函數(shù)。要“對這三位運動員的成績做一個分析”不太方便,所以需要改變函數(shù)表示的方法,選擇圖象法比較恰當(dāng)。教學(xué)中,先不必直接把圖象法告訴學(xué)生,能夠讓學(xué)生說說自我是如何分析的,選擇了什么樣的方法來表示這三個函數(shù)、經(jīng)過比較各種不一樣的表示方法,達(dá)成共識:用圖象法比較好。培養(yǎng)學(xué)生根據(jù)實際需要選擇恰當(dāng)?shù)暮瘮?shù)表示法的本事。

學(xué)生經(jīng)過觀察、思考獲得結(jié)論、比如總體水平(朱啟南成績好)、變化趨勢(劉天佑的成績在逐步提高)、與運動員的平均分的比較,等等。培養(yǎng)學(xué)生的觀察本事、獲取有用信息的本事。同時要求學(xué)生注意圖中的虛線不是函數(shù)圖象的組成部分,之所以用虛線連接散點,主要是為了區(qū)分這三個函數(shù),直觀感受三個函數(shù)的圖象具有整體性,也便于分析成績情景,加以比較。

3、經(jīng)過具體的實例,了解分段函數(shù)及其表示

生活中有很多能夠用分段函數(shù)描述的實際問題,如出租車的計費、個人所得稅納稅稅額等等。經(jīng)過例3的教學(xué),讓學(xué)生了解分段函數(shù)及其表示。為了便于學(xué)生理解,給出了實際情景的模擬。能夠使函數(shù)在數(shù)與形兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生經(jīng)過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合的數(shù)學(xué)思想方法。

【本文地址:http://mlvmservice.com/zuowen/1684203.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔