教案的編寫需要考慮學生的學習需求和教學資源的充分利用。教案的編寫需要充分考慮學生的學習難點和錯點。此教案范文內(nèi)容充實、安排合理,有助于學生的學習和思維發(fā)展。
比與比例教案篇一
1、甲數(shù)除以乙數(shù)的商是2.8,甲、乙兩數(shù)的最簡比是()。
2、圓的周長與直徑的比值是();正方形的周長與邊長的比值是()。
3、在24的約數(shù)中選出四個數(shù),組成一個比例是()。
4、如果蘋果重量的1/6與橘子重量的20%相等,那么蘋果重量與橘子重量的比是()。
5、在一個比例中。兩個內(nèi)項互為倒數(shù),其中一個外項是最小的合數(shù),另一個外項是()。
6、用一張長和寬之比為2:1的紙剪兩個最大的圓,這張紙的利用率是()。
7、一根鋼管長3米,截去1/3后又截去1/3米,比原來短了()米。
8、圓柱體的側(cè)面積一定,()和高成反比例。
9、兩個長方形的面積比是8:7,長的比是4:5,寬的比是()。
10、請寫出兩個內(nèi)項相等,兩個比的比值都是0.4的一個比例。
二、判斷題。
2、等第等高的平行四邊形與三角形的面積之比為2:1。
4、甲、乙兩個足球隊的比賽結(jié)果是3:0,這個比的前項是3,后項是0。
5、兩個正方體的棱長之比為2:3,則他們的體積之比為4:9。
三、選擇題。
1、一種長5毫米的零件,畫在圖紙上長10厘米,這副圖的比例尺是()。
a、1/2b、2/1c、1/20d、20/1。
2、圓的面積和()成正比例。
a、半徑b、直徑c、半徑的平方d、
3、一項工程,甲獨做5天完成,乙獨做6天完成,甲、乙兩人的工作效率的比是()。
a、5:6b、6:5c、1/6:1/5d、5/11:6/11。
4、路程一定,所走的路程和剩下的`路程()。
5、xy+2=k(一定),x和y()。
6、下列選項中,()成正比例,()成反比例,()不成比例。
a、比的前項一定,比的后項和比值。
b、比例尺一定,分母和分數(shù)值。
c、正方形的邊長和面積。
四、計算題(解比例略)。
五、解決問題。
6、一個長方形操場長100米,寬50米,把它畫在比例尺是1/2000的圖紙上,長和寬各應畫多少厘米?請畫出這個長方形。
比與比例教案篇二
教學內(nèi)容:教科書第16頁上的線段比例尺,練習五的第49題。
教學目的:使學生理解線段比例尺的含義,會根據(jù)線段比例尺求圖上距離或?qū)嶋H距離。
教具準備:教師準備一些線段比例尺的地圖或平面圖。
教學過程:
教師:上節(jié)課我們學習了一些比例尺的知識,我們學過的比例尺都是用數(shù)值來標明的,如比例尺1:10000就表示圖上距離是l厘米實際距離就是10000厘米,像這樣的比例尺叫做數(shù)值比例尺。除了數(shù)值比例尺外,還有線段比例尺。什么是線段比例尺呢:這就是我們這節(jié)課要學習的內(nèi)容。(板書課題)。
教師:線段比例尺是在圖上附有一條注有數(shù)量的線段。用來表示和地面上相對應的實際距離。同學們可以翻開教科書第16頁.看右下角有一幅地圖。地圖的下面就有一條線段比例尺。它上面有0、50和100幾個數(shù),還注明了長度單位千米。這些數(shù)和單位表示什么意思呢?大家量一量從0到50這段線段有多長。(1厘米。)從50到100呢?(也是1厘米。)從0到50就表示地圖上1厘米的距離相當于地面上50千米的實際距離。從0到100就表示地圖上2厘米的距離相當于地面上100千米的實際距離。
然后教師問:
l如果知道了兩個城市之間的圖上距離,你能不能計算出這兩個城市之間的實際距離?
讓學生說怎樣列式。教師板書:505.5=275(千米)。
之后,進一步提出:
千米等于5000000厘米。所以這條線段比例尺改寫成數(shù)值比例尺就是1:5000000。)。
教師板書出數(shù)值比例尺。
完成練習五的第49題:
1.第5題,讓學生獨立填表:填表前,要提醒學生圖上距離的單位應用什么,實際距離的單位應用什么。
2.第8題,讓學生獨立計算。集體訂正后,讓學生按照東南西北的方位說說拖拉機站、電影院、汽車站和供銷社離學校的距離。如,電影院在學校的南面,距學校200米;拖拉機站在學校的西北面,距學校2500米。
3.第9題,讓學生先求出試驗田長和寬的圖上距離,然后畫出平面圖,并且要注意在平面圖上注明比例尺。
比與比例教案篇三
教學過程。
談話導入。
師:誰能用比的知識說一說我們班男女同學的人數(shù)情況?
(指名匯報)。
師:今天我們就一起來整理和復習比和比例的有關(guān)知識。
回顧與整理。
1.(1)舉例說一說什么是比,什么是比例,什么是比例尺以及它們的應用。
預設。
生1:兩個數(shù)相除又叫作兩個數(shù)的比,如5÷2,可以寫成5∶2。
生2:表示兩個比相等的式子叫作比例,如8∶4=24∶12。
生3:圖上距離和實際距離的比,叫作這幅圖的比例尺,如一幅地圖的比例尺是。比例尺可分為數(shù)值比例尺和線段比例尺。
生4:配制農(nóng)藥會應用到比的知識;地圖上一般都有比例尺。
……。
(2)說一說比與比例有什么區(qū)別。
比
比例。
各部分名稱。
0.9∶0.6=1.5。
前項后項比值。
基本性質(zhì)。
比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。
在比例里,兩個內(nèi)項的積等于兩個外項的積。
(3)出示教材83頁“回顧與交流”2題。
學生獨立完成,思考比、分數(shù)、除法之間的關(guān)系,并全班交流。
預設。
生1:除法算式中的被除數(shù)相當于分數(shù)的分子,相當于比的前項;除法算式中的除數(shù)相當于分數(shù)的分母,相當于比的后項;除號相當于分數(shù)的分數(shù)線,相當于比的比號。
生2:除法算式的商相當于分數(shù)的分數(shù)值,相當于比的比值。
強調(diào):因為0不能作除數(shù),所以所有分數(shù)的分母及比的后項都不能為0。
比與比例教案篇四
p47~48,例7、正、反比例的比較。
進一步理解正、反比例的意義,弄清它們的聯(lián)系和區(qū)別,掌握它們的變化規(guī)律,能正確運用。
一、復習
判斷下面兩種理成不成比例,成什么比例,為什么?
(1)單價一定,數(shù)量和總價。
(2)路程一定,速度和時間。
(3)正方形的邊長和它的面積。
(4)工作時間一定,工作效率和工作總量。
二、新授。
1、揭示課題
2、學習例7
(1)認識:“千米/時”的讀法意義。
(2)出示書中的問題要求學生逐一回答。
(3)提問:誰能說一說路程、速度和時間這三個量可以寫成什么樣的關(guān)系式?
(4)填空:用下面的形式分別表示兩個表的內(nèi)容。
當()一定時,()和()成()比例關(guān)系。
還有什么樣的依存關(guān)系?
(5)教師作評講并。
(6)用圖表示例7中的兩種量的關(guān)系。
指導學生描點、連線
在這條直線上,當時間的值擴大時,路程的對應值是怎樣變化的?時間的值縮小呢?
用同樣的方法觀察右表。
3、正、反比例的特點(異同點)
由學生比、說
三、鞏固練習
1、練一練第1、2題
2、p49第1題。
四、課堂:
正、反比例關(guān)系各有什么特點?怎樣判斷正比例或反比例關(guān)系?關(guān)鍵是什么?
五、作業(yè)
p49第2題(1)(4)(5)(6)(9)
六、課后作業(yè)
1、p49第2題(2)(3)(7)(8)(10)
2、收集生活中正、反比例關(guān)系的量并分析。
比與比例教案篇五
本單元在學生具有比和比例的知識,認識常見數(shù)量關(guān)系的基礎上編排,通過對兩個數(shù)量保持商一定或積一定的變化,理解正比例關(guān)系和反比例關(guān)系,滲透初步的函數(shù)思想。正比例和反比例歷來是小學數(shù)學里的重要內(nèi)容之一,與過去的教材相比,本單元進一步加強正、反比例的概念教學,突出正比例關(guān)系的圖像及簡單應用,重視正、反比例與現(xiàn)實生活的聯(lián)系,淡化脫離現(xiàn)實背景判斷比例關(guān)系,不安排應用正、反比例關(guān)系解決實際問題。全單元編排三道例題和一個練習,前兩道例題都是關(guān)于正比例的,分別教學正比例的意義和圖像,后一道例題教學反比例的知識。
例1讓學生初步感知兩種相關(guān)聯(lián)的量以及成正比例的量的含義。列表呈現(xiàn)了一輛汽車行駛的路程和時間,通過寫出幾組對應的路程和時間的比并求比值,發(fā)現(xiàn)各個比的比值都是80,理解80是這輛汽車每小時行駛的千米數(shù),由此得出數(shù)量關(guān)系路程/時間=速度(一定)。在數(shù)量關(guān)系中,路程比時間等于速度是舊知識,速度一定是這個問題情境里的規(guī)律,是正比例概念的生長點。教材先指出路程和時間是兩種相關(guān)聯(lián)的量,用時間變化,路程也隨著變化具體解釋兩種量的相關(guān)聯(lián)。再指出這輛汽車行駛的路程和時間的比的比值總是一定,可以說路程和時間成正比例,它們是成正比例的量,學生在這里首次感知了正比例關(guān)系。
試一試在另一組數(shù)量關(guān)系中繼續(xù)感知正比例關(guān)系,購買鉛筆數(shù)量和總價的表格里有三個空格,先計算買4枝、5枝、6枝這種鉛筆的總價,讓學生體會鉛筆的單價每枝0。3元是不變的,總價是隨著數(shù)量變化而變化的,總價與數(shù)量是兩種相關(guān)聯(lián)的量。然后依次回答其他三個問題,得出鉛筆總價和數(shù)量成正比例的結(jié)論,并用式子總價/數(shù)量=單價(一定)作出解釋。試一試的認知線索與例1相似,留給學生自主活動的空間比例1大,使學生對正比例關(guān)系的體驗更深刻。
學生在上面兩個實例中感知了正比例的具體含義,教材第63頁要形成正比例的概念。抽象概括正比例的意義是概念形成的重要環(huán)節(jié),也是發(fā)展數(shù)學思考的極好機會。首先用字母表示數(shù)量,每個實例里都有兩個相關(guān)聯(lián)的量,分別是路程和時間或者總價與數(shù)量,兩個量的比的比值分別是速度和單價,因而用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值;然后把路程/時間=速度(一定)、總價/數(shù)量=單價(一定)表示成y/x=k(一定),并指出正比例關(guān)系可以用這個字母式子表示。用抽象的字母組成的式子表示正比例關(guān)系是認知難點,教學要聯(lián)系兩個實例,引導學生經(jīng)歷字母表示具體的數(shù)量?字母式子表示常見數(shù)量關(guān)系?字母式子表示正比例關(guān)系的過程,加強對式子y/x=k(一定)的理解。
練一練判斷生產(chǎn)零件的數(shù)量和時間成不成正比例,是把正比例概念具體化,利用概念進行演繹推理。具體地說,是分析這個情境里的生產(chǎn)零件數(shù)量和所用時間的比的比值是否始終保持一定,如果具備y/x=k(一定)這種關(guān)系,兩種相關(guān)聯(lián)的量成正比例,否則就不成正比例。學生在第62頁試一試里已經(jīng)進行過這樣的分析和判斷,那時是依據(jù)連續(xù)的四個問題進行的,現(xiàn)在要求他們獨立開展有條理的推理活動,進一步理解正比例的意義,掌握判斷兩種量成不成正比例的方法。練習十三第1~3題配合例1的教學,第3題判斷正方形的周長與邊長、面積與邊長成不成正比例??梢愿鶕?jù)表格里填的數(shù)據(jù)進行推理,因為周長與邊長的比4/1、8/2、12/3、16/4的比值都是4,面積與邊長的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周長與邊長成正比例,面積與邊長不成正比例。也可以根據(jù)正方形的周長公式和面積公式推理,從邊長4=周長可以得到周長與邊長的比的.比值是確定的數(shù)4,即周長/邊長=4(一定),所以正方形的周長與邊長成正比例。從邊長邊長=面積可以知道,面積雖然隨著邊長的變化而變化,但是面積與邊長的比的比值是變化的量,即面積/邊長=邊長,所以正方形的面積與邊長不成正比例。前一種思考對問題進行具體的分析,適宜大多數(shù)學生的實際水平,也符合《標準》的要求。后一種思考沒有利用數(shù)據(jù)信息,推理的難度較大,不必對學生提出這樣的要求。教材設計這道題的意圖是進一步使學生理解正比例的意義,突出正比例概念的內(nèi)涵:兩種相關(guān)聯(lián)量的比的比值保持一定。
像直觀表達正比例關(guān)系。
例2是按照《標準》的要求根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標系的方格紙上畫圖,并根據(jù)其中一個量的值估計另一個量的值編排的,設計的三個問題體現(xiàn)了教學正比例圖像的三個步驟。第一步認識圖像上的點,按照a點表示1小時行80千米b點表示5小時行400千米說出其他各點的具體含義,體會各個點都表示汽車在某段時間所行駛的路程,也體會這些點是根據(jù)對應的時間與路程的數(shù)據(jù)在方格紙上畫出來的。第二步認識圖像的形狀,從圖中描出的點在一條直線上,體會正比例關(guān)系的圖像是一條直線。了解正比例圖像是直線對以后畫圖能起兩點作用:一是畫正比例關(guān)系的圖像(如第64頁練一練),可以根據(jù)提供的各組數(shù)據(jù)描出圖像的許多個點,再依次連成直線;二是如果按正比例關(guān)系畫出的點不在同一條直線上,表明畫點出現(xiàn)了錯誤,應及時糾正。第三步應用圖像,估計行駛時間所對應的路程或者行駛路程所用的時間。要指導學生利用畫垂線或畫平行線的技能,盡量使得數(shù)準確些。如估計2。5小時行駛的千米數(shù),要在橫軸上找到表示2。5小時的點,過這點畫橫軸的垂線,得到垂線與圖像的交點,再過交點作縱軸的垂線,根據(jù)垂足在縱軸上的位置估計行駛的路程。
練習十三第4、5題配合例2的教學。判斷實際問題里相關(guān)聯(lián)的兩種量成不成正比例有兩種思路,一種是看畫成的圖像,如果圖像是一條直線,那么兩種量成正比例;如果圖像不是一條直線,那么兩種量不成正比例。另一種是根據(jù)正比例的意義,利用各組對應的數(shù)據(jù)寫出比、求比值,從比值是否相等作出成不成正比例的判斷。教學時要引導學生應用后一種思路,在判斷活動中加強對概念的理解。
例3教學反比例的意義,安排的教學活動線索和例1十分相似。在表格里可以看到筆記本的單價在變化,購買的數(shù)量也在變化,而且每組相對應的單價和數(shù)量的乘積都是60,這不僅是算得的,還和題目里的用60元買筆記本相一致,因此用數(shù)量關(guān)系式單價數(shù)量=總價(一定)表示這個問題情境里兩個變量的變化規(guī)律。在此基礎上指出單價和數(shù)量是兩種相關(guān)聯(lián)的量,它們成反比例,是兩個成反比例的量。試一試先把表格填寫完整,在填表時體會工地要運的72噸水泥是確定的。然后思考三個問題,抓住每天運的噸數(shù)與需要的天數(shù)的乘積是多少,乘積表示什么數(shù)量以及問題情境的數(shù)量關(guān)系式,從每天運的噸數(shù)天數(shù)=運水泥的總噸數(shù)(一定),理解每天運的噸數(shù)和需要的天數(shù)成反比例。通過上面四個實例的研究,學生初步感知了反比例的含義,于是用字母x、y表示兩種相關(guān)聯(lián)的量,用k表示兩個量的乘積,把反比例關(guān)系表示成xy=k(一定),形成反比例的概念。
練習十三第6~8題配合例3的教學,重溫認識反比例的過程,應用概念進行判斷,從而加強對反比例的理解。第8題在方格紙上分別呈現(xiàn)了三個面積都是12平方厘米的長方形、三個周長都是14厘米的長方形,看圖在表格里填出各個長方形的長與寬。前三個長方形的長乘寬分別是121=12、62=12、43=12,即長寬=面積(一定),得到的結(jié)論是長方形的面積一定,長與寬成反比例。后三個長方形的長乘寬分別是61=6、52=10、43=12,這些周長相等的長方形,長與寬的乘積不相等,所以長方形的周長一定,長與寬不成反比例。教學這道題要讓學生經(jīng)歷得出結(jié)論的過程,強化對反比例概念的理解。第9~13題是綜合練習,練習內(nèi)容包括成正比例的量與成反比例的量的比較,成比例的量與不成比例的量的比較,比例尺與正比例關(guān)系,還要尋找生活中成正比例的量或成反比例的量的實例。編排這些練習,要通過比較與判斷進一步使學生清晰地理解概念,掌握成正、反比例的量的變化規(guī)律;要聯(lián)系正比例的概念體會比例尺的意義,形成新的認知結(jié)構(gòu);要體驗生活中經(jīng)??吹匠烧壤牧颗c成反比例的量,培養(yǎng)數(shù)學意識。
比與比例教案篇六
小學六年級的學生在學習正比例和反比例這部分內(nèi)容時,尤其是在練習過程中容易混淆不清,經(jīng)常弄錯。下面,本文從不同的角度幫助他們正確區(qū)分這兩者的關(guān)系,希望對他們的學習會有所幫助。
一、正確認識兩者的意義。
正比例和反比例的意義教材中是安排在從p39到p47來進行敘述講解的,且都是通過對實驗中的數(shù)據(jù)進行分析之后概括得出的結(jié)論,這樣學生相對易于接受。
1.正比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系?!?/p>
2.反比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系?!?/p>
如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系可以用下面的關(guān)系式來表示:
y/x=k(一定)或y=kx(k一定)。
(二)反比例關(guān)系的表達式。
如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系可以用下面的關(guān)系式來表示:
x×y=k(k一定)或y=kx(k一定)。
1.正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律。正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律是:同時擴大,同時縮小,比值(或商)不變。
例如:汽車每小時行駛的速度一定,所行的路程和所用的時間是否成正比例?
完成該題練習時,可以先寫出路程、速度和時間三者之間的關(guān)系式:速度=路程/時間,已知條件中速度為一定(即常量),根據(jù)“速度=路程/時間”這一關(guān)系式,結(jié)合正比例的意義,即可知道所行的路程和所用的時間是成正比例關(guān)系的。也就是說,當速度一定時,走的路程越多,所花費的時間也越多,反之,亦然。換句話說,路程和時間是成倍增長或縮小的。
2.反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律。
反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律是:一種量擴大,另一種量縮小,一種量縮而另一種量則擴大,積不變。
例如:當圖上距離一定時,實際距離和比例尺是否成反比例?因為實際距離×比例尺=圖上距離(一定),所以,實際距離和比例尺是成反比例的。
1.在事物關(guān)系中都包含有三個量,(本網(wǎng)網(wǎng))即有兩個變量和一個常量(即定值)。
2.在相關(guān)聯(lián)的兩個變量中,當一個變量發(fā)生變化時(擴大或縮?。瑒t另一個變量也隨之發(fā)生變化。
3.它們相對應的兩個變量的積或商都是一定的(即常量)。
也就是說,在正比例和反比例的兩個相關(guān)聯(lián)的變量中,均是一個量變化,另一個量也隨之變化。并且變化方式均屬于擴大(乘以一個數(shù))或縮?。ǔ砸粋€數(shù))若干倍的變化。
1.正比例的定量(或定值)是兩個變量中相對應的兩個數(shù)(即變量)的比值(或商)。反比例的定量是兩個變量中相對應的兩個數(shù)的積。
2.當用圖象來表示正比例或反比例中兩個變量之間的關(guān)系時,所畫出來的圖象是不一樣的。正比例的圖象是一條傾斜的直線(又叫斜線)。反比例的圖象是一條曲線,且兩端永遠不會與兩條軸線(即橫軸和縱軸或函數(shù)中所稱的x軸和y軸)相交。
當正比例中的x值(自變量的值)轉(zhuǎn)化為它的倒數(shù)時,由正比例轉(zhuǎn)化為反比例;當反比例中的x值(自變量的值)也轉(zhuǎn)化為它的倒數(shù)時,則由反比例轉(zhuǎn)化為正比例。
需要說明的是,教科書中在“正比例和反比例的意義”的講解中,并沒有指出正比例和反比例關(guān)系表達式中常量和變量的取值范圍。根據(jù)正比例的關(guān)系式y(tǒng)/x=k(一定)和反比例的關(guān)系x×y=k(k一定)可以知道,無論是正比例還是反比例,兩個變量x、y和常量k均不能為零。試想,在正比例y/x=k(一定)中,如果x為0,式子無意義;如果y為0,x不為0,則x的值是不確定的(這時候k的值為0),此時x和y就不存在正比例的說法了。同樣,在反比例x×y=k(k一定)中,如果x和y兩個變量中,只要其中一個為0或兩個都同時為0,則k的值都為0,x和y也無所謂反比例關(guān)系了。再說,如果x和y同時為0的話,那么x和y也不叫變量了,都不符合反比例的意義。所以,無論是正比例關(guān)系,還是反比例關(guān)系中,兩個變量x和y以及常量k都不能為0。
因此,當正比例或反比例關(guān)系中其中一個變量用字母表示時,要求我們通過討論確定另一個變量的取值范圍的時候,我們就要注意正比例或反比例關(guān)系中兩個變量的取值絕對不能為零,否則,就失去意義了。
【參考文獻】。
1.盧江、楊剛主編,義務教育課程標準實驗教科書小學六年級《數(shù)學》下冊[s],人民教育出版社出版。
2.謝鼓平主編,小學六年級數(shù)學《教案與設計》[s],新疆青少年出版社出版。
3.《貴州教育》[j]第3-4期合訂本第65頁中《小學數(shù)學畢業(yè)復習建議》(王艷)。
比與比例教案篇七
教學目標:
知識與技能:
1.結(jié)合豐富的實例,認識反比例。
2.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。
過程與方法:
通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認識反比例。
情感態(tài)度價值觀:
培養(yǎng)學生自主、合作學習、探索新知的能力,激發(fā)學習數(shù)學的熱情。感受反比例關(guān)系在生活中的廣泛應用。初步滲透函數(shù)思想。
認識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。
認識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。
電腦課件。
一、復習引入。
1、計算。
2、判斷下面各題中的兩種量是否成正比例?為什么?
(1)文具盒的單價一定,買文具盒的個數(shù)和總價。
(2)一堆貨物一定,運走的量和剩下的量。
(3)汽車行駛的速度一定,行駛的路程和時間。
3、說說什么是正比例。
師:大家對正比例知識理解掌握得非常好,接下來我們就該學習什么了?
二、出示學習目標。
1.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。
2.通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認識反比例。
3.培養(yǎng)學生探索研究的能力,感受反比例關(guān)系在生活中的廣泛應用。
三、指導自學。
師:給你們講個小故事:
過了幾天,財主到了裁縫店取帽子,結(jié)果一看,頓時傻了眼:10頂?shù)拿弊有〉弥荒艽髟谑种割^上了!
學習提示:獨立思考?
1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”
合作學習小組討論上述的問題??磿献鲗W習。
1、把25頁例。
2、例3的表格補充完整。
4、你知道什么是反比例嗎?
四、學生自學。
五、檢查自學效果。
讓學生說說自學要求中的內(nèi)容。
師歸納:兩種相關(guān)聯(lián)的量,一種量隨著另一種量的變化而變化,在變化過程中兩種量的積一定,那么這兩種量成反比例。
六、引導更正,指導運用。
你們還找出類似這樣關(guān)系的量來嗎?”
學生:要走一段路,速度越慢(快),用的時間就越多(少)運一堆貨物,每次運的越多(少),運的次數(shù)就越小(多)百米賽跑,路程100米不變,速度和時間是反比例;排隊做操,總?cè)藬?shù)不變,排隊的行數(shù)和每行的人數(shù)是反比例;長方體的體積一定,底面積和高是反比例。
七、當堂訓練基礎練習。
1、填空。
兩種_____的量,一種量隨著另一種量變化,如果這兩種量中相對應的兩個數(shù)的______,這兩種量叫做成反比例的量,它們的關(guān)系叫做_______關(guān)系。
2、判斷下面每題中的兩種量是不是成反比例,并說明理由。
(1)煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。
(2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時間。
(3)生產(chǎn)電視機的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù)。
(4)圓柱體的體積一定,底面積和高。
(5)小林做10道數(shù)學題,已做的題和沒有做的題。
(6)長方形的長一定,面積和寬。
(7)平行四邊形面積一定,底和高。提高練習。
四、小結(jié)。
通過這節(jié)課的學習,你有什么收獲?
相關(guān)聯(lián),一個量變化,另一個量也隨著變化積一定。
xy=k(一定)。
比與比例教案篇八
1、進一步理解比例的意義和基本性質(zhì),能區(qū)分比和比例。
2、能正確理解正、反比例的意義,能正確進行判斷。
3、拓展思維能力。
1回顧本單元的學習內(nèi)容,形成支識網(wǎng)絡。
2我們學習哪些知識?用合適的方法把知識間聯(lián)系表示出來。匯報同學互相補充。
什么叫比?比例?比和比例有什么區(qū)別?
什么叫解比例?怎樣解比例,根據(jù)什么?
什么叫呈正比例的量和正比例關(guān)系?什么叫反比例的關(guān)系?
什么叫比例尺?關(guān)系式是什么?
1填空。
六年級二班少先隊員的人數(shù)是六年級一班的8/9一班與二班人數(shù)比是()。
小圓的'半徑是2厘米,大圓的半徑是3厘米。大圓和小圓的周長比是()。
甲乙兩數(shù)的比是5:3。乙數(shù)是60,甲數(shù)是()。
5/x=10/340/24=5/x。
3、完成26頁2、3題。
綜合練習。
1、a1/6=b1/5a:b=():()。
2、9;3=36:12如果第三項減去12,那么第一項應減去多少?
3用5、2、15、6四個數(shù)組成兩個比例():()、():()。
1、如果a=c/b那當()一定時,()和()成正比例。當()一定時,()和()成反比例。
整理和復習。
解比例。
正反比例正方比例的意義。
正反比例的判斷方法。
比例應用題正比例應用題。
反比例應用體題。
比與比例教案篇九
教材第106、107頁例1,例2。
1.使學生認識正、反比例應用題的特點,理解、掌握用比例知識解答應用題的解題思路和解題方法,學會正確地解答基本的正、反比例應用題。
2.進一步培養(yǎng)學生應用知識進行分析、推理的能力,發(fā)展學生思維。
認識正、反比例應用題的特點。
掌握用比例知識解答應用題的解題思路。
1.判斷下面的量各成什么比例。
(1)工作效率一定,工作總量和工作時間。
(2)路程一定,行駛的速度和時間。
讓學生先分別說出數(shù)量關(guān)系式,再判斷。
2.根據(jù)條件說出數(shù)量關(guān)系式,再說出兩種相關(guān)聯(lián)的量成什么比例,并列出相應的等式。
(1)一臺機床5小時加工40個零件,照這樣計算,8小時加工64個。
(2)一列火車行駛360千米。每小時行90千米,要行4小時;每小時行80千米,要行x小時。
指名學生口答,老師板書。
3.引入新課。
從上面可以看出,生產(chǎn)、生活中的一些實際問題,應用比例的知識,也可以根據(jù)題意列一個等式。所以,我們以前學過的一些應用題,還可以應用比例的知識來解答。這節(jié)課,就學習正、反比例應用題。(板書課題)。
1.教學例1。
(1)出示例1,讓學生讀題。
(2)說明:這道題還可以用比例知識解答。
(3)小結(jié):
提問:誰來說一說,用正比例知識解答這道應用題要怎樣想?怎樣做?指出:先按題意列關(guān)系式判斷成正比例,再找出兩種相關(guān)聯(lián)量里相對應的數(shù)值,然后根據(jù)正比例關(guān)系里比值一定,也就是兩次籃球個數(shù)與總價對應數(shù)值比的比值相等,列等式解答。
2.教學改編題。
出示改變的問題,讓學生說一說題意。請同學們按照例1的方法自己在練習本上解答。同時指名一人板演,然后集體訂正。指名說一說是怎樣想的,列等式的依據(jù)是什么。
3.教學例2。
(1)出示例2,學生讀題。
(2)誰能仿照例l的解題過程,用比例知識來解答例2?請同學們自己來試一試。指名板演,其余學生做在練習本上。學生練習后提問是怎樣想的。效率和時間的對應關(guān)系怎樣,檢查列式解答過程,結(jié)合提問弄清為什么列成積相等的等式解答。
(3)提問:按過去的方法是先求什么再解答的?先求總量的應用題現(xiàn)在用什么比例關(guān)系解答的?誰來說一說,用反比例關(guān)系解答這道應用題是怎樣想,怎樣做的?指出;解答例2要先按題意列出關(guān)系式,判斷成反比例,再找出兩種相關(guān)聯(lián)量里相對應的數(shù)值,然后根據(jù)反比例關(guān)系里積一定,也就是兩次修地下管道相對應數(shù)值的乘積相等,列等式解答。
4.小結(jié)解題思路。
請同學們看一下黑板上例1、例2的解題過程,想一想,應用比例知識解答應用題,是怎樣想怎樣做的?同學們可以相互討論一下,然后告訴大家。指名學生說解題思路。指出:應用比例知識解答應用題,先要判斷兩種相關(guān)聯(lián)的量成什么比例關(guān)系,(板書:判斷比例關(guān)系)再找出相關(guān)聯(lián)量的對應數(shù)值,(板書:找出對應數(shù)值)再根據(jù)正、反比例的意義列出等式解答。(板書:列出等式解答)追問:你認為解題時關(guān)鍵是什么?(正確判斷成什么比例)怎樣來列出等式?(正比例比值相等,反比例乘積相等)。
1.做練一練。
指名兩人板演,其余學生做在練習本上。集體訂正,讓學生說說為什么列出的等式不一樣。指出:只有先正確判斷成什么比例關(guān)系,才能根據(jù)正比例或反比例的意義正確列式。
2.做練習十三第1題。
先自己判斷,小組交流,再集體訂正。
這節(jié)課學習了什么內(nèi)容?正、反比例應用題要怎樣解答?你還認識了些什么?
完成練習十三第2~6題的解答。
比與比例教案篇十
p53~54、第4~13題,思考題,正、反比例應用題的練習。
進一步掌握正、反比例的意義,能正確應用比例知識解答基本的正、反比例應用題,并溝通不同解法之間的聯(lián)系,進一步提高學生判斷,分析和推理等思維能力。
一、基本訓練。
p53第4題,口答并說明理由。
二、基本題練習。
1、做練習十第5題。
2提問:按過去的算術(shù)解法,第(1)題要先求什么數(shù)量?第(2)題呢?
用比例的知識怎樣解答呢,請大家自己做一做。
評講:說一說是怎樣想的`?
(板書:速度×時間=路程(一定)=反比例。
提問:正、反比例應用題解題過程有什么相同的地方?解題方法有什么不同?為什么?
3、練習:(略)。
三、綜合練習。
3、練習十第11題。
啟發(fā)學生用幾種方法解答。
4、做練習十第13題。
(1)提問:這是一道什么應用題?可以怎樣列式解答?
(2)把樹苗總數(shù)看做單位“1”,成活棵數(shù)是94%,你還能用比例知識解答嗎?
四、講解思考題。
引導:增加鉛以后,鉛與錫的比是5:3,有怎樣的關(guān)系式?
五、課堂:
通過本課的練習,你進一步明確了哪些內(nèi)容?
六、作業(yè):
第8、9、10題。
七、課后作業(yè):
第6、7、12題。
比與比例教案篇十一
p47~48,例7、正、反比例的比較。
進一步理解正、反比例的意義,弄清它們的聯(lián)系和區(qū)別,掌握它們的變化規(guī)律,能正確運用。
一、復習。
判斷下面兩種理成不成比例,成什么比例,為什么?
(1)單價一定,數(shù)量和總價。
(2)路程一定,速度和時間。
(3)正方形的邊長和它的面積。
(4)工作時間一定,工作效率和工作總量。
二、新授。
1、揭示課題。
2、學習例7。
(1)認識:“千米/時”的讀法意義。
(2)出示書中的問題要求學生逐一回答。
(3)提問:誰能說一說路程、速度和時間這三個量可以寫成什么樣的關(guān)系式?
(4)填空:用下面的形式分別表示兩個表的內(nèi)容。
當()一定時,()和()成()比例關(guān)系。
還有什么樣的依存關(guān)系?
(5)教師作評講并小結(jié)。
(6)用圖表示例7中的兩種量的關(guān)系。
指導學生描點、連線。
在這條直線上,當時間的.值擴大時,路程的對應值是怎樣變化的?時間的值縮小呢?
用同樣的方法觀察右表。
3、總結(jié)正、反比例的特點(異同點)。
由學生比、說。
三、鞏固練習。
1、練一練第1、2題。
2、p49第1題。
四、課堂小結(jié):
正、反比例關(guān)系各有什么特點?怎樣判斷正比例或反比例關(guān)系?關(guān)鍵是什么?
五、作業(yè)。
六、課后作業(yè)。
比與比例教案篇十二
1.使學生在理解的基礎上掌握平行線分線段成比例定理及其推論,并會靈活應用.
2.使學生掌握三角形一邊平行線的判定定理.
3.已知線的成已知比的作圖問題.
4.通過應用,培養(yǎng)識圖能力和推理論證能力.
5.通過定理的教學,進一步培養(yǎng)學生類比的數(shù)學思想.
觀察、猜想、歸納、講解。
l.教學重點:是平行線分線段成比例定理和推論及其應用.。
2.教學難點:是平行線分線段成比例定理的正確性的說明及推論應用.。
1課時。
投影儀、膠片、常用畫圖工具.。
【復習提問】。
敘述平行線分線段成比例定理(要求:結(jié)合圖形,做出六個比例式).
【講解新課】。
在黑板上畫出圖,觀察其特點:與的交點a在直線上,根據(jù)平行線分線段成比例定理有:……(六個比例式)然后把圖中有關(guān)線擦掉,剩下如圖所示,這樣即可得到:
平行于的邊bc的直線de截ab、ac,所得對應線段成比例.。
在黑板上畫出左圖,觀察其特點:與的交點a在直線上,同樣可得出:(六個比例式),然后擦掉圖中有關(guān)線,得到右圖,這樣即可證到:
平行于的邊bc的直線de截邊ba、ca的延長線,所以對應線段成比例.。
綜上所述,可以得到:
如圖,(六個比例式).。
此推論是判定三角形相似的基礎.。
這個推論不包含下圖的情況.。
后者,教學中如學生不提起,可不必向?qū)W生交待.(考慮改用投影儀或小黑板)。
例3已知:如圖,,求:ae.。
教材上采用了先求ce再求ae的方法,建議在列比例式時,把ce寫成比例第一項,即:.
讓學生思考,是否可直接未出ae(找學生板演).。
【小結(jié)】。
1.知道推論的探索方法.。
2.重點是推論的正確運用。
(1)教材p215中2.。
(2)選作教材p222中b組1.。
數(shù)學教案-平行線分線段成比例定理(第二課時)。
比與比例教案篇十三
一、鋪墊孕伏:
1.正比例關(guān)。
系的意義是什么?怎樣用字母表示這種關(guān)系?
判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?
2.下面哪兩種量成正比例關(guān)系?為什么?
(1)時間一定,行駛的速度和路程。
(2)數(shù)量一定,單價和總價。
4.引入新課。
如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學習的反比例關(guān)系。(板書課題)。
二、自主探究:
1.教學例2。
出示例2某運輸公司要運一批300噸的貨物。讓學生計算并完成填表任務。
每天運的數(shù)量(噸)1020304050。
所需的天數(shù)。
在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。
指名學生口答討論的結(jié)果,得出:
(1)每天運的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。
(2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。
(3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)。
2.教學例1。
出示例1。
3.概括反比例的意義。
(1)綜合例1、例2的共同點。
提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?
(2)概括反比例意義。
例1、例2里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?請同學們看第101頁1~3自然段。說明:像例1、例2里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用xy=k(一定)來表示。
4.具體認識。
(1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,
例2里的兩種量成反比例關(guān)系嗎?為什么?
(2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?
(3)判斷。
現(xiàn)在回過來看開始寫的關(guān)系式:工作效率工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。
5.教學例3。
三、鞏固練習。
用剛才我們說的判斷方法來做幾道題。
1.做練一練。
指名學生口答,說明理由。(可以寫出數(shù)量關(guān)系式看一看)。
2.下題兩種相關(guān)聯(lián)量成不成反比例?為什么?
一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做練習十二第1題。
四、課堂小結(jié)。
五、課堂作業(yè)。
練習十二第2~4題。
比與比例教案篇十四
簡要提示:
本課教學內(nèi)容是課程標準蘇教版六年級(下)第45頁的“解比例”。這部分內(nèi)容是在學生已經(jīng)理解了比例的意義、掌握了比例的基本性質(zhì)的基礎上進行教學的,通過教學使學生會應用比例的基本性質(zhì)解比例,并掌握解比例的方法和過程;使學生在應用比例的基本性質(zhì)解比例的過程中感受不同領(lǐng)域數(shù)學內(nèi)容的內(nèi)在聯(lián)系,發(fā)展對數(shù)學的積極情感。
教學流程:
流程1:教學例5a。
教師:李明同學在學習了圖形的放大和縮小后,也在電腦上把下面的一張照片按比例放大。課件出示例5。
教師讀題:現(xiàn)在只知道放大后照片的長是13.5厘米,寬是多少厘米呢?你能解決這個問題嗎?教師:要求出寬,我們必須先理解“按比例放大”是什么意思,你能說給你的同桌聽一聽嗎?教師:按比例放大的意思呀就是說明這張照片放大前后的相應邊長的比能組成比例,例如:放大前的照片的長:放大后的照片的長=放大前照片的寬:放大前照片的長:寬=放大后照片的長:寬。
流程2:教學例5b。
教師:現(xiàn)在放大后的寬不知道,我們可以用什么來表示?
教師:我們就可以假設放大后的照片的寬為x厘米。
課件出示解:設放大后的照片的寬為x厘米。
教師:現(xiàn)在你能列出比例式嗎?
教師:我們可以列出這樣的比例13.5:6=x:4。
教師:動動腦筋,這個比例中的未知數(shù)x你能求出來嗎?試一試!
流程3:教學例5c。
課件出示解答過程。
教師:其實這就是根據(jù)比例的基本性質(zhì)兩個內(nèi)項的積等于兩個外項的積寫的。你看懂了嗎?教師(指著):現(xiàn)在我們已經(jīng)把未知數(shù)x求出來了,像這樣求比例中的未知項的過程,就叫做解比例。(板書課題:解比例)。
教師:最關(guān)鍵的還是把一個比例寫成等式這一步,它就是根據(jù)比例的基本性質(zhì)得來的。
流程4:教學“試一試”a。
教師:你現(xiàn)在會解比例了嗎?請大家看課本45頁的試一試,請你接著完成它。
流程5:教學“試一試”b。
課件出示解比例的過程。
教師:看一看,你做對了嗎?說說把比例寫成1.2x=75×0.4的依據(jù)是什么?
流程6:完成“練一練”
教師:請同學們繼續(xù)看課本45頁上的練一練,把這3題做在自己的練習本上,看誰做得有對又快。
教師:核對一下,你是這樣做的嗎?
課件出示三題的解題過程。
流程7:課堂總結(jié)。
教師:在列比例式時我們要根據(jù)題意,正確找出題目里的比例,列出比例式,在解比例的過程中最重要的是要把比例根據(jù)比例的基本性質(zhì)轉(zhuǎn)化成一個等式,同時計算也要認真、細心。
流程8:完成練習十第6題。
教師:下面我們再來做一些練習。
課件出示題目。
教師:請大家先讀一讀,然后獨立在練習本上完成。
教師:我們可以這樣來求未知數(shù)。
課件出示解答過程。
流程9:完成練習十第7。
題教師:先讀一讀,想一想,然后做在練習本上,做完后同桌互相批改一下。
流程10:完成練習十第8題a。
教師:請大家看課本47頁第8題,先輕聲地讀一讀。
教師:在練習本上分別寫出每杯蜂蜜水中蜂蜜和水體積的比,然后看一看它們能不能組成比例。教師:可以寫成這樣的比25:200、30:250,它們能組成比例。
流程11:完成練習十第8題b。
教師:大家看第2個問題,題目中的“照第一杯蜂蜜水中蜂蜜和水的比計算:是什么意思?教師:這句話的意思就是300毫升水中應加入的蜂蜜與水的體積的比等于第一杯中蜂蜜與水體積的比。
教師:正確理解了這個條件的意思后,就請大家列比例來解決這個問題。
課件出示解答過程。
教師:核對一下,你做對了嗎?
流程12:完成思考題。
教師:下面我們要來挑戰(zhàn)一下自己了,有信心嗎?請看??
課件出示題目。
教師:大家讀一讀,想一想,題目中告訴了我們哪些信息?
教師:“兩個外項正好互為倒數(shù)”是什么意思?由此你能想到什么呢?
流程13:布置作業(yè)。
教師:今天的課堂作業(yè)是練習十的第5題。希望大家能認真完成。
比與比例教案篇十五
教材第32頁例2、例3,練一練和試一試練習六第6-11題,練習六后的思考題。
1、使學生認識解比例的意義,學會應用比例的基本性質(zhì)解比例。
2、使學生進一步鞏固比和比例的意義,進一步認識比例的基本性質(zhì)。
一、復習引新
1、做第32頁復習題。
讓學生先思考可以怎樣想。根據(jù)思考的方法在括號里填上數(shù)。
2、根據(jù)比例的基本性質(zhì)把下面的比改寫成積相等的式子。(日答)
4:3=2:1.5x:4=1:2
3、引入新課
在上面兩題里,第1題是求比例里的未知項。從第2題可以看出,根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個比例里另外一個未知數(shù),這種求比例里的未知項,就叫做解比例。
現(xiàn)在,我們就應用比例的基本性質(zhì)來解比例。
二、教學新課。
1、教學例2
提問:你能用比例的基本性質(zhì)來解比例,求出未知項x嗎?自己先想一想,有沒有辦法做,再試著做做看。
指名一人板演,其余學生做在練習本上。
2、教學例3
出示例題,讓學生用比例形式讀一讀。
讓學生解答在自己的練習本上。
指名口答解比例過程,老師板書。
3、教學試一試
出示例3,提問已知數(shù)都是怎樣的數(shù)。
讓學生自己解答。
4、小結(jié)方法。
三、鞏固練習。
1、做練一練
指名四人板演。
2、做練習六第8題。
讓學生做在課本上,指名口答。
3、做練習六第10題。
學生做在練習本上。
4、做練習六第11題。
學生口答,老師板書,看能寫出多少個比例。
四、講解思考題。
提問:根據(jù)題意,兩個外項正好互為倒數(shù),你想到什么?
兩個外項的積已知是1,你能求另一個內(nèi)項嗎?
五、課堂小結(jié)
這堂課學習的什么內(nèi)容?應用比例的基本性質(zhì)怎樣解比例?
六、課堂作業(yè)。
練習六第6題(1)-(4)題,第7題。
家庭作業(yè):練習六第6題(5)、(6)題,第9題和思考題。
比與比例教案篇十六
1、通過自主嘗試學會解比例的方法,進一步理解和掌握比例的基本性質(zhì)。2、能運用解比例的方法解決實際問題。教學重點掌握解比例的方法,學會解比例。教學難點引導學生根據(jù)比例的基本性質(zhì),將比例改寫成兩個內(nèi)項的積等于兩個外項積的形式,即已學過的含有未知數(shù)的等式。
教學重點掌握解比例的方法,學會解比例。
教學難點引導學生根據(jù)比例的基本性質(zhì),將比例改寫成兩個內(nèi)項的積等于兩個外項積的形式,即已學過的含有未知數(shù)的等式。
上節(jié)課我們學習了一些比例的意義,誰能說一說。
1、什么叫比例?
表示兩個比相等的式子叫比例。
在比例里,兩個外項的積等于兩個內(nèi)項的積。
3、應用比例的基本性質(zhì),判斷下面哪組中的兩個比可以組成比例。
6︰10和9︰15()。
20︰5和4︰1()。
5︰1和6︰2()。
4、根據(jù)比例的基本性質(zhì),將下列各比例改寫成其他等式。
3:8=15:403×40=8×15。
9/1.6=4.5/0.89×0.8=1.6×4.5。
5、這節(jié)課我們學習有關(guān)比例的應用的知識,即學習解比例。(板書課題,)。
1、自學:什么是解比例?請看書第35頁。
比例共有四項,如果知道其中的任何三項,就可以求出這個比例中的另外一個未知項。求比例中的未知項,叫做解比例。解比例要根據(jù)比例的基本性質(zhì)來解。
2、自主學習例2。
出示思考題:
思考:
(1)、埃菲爾鐵搭模型的高與埃菲爾鐵搭的高度的比是1:10。
也就是()的高度:()的高度=1:10。
還有幾個項不知道?不知道的這個項我們把它叫做()項。
小組內(nèi)討論解決問題,匯報:。
(1)把未知項設為x。
(2)根據(jù)比例的意義列出比例:(x:320=1:10)。
(3)指出這個比例的外項、內(nèi)項,弄清知道哪三項,求哪一項。
(4)根據(jù)比例的基本性質(zhì)可以把它變成什么形式?
(5)這變成了原來學過的什么?(方程。)。
(6)讓學生自己在練習本上計算完整。課件出示計算過程。
小結(jié):從剛才解比例的過程,可以看出,解比例可以根據(jù)比例的基本性質(zhì)把比例變成方程,然后用解方程的方法來求未知數(shù)x,所以解比例也要寫“解”字。
(1)、用比例的基本性質(zhì)把比例改寫成方程。
(2)、應用解方程的知識算出未知數(shù)。
3、教學例3。
出示例3:
思考:
(1)“這個比例與例2有什么不同?”(這個比例是分數(shù)形式。)。
(2)這種分數(shù)形式的比例也能根據(jù)比例的基本性質(zhì),變成方程來求解嗎?
討論:
(1)解這種分數(shù)形式的比例時,要注意什么呢?
(2)在這個比例里,哪些是外項?哪些是內(nèi)項?
讓學生在課本上填出求解過程。解答后,讓他們說一說是怎樣解的。課件出示計算過程。
課件出示:做一做,獨立完成后訂正。
4、總結(jié)解比例的過程。
剛才我們學習了解比例,大家回憶一下,解比例首先要做什么?(根據(jù)比例的基本性質(zhì)把比例變成方程。)。
變成方程以后,再怎么做?(根據(jù)以前學過的解方程的方法求解。)。
從上面的過程可以看出,在解比例的過程中哪一步是新知識?(根據(jù)比例的基本性質(zhì)把比例變成方程。)。
(一)、填空。
1、解比例x:12=2:24第一步24x=12×2是根據(jù)()。
2、把0、3:1、2=0、2:0、8可改寫成。
()×()=()×()。
3、把4×5=10×2改寫成比例是():()=():()。
4、若甲:乙=3:5,甲=30,則乙=()。
5、在比例中,如果兩個內(nèi)項的積上36,其中一個外項是9,
另一個外項是()。
(二)、判斷下列的說法是否正確。
1、含有未知數(shù)的比例也是方程。()。
2、求比例中的未知項叫解比例。()。
3、解比例的理論依據(jù)是比例的基本性質(zhì)。()。
4、比就是比例,比例也是比。()。
(三)、根據(jù)題意,先寫出比例,再解比例。
1、8與x的比等于4與32的比。
2、14與最小的質(zhì)數(shù)的比等于21與x的比。
今天你有什么收獲?指生說收獲。老師小結(jié)。
比與比例教案篇十七
2.使學生掌握解比例的方法,會解比例.。
使學生掌握解比例的方法,學會解比例.。
(一)解下列簡易方程,并口述過程.。
2=8×9。
(二)什么叫做比例?什么叫做比例的基本性質(zhì)?
(三)應用比例的基本性質(zhì),判斷下面哪一組中的兩個比可以組成比例?
6∶10和9∶1520∶5和4∶15∶1和6∶2。
(四)根據(jù)比例的基本性質(zhì),將下列各比例改寫成其他等式.。
3∶8=15∶40。
(一)揭示解比例的意義.。
2.學生交流。
(二)教學例2.。
1.討論:如何把這個比例式變?yōu)橐褜W過的含有未知數(shù)的等式,并求出未知數(shù)的'解.。
2.組織學生交流并明確.。
(1)根據(jù)比例的基本性質(zhì),可以把比例改寫為:3=8×15.。
(3)規(guī)范并板書解比例的過程.。
解:3=8×15。
=40。
(三)教學例3。
1.組織學生獨立解答.。
2.學生匯報。
這節(jié)課我們。
比與比例教案篇十八
1.經(jīng)歷從實際問題抽象出反比例函數(shù)的探索過程,發(fā)展學生的抽象思維能力。
2.理解反比例函數(shù)的概念,會列出實際問題的反比例函數(shù)關(guān)系式。
3.使學生會畫出反比例函數(shù)的圖象。
4.經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì)。
1、使學生了解反比例函數(shù)的表達式,會畫反比例函數(shù)圖象。
2、使學生掌握反比例函數(shù)的圖象性質(zhì)。
3、利用反比例函數(shù)解題。
1、列函數(shù)表達式。
2、反比例函數(shù)圖象解題。
一、作業(yè)檢查與講評。
二、復習導入。
1.什么是正比例函數(shù)?
我們知道當。
(1)當路程s一定,時間t與速度v成反比例,即vt=。
(2)當矩形面積一定時,長a和寬b成反比例,即ab=。
創(chuàng)設問題情境。
問題1:小華的爸爸早晨騎自行車帶小華到15千米外的鎮(zhèn)上去趕集,回來時讓小華乘坐公共汽車,用的時間少了。假設自行車和汽車的速度在行駛過程中都不變,爸爸要小華找出從家里到鎮(zhèn)上的時間和乘坐不同交通工具的速度之間的關(guān)系。
分析和其他實際問題一樣,要探求兩個變量之間的關(guān)系,就應先選用適當?shù)姆柋硎咀兞浚俑鶕?jù)題意列出相應的函數(shù)關(guān)系式.
從這個關(guān)系式中發(fā)現(xiàn):。
1.路程一定時,時間t就是速度v的反比例函數(shù).即速度增大了,時間變小;速度減小了,時間增大.
2.自變量v的取值是v0.
問題2:學校課外生物小組的同學準備自己動手,用舊圍欄建一個面積為24平方米的矩形飼養(yǎng)場.設它的一邊長為x(米),求另一邊的長y(米)與x的函數(shù)關(guān)系式.
分析根據(jù)矩形面積可知。
xy=24,即。
從這個關(guān)系中發(fā)現(xiàn):
2.自變量的取值是x0.
比與比例教案篇十九
1、情感目標:在復習活動中讓同學體驗數(shù)學與生活實際的密切聯(lián)系,培養(yǎng)同學的數(shù)學應用意識,激發(fā)同學勝利學習數(shù)學和自信心和創(chuàng)新意識,滲透事物間是相互聯(lián)系的辯證唯物主義觀點。
2、能力目標:通過小組合作整理知識框架,提高學習的系統(tǒng)性,培養(yǎng)同學歸納、總結(jié)等自我復習能力和團隊合作精神,加強生與生之間的合作學習能力和綜合運用數(shù)學知識解決實際生活問題的能力。
3、知識目標:(1)使同學進一步掌握比和比例的意義、性質(zhì),能正確迅速地解比例、化簡比和求比值。(2)進一步理解比例尺的意義,能應用比例尺的知識求出平面圖的比例尺以和根據(jù)比例尺求圖上距離和實際距離。
理解比和比例的意義、性質(zhì),掌握關(guān)于比和比例的一些實際運用和計算。
能理清知識間的聯(lián)系,建構(gòu)起知識網(wǎng)絡。
擔任了幾年畢業(yè)班的數(shù)學教學,到六年級的下學期,將有一半以上的課程是在復習和整理,保守的復習課讓習題一道道出現(xiàn),讓同學僅僅停滯在"會"的目標上,這復習課究竟應該如何去上好,應該如何讓同學感受學習的快樂和數(shù)學的魅力一直是我們思索的問題。在一次班會課上,同學自身組織了班會活動,他們采用了電視上娛樂節(jié)目的形式,玩得非常高興,一瞬間,我就想,這樣的形式是否可以植入我的數(shù)學課堂?這樣是不是數(shù)學課上的我也可以和班會課一樣成為同學的組織者,引導者和合作者,而不是課堂上的"權(quán)威"?本著"體現(xiàn)新理念,用活教材,練活習題,激活課堂"的思想,針對本節(jié)課的教學目標,我采用讓同學分組競賽的方法,把復習活動貫穿到課前、課中、課后,讓同學在合作與競爭中理解本課重點,疏通知識脈絡,建構(gòu)知識網(wǎng)絡,掌握復習方法。
1、把同學分成四大組,讓同學給自身組取名(如精靈隊、快樂隊等),把比和比例分成"比和比例的意義"、"比和比例的性質(zhì)"、"求比例和化簡比"、"比例尺"四大塊,讓每一組抽簽確定本組的一個研究主題,然后分組研究本局部的知識包括哪些我們需要掌握的內(nèi)容,有哪些重點和難點,最后擬定五個問題。要求這五個問題反映本組全體同學的水平,它們要能基本概括你們所研究主題的全部內(nèi)容以和重點難點,而且為了本組能取得好成果,提出的問題要有價值,要有一定的考慮性。然后依次向其它小組提問,請他們作答。
2、教師準備地圖一張、投影片、小黑板若干。
3、每一小組有一信封,信封內(nèi)裝有比和比例各局部知識名稱和一張白紙。
【本文地址:http://mlvmservice.com/zuowen/16780164.html】