反比例函數(shù)的教學(xué)設(shè)計范文(16篇)

格式:DOC 上傳日期:2023-11-27 19:24:04
反比例函數(shù)的教學(xué)設(shè)計范文(16篇)
時間:2023-11-27 19:24:04     小編:飛雪

總結(jié)可以讓我們更好地認(rèn)識自己,了解自己的長處與不足。在撰寫總結(jié)時,我們要充分概括自己的經(jīng)驗(yàn)和教訓(xùn)。感謝小編為我們精心搜集整理的這些總結(jié)范文,讓我們一起來欣賞吧。

反比例函數(shù)的教學(xué)設(shè)計篇一

公開課上完了,總的感覺有成功的地方,也有不足之處。我認(rèn)為本堂課成功的做法有以下幾方面:

一、定位較準(zhǔn),立足于本校學(xué)情。由于學(xué)生基礎(chǔ)較差,本節(jié)復(fù)習(xí)是按知識點(diǎn)復(fù)習(xí),目的是落實(shí)知識點(diǎn)和掌握一些基本的題型,通過教學(xué)來看目標(biāo)已達(dá)成。

二、習(xí)題設(shè)計合理,立足于思維訓(xùn)練。本節(jié)課每個知識點(diǎn)都設(shè)計了針對性的變式練習(xí),通過練習(xí)學(xué)生的解體技巧、方法、思維都得到了訓(xùn)練。

三、注重了數(shù)學(xué)思想方法的滲透。在反比例函數(shù)的性質(zhì)教學(xué)時,緊緊抓住關(guān)鍵詞語,突破難點(diǎn)。性質(zhì)強(qiáng)調(diào)“在同一象限內(nèi)”,而我們學(xué)生往往忽略這個問題,無論是怎樣的兩點(diǎn),都直接用性質(zhì),對此,采用討論的觀點(diǎn),結(jié)合圖像觀察,讓學(xué)生看到理解到:在同一象限內(nèi)可直接用性質(zhì),不在同一象限內(nèi),一、二象限的點(diǎn)的縱坐標(biāo)永遠(yuǎn)大于三、四象限內(nèi)點(diǎn)的縱坐標(biāo)。這樣,非常明了的讓學(xué)生把最容易混淆的知識分清了,突破難點(diǎn)的同時及時總結(jié)出這其中體現(xiàn)出的數(shù)學(xué)思想方法:分類討論和數(shù)形結(jié)合的思想方法。

四、大膽嘗試信息技術(shù)教學(xué)?!鞍喟嗤ā弊哌M(jìn)了課堂,信息技術(shù)的教學(xué)正沖擊著傳統(tǒng)的數(shù)學(xué)課堂,雖然白板的功能還沒完全了解,使用的也不夠熟練,但也能體現(xiàn)出信息技術(shù)在數(shù)學(xué)教學(xué)的靈活性、直觀性,對本節(jié)課“反比例函數(shù)的性質(zhì)”等多處教學(xué)都起到一定的作用,提高了課堂效率。

不足之處:。

一、預(yù)見性不夠。這主要體現(xiàn)在知識回顧中的第二題,本來打算一點(diǎn)而過,結(jié)果學(xué)生的回答偏離了老師的預(yù)想,老師勢必站在學(xué)生的角度給他們一一糾正,從而浪費(fèi)了時間,自己對于突發(fā)事件的處理靈活性還不夠,掌控課堂的能力有待提高。

二、對學(xué)生的情感關(guān)注太少。本來想營造一種和諧的課堂氣氛,學(xué)生因?yàn)榫o張回答問題不積極,不敢大膽發(fā)表自己的觀點(diǎn),課堂氣氛死氣沉沉,沒有煥發(fā)出學(xué)生的激情。如果在一開始就用生動活潑激趣的語言導(dǎo)入課題,在教學(xué)過程中對少數(shù)同學(xué)的回答能及時給予表揚(yáng)和激勵,不但能消除學(xué)生的緊張情緒,也能激發(fā)學(xué)生的興趣,堅定學(xué)習(xí)的信心。

三、角色轉(zhuǎn)換不徹底。在整個課堂教學(xué)過程中,教師圍繞主題、圍繞學(xué)生提問的多,給學(xué)生提問的時間和機(jī)會很少.不能大膽放心把課堂交還給學(xué)生.今后還需要改進(jìn)的地方:

一、在上課過程中,要始終關(guān)注學(xué)生的情感。因?yàn)閷W(xué)生的學(xué)習(xí)是認(rèn)知和情感的結(jié)合,只有給了他們情感上的極大滿足,學(xué)生才會獲得渴望成功的動力,我們的自主學(xué)習(xí)活動才能收到應(yīng)有的效果。

二、不斷學(xué)習(xí)新的教育理論,不斷更新教學(xué)觀念,使數(shù)學(xué)教育面向全體學(xué)生,實(shí)現(xiàn)——人人學(xué)有價值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展。

三、注意評價的多元化,全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,對數(shù)學(xué)學(xué)習(xí)的評價不僅要關(guān)注學(xué)生學(xué)習(xí)的結(jié)果,更要關(guān)注他們學(xué)習(xí)的過程,幫助學(xué)生認(rèn)識自我,建立信心。

四、努力學(xué)習(xí)多媒體軟件設(shè)計和制作,把它作為教師備課、教學(xué)改革的工具,使電腦、網(wǎng)絡(luò)、光盤、白板等現(xiàn)代媒體成為像黑板、粉筆一樣的得心應(yīng)手的工具,恰如其分地應(yīng)用于日常課堂教學(xué)中,真正為教學(xué)服務(wù)。

有反思才會有進(jìn)步,作為身處課程改革第一線的教育工作者,應(yīng)迅速轉(zhuǎn)變傳統(tǒng)的教育觀念,勇于創(chuàng)新,積極接受挑戰(zhàn)。

反比例函數(shù)的教學(xué)設(shè)計篇二

由對現(xiàn)實(shí)問題的討論抽象出反比例函數(shù)的概念,通過對問題的解決進(jìn)一步明確:1.反比例函數(shù)的意義;2.反比例函數(shù)的概念;3.反比例函數(shù)的一般形式。

1.從現(xiàn)實(shí)情境和已有的知識、經(jīng)驗(yàn)出發(fā),討論兩個變量之間的相依關(guān)系,加深對函數(shù)概念的理解。

2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,表述反比例函數(shù)的概念。

1.經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)辯證唯物主義觀點(diǎn)。

2.經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展抽象思維能力,提高數(shù)學(xué)化意識。

1.認(rèn)識到數(shù)學(xué)知識是有聯(lián)系的,逐步感受數(shù)學(xué)內(nèi)容的系統(tǒng)性;

2.通過分組討論,培養(yǎng)合作交流意識和探索精神。

啟發(fā)引導(dǎo)、分組討論。

1課時。

課件。

復(fù)習(xí)引入。

2.在上一學(xué)段,我們研究了現(xiàn)實(shí)生活中成反比例的兩個量。

反比例函數(shù)的教學(xué)設(shè)計篇三

教學(xué)目標(biāo):

3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;

4、體會數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;

5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力.教學(xué)重點(diǎn):

結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);

教學(xué)用具:直尺。

教學(xué)方法:小組合作、探究式。

教學(xué)過程:

我們在小學(xué)學(xué)過反比例關(guān)系.例如:當(dāng)路程s一定時,時間t與速度v成反比例。

即vt=;

當(dāng)矩形面積s一定時,長a與寬b成反比例,即ab=。

從函數(shù)的觀點(diǎn)看,在運(yùn)動變化的過程中,有兩個變量可以分別看成自變量與函數(shù),寫成:

(s是常數(shù))。

(s是常數(shù))。

解:列表。

前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識的學(xué)習(xí)。

顯示這兩個函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)。

從圖象中可以看出,當(dāng)x從左向右變化時,圖象呈下坡趨勢.從列表中也可以看出這樣的變化趨勢.有理數(shù)除法說明了同樣的道理,被除數(shù)一定時,若除數(shù)大于零,除數(shù)越大,商越??;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時,函數(shù)的圖象,在每一個象限內(nèi),y隨x的增大而減小.同樣可以推出的圖象的性質(zhì).(3)函數(shù)的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時,y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時,y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出圖象的性質(zhì).函數(shù)的圖象性質(zhì)的討論與次類似.4、小結(jié):

反比例函數(shù)的教學(xué)設(shè)計篇四

2.能判斷一個給定的函數(shù)是否為反比例函數(shù),并會用待定系數(shù)法求函數(shù)解析式。

3.能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想。

二、重、難點(diǎn)。

1.重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式。

3.難點(diǎn)的突破方法:

(2)注意引導(dǎo)學(xué)生對反比例函數(shù)概念的理解,看形式,等號左邊是函數(shù)y,等號右邊是一個分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x0的一切實(shí)數(shù);看函數(shù)y的取值范圍,因?yàn)閗0,且x0,所以函數(shù)值y也不可能為0。講解時可對照正比例函數(shù)y=kx(k0),比較二者解析式的相同點(diǎn)和不同點(diǎn)。

(3)(k0)還可以寫成(k0)或xy=k(k0)的形式。

三、例題的意圖分析。

教材第46頁的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實(shí)際問題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會函數(shù)的模型思想。

教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會函數(shù)所蘊(yùn)含的變化與對應(yīng)的思想,特別是函數(shù)與自變量之間的單值對應(yīng)關(guān)系。

補(bǔ)充例1、例2都是常見的題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問題的能力。

反比例函數(shù)的教學(xué)設(shè)計篇五

1、能運(yùn)用反比例函數(shù)的相關(guān)知識分析和解決一些簡單的實(shí)際問題。

2、在解決實(shí)際問題的過程中,進(jìn)一步體會和認(rèn)識反比例函數(shù)是刻。

畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。

運(yùn)用反比例函數(shù)解決實(shí)際問題。

運(yùn)用反比例函數(shù)解決實(shí)際問題。

反比例函數(shù)在生活、生產(chǎn)實(shí)際中也有著廣泛的應(yīng)用。

例如:在矩形中s一定,a和b之間的關(guān)系?你能舉例嗎?

例1、見課本73頁。

例2、見課本74頁。

(1)寫出這個函數(shù)解析式。

(2)當(dāng)氣球的體積為0.8m3時,氣球的氣壓是多少千帕?

反比例函數(shù)的教學(xué)設(shè)計篇六

本節(jié)課的教學(xué)優(yōu)點(diǎn):

一、定位較準(zhǔn),立足于本校學(xué)情。由于學(xué)生基礎(chǔ)較差,本節(jié)復(fù)習(xí)是按知識點(diǎn)復(fù)習(xí),目的是落實(shí)知識點(diǎn)和掌握一些基本的題型,通過教學(xué)來看目標(biāo)已達(dá)成。

二、習(xí)題設(shè)計合理,立足于思維訓(xùn)練。本節(jié)課每個知識點(diǎn)都設(shè)計了針對性的練習(xí),通過練習(xí)學(xué)生的解體技巧、方法、思維都得到了解決。

三、注重了數(shù)學(xué)思想方法的滲透。在反比例函數(shù)的性質(zhì)教學(xué)時,緊緊抓住關(guān)鍵詞語,突破難點(diǎn)。性質(zhì)強(qiáng)調(diào)“在同一象限內(nèi)”,而我們學(xué)生往往忽略這個問題,無論是怎樣的兩點(diǎn),都直接用性質(zhì),對此,采用討論的觀點(diǎn),結(jié)合圖像觀察,讓學(xué)生看到理解到:在同一象限內(nèi)可直接用性質(zhì),不在同一象限內(nèi),一、二象限的點(diǎn)的縱坐標(biāo)永遠(yuǎn)大于三、四象限內(nèi)點(diǎn)的縱坐標(biāo)。這樣,非常明了的讓學(xué)生把最容易混淆的知識分清了,突破難點(diǎn)的同時及時總結(jié)出這其中體現(xiàn)出的數(shù)學(xué)思想方法:分類討論和數(shù)形結(jié)合的思想方法。不足之處:。

一、預(yù)見性不夠。這主要體現(xiàn)在知識回顧中的第二題,本來打算一點(diǎn)而過,結(jié)果學(xué)生的回答偏離了老師的預(yù)想,老師勢必站在學(xué)生的角度給他們一一糾正,從而浪費(fèi)了時間,自己對于突發(fā)事件的處理靈活性還不夠,掌控課堂的能力有待提高。

二、對學(xué)生的情感關(guān)注太少。如果在一開始就用生動活潑激趣的語言導(dǎo)入課題,在教學(xué)過程中對少數(shù)同學(xué)的回答能及時給予表揚(yáng)和激勵,不但能消除學(xué)生的緊張情緒,也能激發(fā)學(xué)生的興趣,堅定學(xué)習(xí)的信心。

三、角色轉(zhuǎn)換不徹底。在整個課堂教學(xué)過程中,教師圍繞主題、圍繞學(xué)生提問的多,給學(xué)生提問的時間和機(jī)會很少.不能大膽放心把課堂交還給學(xué)生.

今后還需要改進(jìn)的地方:

一、在上課過程中,要始終關(guān)注學(xué)生的情感。因?yàn)閷W(xué)生的學(xué)習(xí)是認(rèn)知和情感的結(jié)合,只有給了他們情感上的極大滿足,學(xué)生才會獲得渴望成功的動力,我們的自主學(xué)習(xí)活動才能收到應(yīng)有的效果。

二、不斷學(xué)習(xí)新的教育理論,不斷更新教學(xué)觀念,使數(shù)學(xué)教育面向全體學(xué)生,實(shí)現(xiàn)——人人學(xué)有價值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展。

總之,解后的反思方法、規(guī)律得到了及時的小結(jié)歸納;解后的反思使我們撥開迷蒙,看清”廬山真面目”而逐漸成熟起來;在反思中學(xué)會了獨(dú)立思考,在反思中學(xué)會了傾聽,學(xué)會了交流、合作,學(xué)會了分享,體驗(yàn)了學(xué)習(xí)的樂趣,交往的快慰。

反比例函數(shù)的教學(xué)設(shè)計篇七

知識與技能:1.進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象。

2.體會函數(shù)的三種表示方法的相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識上的整合。

3.培養(yǎng)學(xué)生從函數(shù)圖象中獲取信息的能力,初步探索反比例函數(shù)的性質(zhì)。

過程與方法:通過學(xué)生自己動手列表,描點(diǎn),連線,提高學(xué)生的作圖能力;通過觀察圖象,概括反比例函數(shù)圖象的有關(guān)性質(zhì),訓(xùn)練學(xué)生的概括總結(jié)能力。

情感、態(tài)度與價值觀:讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動中去,增強(qiáng)他們對數(shù)學(xué)學(xué)習(xí)的好奇心和求知欲。

教學(xué)難點(diǎn)1)重點(diǎn):畫反比例函數(shù)圖象并認(rèn)識圖象的特點(diǎn)。

教學(xué)關(guān)鍵教師畫圖中要規(guī)范,為學(xué)生樹立一個可以學(xué)習(xí)的模板。

教學(xué)方法激發(fā)誘導(dǎo),探索交流,講練結(jié)合三位一體的教學(xué)方式。

教學(xué)手段教師畫圖,學(xué)生模仿。

教具三角板,小黑板。

學(xué)法學(xué)生動手,動眼,動耳,采用自主,合作,探究的學(xué)習(xí)方法。

(包含課前檢測、新課導(dǎo)入、新課講解、課堂練習(xí)、小結(jié)、形成性檢測、反饋拓展、作業(yè)布置)。

內(nèi)容設(shè)計意圖。

(一般地,如果兩個變量x、y之間的關(guān)系可以表示成y=(k為常數(shù),k0)的形式,那么稱y是x的反比例函數(shù)。)。

2.反比例函數(shù)的定義中需要注意什么?

(1)k為常數(shù),k0。

(2)從y=中可知x作為分母,所以x不能為零。

問題1:對于一次函數(shù)y=kx+b(k0)的圖象與性質(zhì),我們是如何研究的?

y=kx+by=kx。

k0一、二、三一、三。

b0一、三、四。

k0一、二、四二、四。

b0二、三、四。

可以。

問題3:畫圖象的步驟有哪些呢?

(1)列表。

(2)描點(diǎn)。

(3)連線。

(教學(xué)片斷:

師:上一節(jié)課我們研究了反比例函數(shù),今天我們繼續(xù)研究反比例函數(shù),下面哪位同學(xué)說一下自己對反比例函數(shù)的了解。

生:我知道反比例函數(shù)來源于生活,生活中的許多問題都屬于反比例函數(shù)問題,例如,在勻速運(yùn)動中當(dāng)路程一定時,且路程不等于零,則速度與時間成反比例函數(shù)關(guān)系。

生:我知道反比例函數(shù)的解析式為且k不等于0。

師:現(xiàn)在給大家?guī)追昼姷臅r間探討一下反比例函數(shù)圖象該怎么畫?

學(xué)生思考、交流、回答。

提問:你能畫出的圖象嗎?

學(xué)生動手畫圖,相互觀摩。

(1)列表(取值的特殊與有效性)。

x-8-4-2-1-1/21/21248。

(2)描點(diǎn)(描點(diǎn)的準(zhǔn)確)。

(3)連線(注意光滑曲線)。

議一議。

(1)你認(rèn)為作反比例函數(shù)圖象時應(yīng)注意哪些問題?與同伴進(jìn)行交流。

(2)如果在列表時所選取的數(shù)值不同,那么圖象的形狀是否相同?

(3)連接時能否連成折線?為什么必須用光滑的曲線連接各點(diǎn)?

(4)曲線的發(fā)展趨勢如何?

曲線無限接近坐標(biāo)軸但不與坐標(biāo)軸相交。

學(xué)生先分四人小組進(jìn)行討論,而后小組匯報。

做一做。

學(xué)生動手畫圖,相互觀摩。

想一想。

觀察和的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?

學(xué)生小組討論,弄清上述兩個圖象的異同點(diǎn)。

相同點(diǎn):(1)圖象分別都是由兩支曲線組成(2)都不與坐標(biāo)軸相交(3)都是軸對稱圖形(y=x、y=-x)和中心對稱圖形(對稱中心(0,0)即坐標(biāo)原點(diǎn))。

不同點(diǎn):第一個圖象位于一、三象限;第二個圖象位于二、四象限。

反比例函數(shù)y=有下列性質(zhì):反比例函數(shù)的圖象y=是由兩支曲線組成的。

(1)當(dāng)k0時,兩支曲線分別位于第___、___象限,

(2)當(dāng)k0時,兩支曲線分別位于第___、___象限。

(1)。

(1)已知函數(shù)的圖象分布在第二、四象限內(nèi),則的取值范圍是_________。

(2)若ab0,則函數(shù)與在同一坐標(biāo)系內(nèi)的圖象大致可能是下圖中的()。

(a)(b)(c)(d)。

(3)畫和的圖象。

在同一坐標(biāo)系中作出函數(shù)y=2/x與函數(shù)y=x-1的圖象,并利用圖象求它們的交點(diǎn)坐標(biāo)。

(2)習(xí)題5.2.1。

復(fù)習(xí)上節(jié)主要內(nèi)容。

(3分鐘)。

(5分鐘)。

運(yùn)用類比研究一次函數(shù)性質(zhì)的方法,來研究反比例函數(shù)圖象與性質(zhì)。

由于初中學(xué)生屬于義務(wù)教育階段,沒有經(jīng)過入學(xué)選拔,所以兩極分化比較嚴(yán)重,上面提出的問題帶有一定的開放性,面向各層次的學(xué)生,使不同層次的學(xué)生都有一定的問題可答,從而激發(fā)起不同層次學(xué)生的學(xué)習(xí)積極性。

數(shù)學(xué)教學(xué)重要目的之一是使學(xué)生學(xué)會學(xué)習(xí),利用這個問題可以使學(xué)生學(xué)會尋找研究的方向,會提出研究的課題,提高學(xué)習(xí)的能力。

數(shù)學(xué)學(xué)習(xí)活動是學(xué)生對自己頭腦中已有知識的重新建構(gòu),所以利用學(xué)生頭腦中已有的一次函數(shù)圖象與性質(zhì),及研究一次函數(shù)圖象與性質(zhì)的方法,創(chuàng)設(shè)問題情境,可以激發(fā)學(xué)習(xí)研究的熱情,點(diǎn)燃學(xué)生思維的火花,并使學(xué)生知道如何研究新問題,使學(xué)生在探究過程中實(shí)現(xiàn)知識的遷移,形成新的認(rèn)知結(jié)構(gòu)。

(12分鐘)。

引導(dǎo)學(xué)生正確畫出反比例函數(shù)圖象,并能歸納反比例函數(shù)圖象的有關(guān)性質(zhì)。

在畫第一個圖象時,教師要在黑板上用三角板一步一步的示范,在重要地方再重點(diǎn)強(qiáng)調(diào),直到整個圖象的完成。只有以身示范,同學(xué)學(xué)習(xí)才有樣可依,有了正確標(biāo)準(zhǔn)的樣板,學(xué)生學(xué)習(xí)也變得容易。這樣可以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)與嚴(yán)密的做題步驟以及做題的規(guī)范性。

注:(1)x取絕對值相等符號相反的數(shù)值。

(2)x取值要盡可能多,而且有代表性。

(3)連線時用光滑曲線從小到大依次連接。

(4)圖象不與坐標(biāo)軸相交。

在此學(xué)生若是回答圖象是軸對稱圖象或者中心對稱圖象都要予以肯定,這些內(nèi)容留給學(xué)生課下探討,并鼓勵提出問題的學(xué)生繼續(xù)探索不要放棄。

(3分鐘)。

此時圖象由學(xué)生仿照第一個在下邊自己獨(dú)立畫出,并且監(jiān)督學(xué)生,在有學(xué)生畫的不對的地方及時指出,并使其改正后鼓勵。最后在黑板上畫出正確的圖象,使學(xué)生自己畫的圖象與黑板對比。

(5分鐘)。

(4分鐘)。

培養(yǎng)學(xué)生歸納,語言表達(dá)能力。

此中注意分類討論思想的應(yīng)用。

(2分鐘)。

與新課較接近的簡化檢測可以再次回顧所學(xué)內(nèi)容,以及內(nèi)容重點(diǎn)。這類題多為口算或口答,題目簡單不過所學(xué)內(nèi)容可以全部體現(xiàn)。

(5分鐘)。

這類練習(xí)要求動筆計算或者畫圖,有一定難度,可以深化所學(xué)內(nèi)容。

(4分鐘)。

此題既是對函數(shù)圖象畫法的復(fù)習(xí)又是對方程求解的深化。其中蘊(yùn)含了數(shù)形結(jié)合思想。

(1分鐘)。

鞏固作反比例函數(shù)圖象的步驟,預(yù)習(xí)下一節(jié)課內(nèi)容。

本節(jié)課通過學(xué)生自主探索,合作交流,自主畫圖,以認(rèn)知規(guī)律為主線,以發(fā)展能力為目標(biāo),以從直觀感受到分析歸納為手段,培養(yǎng)學(xué)生的合情推理能力和積極的情感態(tài)度,促進(jìn)良好的數(shù)學(xué)觀的形成。培養(yǎng)了學(xué)生的抽象思維能力,同時也向?qū)W生滲透了歸納類比,數(shù)形結(jié)合以及分類討論的數(shù)學(xué)思想方法。

由于此節(jié)課是動手畫圖,限于器材以及教學(xué)設(shè)備,圖象顯示不能用幾何畫板和投影儀,不過一筆一筆的教學(xué)生一個范例,既可給學(xué)生思考也可有學(xué)習(xí)的空間。

在由圖象獲取性質(zhì)的時候有一些不足,以后教課時要注意引導(dǎo),使學(xué)生較快獲得有效信息,從而歸納出要得到的性質(zhì)和結(jié)論。在這節(jié)課要多強(qiáng)調(diào)光滑曲線以及畫法。

(1)列表(取值的特殊與有效性)。

x-8-4-2-1-1/21/21248。

(2)描點(diǎn)(描點(diǎn)的準(zhǔn)確)。

(3)連線(注意光滑曲線)。

注:(1)x取絕對值相等符號相反的數(shù)值。

(2)x取值要盡可能多,而且有代表性三:練習(xí)。

(3)連線時用光滑曲線從小到大依次連接。

(4)圖象不與坐標(biāo)軸相交。

(1)當(dāng)k0時,兩支曲線分別位于第一、三象限,

(2)當(dāng)k0時,兩支曲線分別位于第二、四象限。

反比例函數(shù)的教學(xué)設(shè)計篇八

2.探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學(xué)問題。

一、創(chuàng)設(shè)情境。

上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質(zhì)。

二、探究歸納。

1.畫出函數(shù)的圖象。

分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個步驟,在反比例函數(shù)中自變量x0.

解1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對應(yīng)值:

2.描點(diǎn):用表里各組對應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(-6,-1)、(-3,-2)、(-2,-3)等。

3.連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。

上述圖象,通常稱為雙曲線(hyperbola).

提問這兩條曲線會與x軸、y軸相交嗎?為什么?

學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟).

學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。

1.這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?

2.反比例函數(shù)(k0)的圖象在哪兩個象限內(nèi)?由什么確定?

(2)當(dāng)k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

注1.雙曲線的兩個分支與x軸和y軸沒有交點(diǎn);

2.雙曲線的兩個分支關(guān)于原點(diǎn)成中心對稱。

以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?

在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。

在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。

三、實(shí)踐應(yīng)用。

例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值。

解由題意,得解得.

例2已知反比例函數(shù)(k0),當(dāng)x0時,y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限。

分析由于反比例函數(shù)(k0),當(dāng)x0時,y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點(diǎn)在x軸的上方。

解因?yàn)榉幢壤瘮?shù)(k0),當(dāng)x0時,y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限。

(1)求這個函數(shù)的解析式,并畫出圖象;

(2)由點(diǎn)a在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對稱點(diǎn)是否在圖象上。

解(1)設(shè):反比例函數(shù)的解析式為:(k0).

而反比例函數(shù)的圖象過點(diǎn)(1,-2),即當(dāng)x=1時,y=-2.

所以,k=-2.

點(diǎn)a的坐標(biāo)為.

點(diǎn)a關(guān)于x軸的對稱點(diǎn)不在這個圖象上;

點(diǎn)a關(guān)于y軸的對稱點(diǎn)不在這個圖象上;

點(diǎn)a關(guān)于原點(diǎn)的對稱點(diǎn)在這個圖象上;

(1)求m的值;

(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

(3)當(dāng)-3時,求此函數(shù)的最大值和最小值。

解(1)由反比例函數(shù)的定義可知:解得,m=-2.

(2)因?yàn)?20,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

(3)因?yàn)樵诘趥€象限內(nèi),y隨x的增大而增大,

所以當(dāng)x=時,y最大值=;。

當(dāng)x=-3時,y最小值=.

所以當(dāng)-3時,此函數(shù)的最大值為8,最小值為.

例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

(1)寫出用高表示長的函數(shù)關(guān)系式;

(2)寫出自變量x的取值范圍;

(3)畫出函數(shù)的圖象。

解(1)因?yàn)?00=5xy,所以.

(2)x0.

(3)圖象如下:

說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。

四、交流反思。

(2)當(dāng)k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

五、檢測反饋。

1.在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:

(1);(2).

2.已知y是x的反比例函數(shù),且當(dāng)x=3時,y=8,求:

(1)y和x的函數(shù)關(guān)系式;

(2)當(dāng)時,y的值;

(3)當(dāng)x取何值時,?

3.若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

4.已知反比例函數(shù)經(jīng)過點(diǎn)a(2,-m)和b(n,2n),求:

(1)m和n的值;

(2)若圖象上有兩點(diǎn)p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小。

反比例函數(shù)的教學(xué)設(shè)計篇九

1、實(shí)例1:

(1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?

答:p=600,p是s的反比例函數(shù)。

(2)、當(dāng)木板面積為0.2m2時,壓強(qiáng)是多少?

答:p=3000pa。

(3)、如果要求壓強(qiáng)不超過6000pa,木板的面積至少要多少?

答:2。

(4)、在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象。

(5)、請利用圖象(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流。

(1)蓄電池的電壓為定值,使用此電源時,電流i(a)與電阻r()之間的函數(shù)關(guān)系如圖5-8所示。

(2)蓄電池的電壓是多少?你以寫出這一函數(shù)的表達(dá)式嗎?

電壓u=36v,i=60k。

r()345678910。

i(a)。

如圖5-9,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=60k的圖象相交于a、b兩點(diǎn),其中點(diǎn)a的坐標(biāo)為(3,23)。

(1)分別寫出這兩個函數(shù)的表達(dá)式;

(2)你能求出點(diǎn)b的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流;

隨堂練習(xí):

p145~1461、2、3、4、5。

作業(yè):p146習(xí)題5.41、2。

反比例函數(shù)的教學(xué)設(shè)計篇十

1.回顧、梳理本章的知識:

如同已經(jīng)學(xué)過的有關(guān)方程、函數(shù)的內(nèi)容一樣,本章內(nèi)容分為3塊:

(1)從生活到數(shù)學(xué):從問題到反比例函數(shù),即建構(gòu)實(shí)際問題的數(shù)學(xué)模型;

(3)用數(shù)學(xué)解決問題:反比例函數(shù)的應(yīng)用.。

2.可以設(shè)計一組問題,重點(diǎn)歸納、整理反比例函數(shù)的圖象與性質(zhì),進(jìn)一步感受形數(shù)結(jié)合的數(shù)學(xué)思想方法.例如:

(3)形數(shù)結(jié)合——函數(shù)的圖象與性質(zhì)的綜合應(yīng)用。

例如:為了預(yù)防“非典”,某學(xué)校對教室采用藥薰法進(jìn)行消毒.已知藥物燃燒時.室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例(如圖).現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米含藥量為6mg。

(1)寫出藥物燃燒前、后y與x的函數(shù)關(guān)系式;

反比例函數(shù)的教學(xué)設(shè)計篇十一

1.對教材的分析。

本節(jié)課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》的第二節(jié),也這一章的重點(diǎn)。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。

本節(jié)課前一課時是在具體情境中領(lǐng)會反比例函數(shù)的意義和概念。函數(shù)的性質(zhì)蘊(yùn)涵于概念之中,對反比例函數(shù)性質(zhì)的探索是對其內(nèi)在規(guī)定性的的認(rèn)識,也是對函數(shù)的概念的深化。同時,本節(jié)課也是下一節(jié)課《反比例函數(shù)的應(yīng)用》的基礎(chǔ),有了本節(jié)課的知識儲備,便于學(xué)生利用函數(shù)的觀點(diǎn)來處理問題和解釋問題。

傳統(tǒng)教材在內(nèi)容和編寫意圖的比較:傳統(tǒng)教材里反比例函數(shù)的內(nèi)容僅有一節(jié),新教材里反比例函數(shù)的內(nèi)容增加至一章。本節(jié)課中的作函數(shù)圖象的要求在新舊教材中并不一樣,舊教材對畫圖只是一帶而過,而新教材中讓學(xué)生反復(fù)作反比例函數(shù)的圖象,為下一步性質(zhì)的探索打下良好的基礎(chǔ)。因?yàn)樵趯W(xué)生進(jìn)行函數(shù)的列表、描點(diǎn)作圖是活動中,就已經(jīng)開始了對反比例函數(shù)性質(zhì)的探索,而且通過對函數(shù)的三種表示方式的整和,逐步形成對函數(shù)概念的整體性認(rèn)識。在舊教材中對反比例函數(shù)性質(zhì)只是簡單觀察以后,由老師講解得到,但是在新教材中注重從操作、觀察、概括和交流這些數(shù)學(xué)活動中得到性質(zhì)結(jié)論,從而逐步提高從函數(shù)圖象中獲取信息的能力。這也充分體現(xiàn)了重視獲取知識過程體驗(yàn)的新課標(biāo)的精神。

(1)教學(xué)目標(biāo):進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。

(2)重點(diǎn):會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。

(3)難點(diǎn):探索并掌握反比例函數(shù)的主要性質(zhì)。

2、對學(xué)情的分析。

九年級學(xué)生在前面學(xué)習(xí)了一次函數(shù)之后,對函數(shù)有了一定的認(rèn)識,雖然他們在小學(xué)已經(jīng)接觸了反比例,但都處于淺顯的、膚淺的知識表面,這對于他們理解反比例函數(shù)的圖象與性質(zhì)沒有多大的幫助,但由于本節(jié)課采用z+z智能教育平臺進(jìn)行教學(xué),比較形象,便于學(xué)生接受。

教學(xué)過程。

一、憶一憶。

生:作一次函數(shù)的圖象要采用以下幾個步驟:(1)列表(2)描點(diǎn)(3)連線。

生乙:一次函數(shù)的圖象是一條直線。

師:你們能作出它的圖象嗎?

生:可以。

點(diǎn)評:復(fù)習(xí)舊知識,讓學(xué)生感受到新舊知識的聯(lián)系,并為后面的作反比例函數(shù)的圖象做好準(zhǔn)備。

二、作圖象,試比較。

師:請?zhí)顚戨娔X上的表格,并開始在坐標(biāo)紙上描點(diǎn),連線。

師:再按照上述方法作y=-4/x的圖象。

(學(xué)生動手操作)。

師:下面大家分小組討論:對照你們所作出的兩個函數(shù)圖象,找出它們的相同點(diǎn)與不同點(diǎn)。

(學(xué)生討論交流,教師參與)。

師:討論結(jié)束,下面哪個小組的同學(xué)說說你們的看法?

生1:它們的圖象都是由兩支曲線組成的。

生2:y=4/x的圖象的兩條曲線分布在一、三象限內(nèi),而y=-4/x的圖象的兩支曲線分布在二、四象限內(nèi)。

點(diǎn)評:這里讓學(xué)生自己上臺操作,既培養(yǎng)了學(xué)生的動手能力,又可以激發(fā)學(xué)生學(xué)好數(shù)學(xué)的興趣。

三、細(xì)觀察,找規(guī)律。

師:大家都說得很好,下面我們一起觀察反比例函數(shù)y=k/x的圖象,當(dāng)k的發(fā)值生變化時,函數(shù)的圖象發(fā)生了怎樣的變化,并分小組討論有什么規(guī)律。

(展示圖象,讓學(xué)生觀察y=k/x的圖象,按下動畫按鈕,在運(yùn)動中觀察值的變化與函數(shù)的圖象變化之間的關(guān)系,并與同學(xué)們充分討論)。

師:請同學(xué)們談一談剛才討論的結(jié)果。

生:我發(fā)現(xiàn)函數(shù)圖象的變化與k的值有關(guān):當(dāng)k0時,在每一象限內(nèi),y隨x的增大而減小,當(dāng)k0時,在每一象限內(nèi),y隨x的增大而增大。

師:看來大家都經(jīng)過了認(rèn)真的思考和討論,對規(guī)律總結(jié)的也比較完整,下面我們一起把剛才兩個環(huán)節(jié)的知識點(diǎn)一起總結(jié)一下。

(1)反比例函數(shù)y=k/x的圖象是由兩支曲線所組成的。

(2)當(dāng)k0時,兩支曲線分別在一、三象限;當(dāng)k0時,兩支曲線分別在二、四象限。

(3)當(dāng)k0時,在每一象限內(nèi),y隨x的增大而減小,當(dāng)k0時,在每一象限內(nèi),y隨x的增大而增大。

(由學(xué)生在電腦上進(jìn)行操作)。

生:我發(fā)現(xiàn)旋轉(zhuǎn)后的圖象與原圖象完全重合了,這說明反比例函數(shù)的圖象是一個中心對稱圖形。

師:大家做得很好。那么,如果我們在圖象上任取a、b兩點(diǎn),經(jīng)過這兩點(diǎn)分別作軸、軸的垂線,與坐標(biāo)軸圍成的矩形面積分別為s1、s2,觀察兩個矩形面積的變化情況,并找出其中的變化規(guī)律。

題目:(1)拖動k,使k變化,觀察k不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。(2)拖動函數(shù)上的點(diǎn),觀察矩形面積的變化情況,討論得出結(jié)論。

生:我們發(fā)現(xiàn),在同一個反比例函數(shù)中,不管k值怎么變化,矩形的面積始終不變。

師:大家的觀察很仔細(xì),總結(jié)得也很正確。

點(diǎn)評:在這個環(huán)節(jié)中,既讓學(xué)生動手操作,又讓他們分組交流,這樣既培養(yǎng)了他們的動手能力,又增強(qiáng)了他們的團(tuán)結(jié)合作的意識。結(jié)論主要有學(xué)生來發(fā)現(xiàn),體現(xiàn)了新課程理論的精神。

四、用規(guī)律,練一練。

1、課本137頁隨堂練習(xí)1。

生:第一幅圖是y=-2/x的圖象,因?yàn)樵谶@里的k0,雙曲線應(yīng)在第二、四象限。

(1)y=1/(2x)(2)y=0.3/x(3)y=10/x(4)y=-7/(100x)。

生:其中(1)(2)(3)的圖象在一、三象限;(4)的圖象在每一象限內(nèi),y隨x的增大而增大。

反比例函數(shù)的教學(xué)設(shè)計篇十二

1.能運(yùn)用反比例函數(shù)的相關(guān)知識分析和解決一些簡單的實(shí)際問題。

2.在解決實(shí)際問題的過程中,進(jìn)一步體會和認(rèn)識反比例函數(shù)是刻

畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。

運(yùn)用反比例函數(shù)解決實(shí)際問題

運(yùn)用反比例函數(shù)解決實(shí)際問題

一、情景創(chuàng)設(shè)

反比例函數(shù)在生活、生產(chǎn)實(shí)際中也有著廣泛的應(yīng)用。

例如:在矩形中s一定,a和b之間的關(guān)系?你能舉例嗎?

二、例題精析

例1、見課本73頁

例2、見課本74頁

四、課堂練習(xí)課本p74練習(xí)1、2題

五、課堂小結(jié)反比例函數(shù)的應(yīng)用

六、課堂作業(yè)課本p75習(xí)題9.3第1、2題

七、教學(xué)反思

更多初二數(shù)學(xué)教案,請點(diǎn)擊

反比例函數(shù)的教學(xué)設(shè)計篇十三

1、借助正比例的意義理解反比例的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。

2、在小組合作學(xué)習(xí)過程中,掌握合作學(xué)習(xí)技能,體驗(yàn)合作學(xué)習(xí)的快樂。

一、創(chuàng)設(shè)情境,明確問題

同學(xué)們,昨天老師去幼兒園接小朋友,看見幼兒園的老師正在給小朋友們分餅干,想知道他們是怎么分的嗎?我們一起去看一看:

人數(shù)(人)



1



2



3



4



5



塊數(shù)(塊)



3



6



9



12



15



每人分的塊數(shù)(塊)



3



3



3



3



3



仔細(xì)觀察,從這個表中,你知道了什么?你知道表中的哪兩種量成正比例嗎?(說明理由)

說一說成正比例的兩個量的變化規(guī)律。

師小明的媽媽要去銀行換一些零錢,請你幫忙算一算,各換多少張:

面值(元)



1



2



5



10



20



張數(shù)(張)





20





總錢數(shù)(元)








1、獨(dú)立思考:出示表格,讓學(xué)生自己觀察,提出問題并解決問題。

2、小組合作,交流探討問題。

要求:認(rèn)真聽取別人的意見,詳細(xì)說明自己的'觀點(diǎn),如果有不懂的地方要虛心求助,最重要的是要控制好自己的言行,小組長要協(xié)調(diào)好本組的合作過程。

3、匯報交流,發(fā)現(xiàn)規(guī)律。

4、教師小結(jié),明確概念,呈現(xiàn)課題。

5、在理解概念的基礎(chǔ)上增加記憶。

1、給車棚的地面鋪上水泥磚,每塊水泥磚的面積與所需數(shù)量如下:

沒塊水泥磚的面積(平方厘米)


500


400


300


數(shù)量(塊)


600


750


1000


每塊水泥磚的面積與所需數(shù)量是否成反比例?為什么?

2、下表中x和y兩個量成反比例,請把表格填寫完整。

x


2




40



y


5



0.1




3、判斷下面每題中的兩種量是否成反比例,并說明理由。

(1)全班的人數(shù)一定,每組的人數(shù)和組數(shù)。

(2)圓柱的體積一定,圓柱的底面積和高。

(3)書的總頁數(shù)一定,已經(jīng)看的頁數(shù)和未看的頁數(shù)。

(4)圓柱的側(cè)面積一定,它的底面周長和高。

(5)、六(1)班學(xué)生的出席人數(shù)與缺席人數(shù)。

4、下面各題中的兩種量是不是成比例?如果成比 例,成什么比例?

(1)、訂閱《小學(xué)生天地》的份數(shù)和總錢數(shù)。

(2)、小新跳高的高度與他的身高。

(3)、平行四邊形的面積一定,底和高。

(4)、正方行的邊長與它的周長。

(5)、三角形的面積一定,底和高。

5、生活中還有哪些成反比例關(guān)系的量?

1、這節(jié)課學(xué)會了什么知識?反比例的意義是什么?

2、這節(jié)課你與小組同學(xué)合作的怎么樣?以后應(yīng)該怎么做?

反比例函數(shù)的教學(xué)設(shè)計篇十四

教學(xué)目標(biāo):

知識與技能:1.結(jié)合豐富的實(shí)例,認(rèn)識反比例。2.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。

過程與方法:通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實(shí)例,理解反比例的意義,認(rèn)識反比例。

情感態(tài)度價值觀:培養(yǎng)學(xué)生自主、合作學(xué)習(xí)、探索新知的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。感受反比例關(guān)系在生活中的廣泛應(yīng)用。初步滲透函數(shù)思想。

教學(xué)重點(diǎn):認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成。

反比例。

教學(xué)難點(diǎn):認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成。

反比例。

教具準(zhǔn)備:電腦課件。

教學(xué)過程:

一、復(fù)習(xí)引入。

1、計算。

2、判斷下面各題中的兩種量是否成正比例?為什么?

(1)文具盒的單價一定,買文具盒的個數(shù)和總價。

(2)一堆貨物一定,運(yùn)走的量和剩下的量。

(3)汽車行駛的速度一定,行駛的路程和時間。

3、說說什么是正比例。

師:大家對正比例知識理解掌握得非常好,接下來我們就該學(xué)習(xí)什么了?

二、出示學(xué)習(xí)目標(biāo)。

1.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。2通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實(shí)例,理解反比例的意義,認(rèn)識反比例。

3培養(yǎng)學(xué)生探索研究的能力,感受反比例關(guān)系在生活中的廣泛應(yīng)用。

三、指導(dǎo)自學(xué)。

師:給你們講個小故事:

聰明!嘿嘿??

過了幾天,財主到了裁縫店取帽子,結(jié)果一看,頓時傻了眼:10頂?shù)拿弊有〉弥荒艽髟谑种割^上了!

學(xué)習(xí)提示:

一獨(dú)立思考?

1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”

二合作學(xué)習(xí)。

小組討論上述的問題。

三看書合作學(xué)習(xí)。

1、把25頁例2、例3的表格補(bǔ)充完整。

4、你知道什么是反比例嗎?

四、學(xué)生自學(xué)。

五、檢查自學(xué)效果。

讓學(xué)生說說自學(xué)要求中的內(nèi)容。

師歸納:兩種相關(guān)聯(lián)的量,一種量隨著另一種量的變化而變化,

在變化過程中兩種量的積一定,那么這兩種量成反比例。

六、引導(dǎo)更正,指導(dǎo)運(yùn)用。

你們還找出類似這樣關(guān)系的'量來嗎?”

排隊(duì)做操,總?cè)藬?shù)不變,排隊(duì)的行數(shù)和每行的人數(shù)是反比例;長方體的體積一定,底面積和高是反比例。

七、當(dāng)堂訓(xùn)練。

基礎(chǔ)練習(xí)。

1、填空。

兩種_____的量,一種量隨著另一種量變化,如果這兩種量中相對應(yīng)的兩個數(shù)的______,這兩種量叫做成反比例的量,它們的關(guān)系叫做_______關(guān)系。

2、判斷下面每題中的兩種量是不是成反比例,并說明理由。

(1)煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。

(2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時間。

(3)生產(chǎn)電視機(jī)的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù)。

(4)圓柱體的體積一定,底面積和高。

(5)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。

(6)長方形的長一定,面積和寬。

(7)平行四邊形面積一定,底和高。

提高練習(xí)。

寬/cm1。

四、小結(jié)。

通過這節(jié)課的學(xué)習(xí),你有什么收獲?

這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學(xué)會了怎樣判斷兩種量是不是成反比例。

相關(guān)聯(lián),一個量變化,另一個量也隨著變化積一定。

xy=k(一定)。

反比例函數(shù)的教學(xué)設(shè)計篇十五

1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。

2、通過引導(dǎo)學(xué)生討論探究,分析合作,使學(xué)生進(jìn)一步認(rèn)識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。

3、初步滲透函數(shù)思想。

引導(dǎo)學(xué)生總結(jié)出成反比例的量,是相關(guān)的兩種量中相對應(yīng)的兩個數(shù)積一定,進(jìn)而抽象概括出成反比例的關(guān)系式。

利用反比例的意義,正確判斷兩個量是否成反比例。

1、下面兩種量是不是成正比例?為什么?

購買練習(xí)本的價錢0。80元,1本;1。60元,2本;3。20元,4本;4。80元6本。

2、成正比例的量有什么特征?

1、導(dǎo)入新課:這節(jié)課我們繼續(xù)學(xué)習(xí)常見的數(shù)量關(guān)系中的另一種特征——成反比例的量。

2、教學(xué)p42例3。

(1)引導(dǎo)學(xué)生觀察上表內(nèi)數(shù)據(jù),然后回答下面問題:

a、表中有哪兩種量?這兩種量相關(guān)聯(lián)嗎?為什么?

b、水的高度是否隨著底面積的變化而變化?怎樣變化的?

d、這個積表示什么?寫出表示它們之間的數(shù)量關(guān)系式。

(2)從中你發(fā)現(xiàn)了什么?這與復(fù)習(xí)題相比有什么不同?

a、學(xué)生討論交流。

b、引導(dǎo)學(xué)生回答:

(3)教師引導(dǎo)學(xué)生明確:因?yàn)樗捏w積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關(guān)系,高度和底面積叫做成反比例的量。

(4)如果用字母x和y表示兩種相關(guān)的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:x×y=k(一定)。

1、想一想:成反比例的量應(yīng)具備什么條件?

2、判斷下面每題中的兩個量是不是成反比例,并說明理由。

(1)路程一定,速度和時間。

(2)小明從家到學(xué)校,每分走的速度和所需時間。

(3)平行四邊形面積一定,底和高。

(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。

(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。

(6)你能舉一個反比例的例子嗎?

這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學(xué)會了怎樣判斷兩種量是不是成反比例。

p45~46練習(xí)七第6~11題。

反比例函數(shù)的教學(xué)設(shè)計篇十六

2、能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式。

3、在解決實(shí)際問題的過程中,進(jìn)一步體會和認(rèn)識反比例函數(shù)是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。

重點(diǎn):能利用反比例函數(shù)的相關(guān)的知識分析和解決一些簡單的實(shí)際問題。

難點(diǎn):根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式。

為了預(yù)防“非典”,某學(xué)校對教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米的含藥量為6mg,請根據(jù)題中所提供的信息,解答下列問題:。

(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_______.

(1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務(wù)?

(3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個字?

例2某自來水公司計劃新建一個容積為的'長方形蓄水池。

(1)蓄水池的底部s與其深度有怎樣的函數(shù)關(guān)系?

(2)如果蓄水池的深度設(shè)計為5m,那么蓄水池的底面積應(yīng)為多少平方米?

(3)由于綠化以及輔助用地的需要,經(jīng)過實(shí)地測量,蓄水池的長與寬最多只能設(shè)計為100m和60m,那么蓄水池的深度至少達(dá)到多少才能滿足要求?(保留兩位小數(shù))。

1、一定質(zhì)量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數(shù),當(dāng)v=10m3時,=1.43kg/m3.(1)求與v的函數(shù)關(guān)系式;(2)求當(dāng)v=2m3時求氧氣的密度.

2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調(diào)至0.55元至0.75元之間.經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時,y=-0.8.

(1)求y與x之間的函數(shù)關(guān)系式;

3、如圖,矩形abcd中,ab=6,ad=8,點(diǎn)p在bc邊上移動(不與點(diǎn)b、c重合),設(shè)pa=x,點(diǎn)d到pa的距離de=y.求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍.

30.31、2、3。

【本文地址:http://mlvmservice.com/zuowen/15757244.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔