2023年高中數(shù)學(xué)冪函數(shù)教案(模板20篇)

格式:DOC 上傳日期:2023-11-27 13:02:05
2023年高中數(shù)學(xué)冪函數(shù)教案(模板20篇)
時(shí)間:2023-11-27 13:02:05     小編:文鋒

教案應(yīng)該是教師教學(xué)思想和經(jīng)驗(yàn)的反映,是教師職業(yè)素養(yǎng)的重要體現(xiàn)。在編寫(xiě)教案時(shí)應(yīng)充分考慮學(xué)生的實(shí)際情況和學(xué)習(xí)能力。在制定自己的教案時(shí),可以參考這些范文,做出更加詳細(xì)和精確的教學(xué)設(shè)計(jì)。

高中數(shù)學(xué)冪函數(shù)教案篇一

教學(xué)任務(wù)分析:

(1)理解冪函數(shù)的概念,會(huì)畫(huà)五種常見(jiàn)冪函數(shù)的圖像;

(2)結(jié)合冪函數(shù)的圖像,理解冪函數(shù)圖像的變化情況和性質(zhì);

(3)通過(guò)觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識(shí)圖能力。

教學(xué)重點(diǎn):

常見(jiàn)冪函數(shù)的的概念、圖像和性質(zhì)。

教學(xué)難點(diǎn):

冪函數(shù)的單調(diào)性及比較兩個(gè)冪值的大小。

教具準(zhǔn)備:

多媒體課件、投影儀、打印好的作業(yè)。

教學(xué)情景設(shè)計(jì)。

問(wèn)題。

問(wèn)題2:如果正方形的邊長(zhǎng)為x,那么正方形面積y=?

問(wèn)題3:如果正方體的棱長(zhǎng)為x,那么正方體體積y=。

問(wèn)題4:如果正方形場(chǎng)地的面積為x,那么正方形的邊長(zhǎng)?y=?

問(wèn)題5:如果某人x秒內(nèi)騎車行進(jìn)1千米,那么他騎車的平均速度y=(千米/秒)引導(dǎo)學(xué)生探索發(fā)現(xiàn):

引導(dǎo)學(xué)生歸納結(jié)論。

(1)?指數(shù)為常數(shù)。

1、即(是)。

2、(不是)。

3、(不是)。

定義域。

值域。

高中數(shù)學(xué)冪函數(shù)教案篇二

數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過(guò)的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。

二、重視每一個(gè)學(xué)生。

三、做好課外與學(xué)生的溝通。

四、要多了解學(xué)生。

你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。

高中數(shù)學(xué)冪函數(shù)教案篇三

三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。

同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對(duì)角,頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成稅角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。

逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;

三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。

山西鐵路工程建設(shè)監(jiān)理有限公司。

劉榮申。

高中數(shù)學(xué)冪函數(shù)教案篇四

引入課題1.觀察下列各個(gè)函數(shù)的圖象,并說(shuō)說(shuō)它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:

yx1-11-1yx1-11-1yx1-11-1。

1隨x的增大,y的值有什么變化?2能否看出函數(shù)的最大、最小值?

2.畫(huà)出下列函數(shù)的圖象,觀察其變化規(guī)律:

f(x)=x1從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的值隨著________.

yx1-11-1。

2.f(x)=-2x+11從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的`值隨著________.

1在區(qū)間____________上,f(x)的值隨著x的增大而________.

2在區(qū)間____________上,f(x)的值隨著x的增大而________.

高中數(shù)學(xué)冪函數(shù)教案篇五

教學(xué)目標(biāo):

通過(guò)實(shí)例,理解冪函數(shù)的概念;能區(qū)分指數(shù)函數(shù)與冪函數(shù);會(huì)用待定系數(shù)法求冪函數(shù)的解析式。

教學(xué)重難點(diǎn):

重點(diǎn)從五個(gè)具體冪函數(shù)中認(rèn)識(shí)冪函數(shù)的一些特征。

難點(diǎn)指數(shù)函數(shù)與冪函數(shù)的區(qū)別和冪函數(shù)解析式的求解。

教學(xué)方法與手段:

1、采用師生互動(dòng)的方式,在教師的引導(dǎo)下,學(xué)生通過(guò)思考、交流、討論,理解冪函數(shù)的定義,體驗(yàn)自主探索、合作交流的學(xué)習(xí)方式,充分發(fā)揮學(xué)生的積極性與主動(dòng)性。

2、利用投影儀及計(jì)算機(jī)輔助教學(xué)。

教學(xué)過(guò)程:

函數(shù)的完美追求:對(duì)于式子,

如果一定,n隨的變化而變化,我們建立了指數(shù)函數(shù);

如果一定,隨n的變化而變化,我們建立了對(duì)數(shù)函數(shù)。

設(shè)想:如果一定,n隨的變化而變化,是不是也應(yīng)該確定一個(gè)函數(shù)呢?

創(chuàng)設(shè)情境。

請(qǐng)大家看以下問(wèn)題:

思考:以上問(wèn)題中的函數(shù)有什么共同特征?

引導(dǎo)學(xué)生分析歸納概括得出:(1)都是以自變量x為底數(shù);(2)指數(shù)為常數(shù);(3)自變量x前的系數(shù)為1;(4)只有一項(xiàng)。上述問(wèn)題中涉及的函數(shù),都是形如的函數(shù)。

探究新知。

一、冪函數(shù)的定義。

一般地,形如的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。

中前面的系數(shù)是1,后面沒(méi)有其它項(xiàng)。

小試牛刀。

(1),

思考:冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?

高中數(shù)學(xué)冪函數(shù)教案篇六

老師講課認(rèn)真聽(tīng)講,不會(huì)的問(wèn)題及時(shí)標(biāo)記。在課堂上,做一個(gè)好學(xué)生,認(rèn)真聽(tīng)講,對(duì)于老師講的問(wèn)題及時(shí)記錄,進(jìn)行相應(yīng)的標(biāo)記,在下課的時(shí)候,及時(shí)詢問(wèn)老師,早日解決問(wèn)題。

一定要課前預(yù)習(xí)一下知識(shí)點(diǎn)。在上課前或平時(shí)閑暇時(shí)間,一定要注意課下多多預(yù)習(xí),預(yù)習(xí)比復(fù)習(xí)更加重要,真的很重要,關(guān)乎到課堂的思維能力的轉(zhuǎn)變,多多看看,對(duì)自己的理解有幫助。

課上要學(xué)會(huì)學(xué)習(xí),記筆記,也要記住老師講的知識(shí)點(diǎn)。課堂上,自己要活躍一點(diǎn),帶給老師感覺(jué),讓老師對(duì)你有印象,便于日后學(xué)習(xí)高中數(shù)學(xué),與老師探討學(xué)習(xí)方法,記筆記,記住講的重點(diǎn)。

多做一些比較普通而又常出的問(wèn)題,來(lái)熟悉自己學(xué)的知識(shí)。在課下的時(shí)候,自己找出適合自己做的題,在做題中找出適合自己的題目,來(lái)進(jìn)行做和學(xué),總有一份題目適合自己做,便會(huì)更熟悉自己學(xué)的知識(shí)。

學(xué)會(huì)總結(jié)本節(jié)課的知識(shí)點(diǎn),重點(diǎn),做一個(gè)學(xué)會(huì)學(xué)習(xí)的人。及時(shí)總結(jié)所學(xué)的知識(shí)點(diǎn),做一個(gè)學(xué)好習(xí)的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。

建立一個(gè)記錯(cuò)本,錯(cuò)誤的題記錄到本子上。將自己以前做過(guò)的錯(cuò)題,及時(shí)的整理出來(lái),并且能夠及時(shí)的回顧,便于日后在本子上學(xué)習(xí)到知識(shí),能夠復(fù)習(xí)到自己以前錯(cuò)過(guò)的題。

與老師經(jīng)常交流學(xué)習(xí)方法,總有一個(gè)適合你。多多的與老師交流,給老師留下一個(gè)好印象,便于自己和老師更深入的交流學(xué)習(xí),及時(shí)的詢問(wèn)一下高中數(shù)學(xué)的學(xué)習(xí)方法,總有一個(gè)適合自己。

高中數(shù)學(xué)冪函數(shù)教案篇七

《考試說(shuō)明》和《考綱》是每位考生必須熟悉的最權(quán)威最準(zhǔn)確的高考信息,通過(guò)研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個(gè)問(wèn)題。

命題通常注意試題背景,強(qiáng)調(diào)數(shù)學(xué)思想,注重?cái)?shù)學(xué)應(yīng)用;試題強(qiáng)調(diào)問(wèn)題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問(wèn)題思考;強(qiáng)化主干知識(shí);關(guān)注知識(shí)點(diǎn)的銜接,考察創(chuàng)新意識(shí)。

《考綱》明確指出“創(chuàng)新意識(shí)是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強(qiáng)對(duì)新題型的練習(xí),揭示問(wèn)題的本質(zhì),創(chuàng)造性地解決問(wèn)題。

2.多維審視知識(shí)結(jié)構(gòu)。

高考數(shù)學(xué)試題一直注重對(duì)思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識(shí)在更高層次上的抽象和概括。知識(shí)是思維能力的載體,因此通過(guò)對(duì)知識(shí)的考察達(dá)到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識(shí)網(wǎng)絡(luò);全面、準(zhǔn)確地把握概念,在理解的基礎(chǔ)上加強(qiáng)記憶;加強(qiáng)對(duì)易錯(cuò)、易混知識(shí)的梳理;要多角度、多方位地去理解問(wèn)題的實(shí)質(zhì);體會(huì)數(shù)學(xué)思想和解題的方法。

3.把答案蓋住看例題。

參考書(shū)上例題不能看一下就過(guò)去了,因?yàn)榭磿r(shí)往往覺(jué)得什么都懂,其實(shí)自己并沒(méi)有理解透徹。所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看,這時(shí)要想一想,自己做的與解答哪里不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。經(jīng)過(guò)上面的`訓(xùn)練,自己的思維空間擴(kuò)展了,看問(wèn)題也全面了。如果把題目的來(lái)源搞清了,在題后加上幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收益將更大。

4.研究每題都考什么。

數(shù)學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過(guò)一題聯(lián)想到多題。你需要著重研究解題的思維過(guò)程,弄清基本數(shù)學(xué)知識(shí)和基本數(shù)學(xué)思想在解題中的意義和作用,研究運(yùn)用不同的思維方法解決同一數(shù)學(xué)問(wèn)題的多條途徑,在分析解決問(wèn)題的過(guò)程中既構(gòu)建知識(shí)的橫向聯(lián)系又養(yǎng)成多角度思考問(wèn)題的習(xí)慣。

與其一節(jié)課抓緊時(shí)間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個(gè)概念的多種內(nèi)涵,對(duì)一個(gè)典型題,盡力做到從多條思路用多種方法處理,即一題多解;對(duì)具有共性的問(wèn)題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個(gè)側(cè)面去檢驗(yàn)自己的知識(shí),即一題多變。習(xí)題的價(jià)值不在于做對(duì)、做會(huì),而在于你明白了這道題想考你什么。

5.答題少費(fèi)時(shí)多辦事。

解題上要抓好三個(gè)字:數(shù),式,形;閱讀、審題和表述上要實(shí)現(xiàn)數(shù)學(xué)的三種語(yǔ)言自如轉(zhuǎn)化(文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言)。要重視和加強(qiáng)選擇題的訓(xùn)練和研究。不能僅僅滿足于答案正確,還要學(xué)會(huì)優(yōu)化解題過(guò)程,追求解題質(zhì)量,少費(fèi)時(shí),多辦事,以贏得足夠的時(shí)間思考解答高檔題。要不斷積累解選擇題的經(jīng)驗(yàn),盡可能小題小做,除直接法外,還要靈活運(yùn)用特殊值法、排除法、檢驗(yàn)法、數(shù)形結(jié)合法、估計(jì)法來(lái)解題。在做解答題時(shí),書(shū)寫(xiě)要簡(jiǎn)明、扼要、規(guī)范,不要“小題大做”,只要寫(xiě)出“得分點(diǎn)”即可。

6.錯(cuò)一次反思一次。

每次考試或多或少會(huì)發(fā)生一些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤在今后的考試中重現(xiàn)。

因此平時(shí)要注意把錯(cuò)題記下來(lái),做錯(cuò)題筆記包括三個(gè)方面:

(1)記下錯(cuò)誤是什么,最好用紅筆劃出。

(2)錯(cuò)誤原因是什么,從審題、題目歸類、重現(xiàn)知識(shí)和找出答案四個(gè)環(huán)節(jié)來(lái)分析。

(3)錯(cuò)誤糾正方法及注意事項(xiàng)。根據(jù)錯(cuò)誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應(yīng)注意些什么。你若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么在高考時(shí)發(fā)生錯(cuò)誤的概率就會(huì)大大減少。

7.分析試卷總結(jié)經(jīng)驗(yàn)。

每次考試結(jié)束試卷發(fā)下來(lái),要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。

(1)遺憾之錯(cuò)。就是分明會(huì)做,反而做錯(cuò)了的題。

(2)似非之錯(cuò)。記憶不準(zhǔn)確,理解不夠透徹,應(yīng)用不夠自如;回答不嚴(yán)密不完整等等。

(3)無(wú)為之錯(cuò)。由于不會(huì)答錯(cuò)了或猜錯(cuò)了,或者根本沒(méi)有作答,這是無(wú)思路、不理解,更談不上應(yīng)用的問(wèn)題。原因找到后就盡早消除遺憾、弄懂似非、力爭(zhēng)有為。切實(shí)解決“會(huì)而不對(duì)、對(duì)而不全”的老大難問(wèn)題。

8.優(yōu)秀是一種習(xí)慣。

柏拉圖說(shuō):“優(yōu)秀是一種習(xí)慣”。好的習(xí)慣終生受益,不好的習(xí)慣終生后悔、吃虧。如“審題之錯(cuò)”是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動(dòng)作要快,步步為營(yíng),穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習(xí)慣。

高中數(shù)學(xué)冪函數(shù)教案篇八

地位及重要性。

函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(cè)(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi),函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),也是在研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì),并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)的定性分析以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用。通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對(duì)函數(shù)的本質(zhì)認(rèn)識(shí)。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。

教學(xué)目標(biāo)。

(1)了解能用文字語(yǔ)言和符號(hào)語(yǔ)言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;。

(2)了解能用圖形語(yǔ)言正確表述具有單調(diào)性的函數(shù)的圖象特征;。

(4)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力、用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問(wèn)題,以提高學(xué)生的思維品質(zhì);同時(shí)讓學(xué)生體驗(yàn)數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點(diǎn)看問(wèn)題。

教學(xué)重難點(diǎn)。

重點(diǎn)是對(duì)函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解,

二.說(shuō)教法。

根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我嘗試運(yùn)用“問(wèn)題解決”與“多媒體輔助教學(xué)”的.模式。力圖通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題的過(guò)程,讓學(xué)生主動(dòng)參與以達(dá)到對(duì)知識(shí)的“發(fā)現(xiàn)”與接受,進(jìn)而完成對(duì)知識(shí)的內(nèi)化,使書(shū)本知識(shí)成為自己知識(shí);同時(shí)也培養(yǎng)學(xué)生的探索精神。

三.說(shuō)學(xué)法。

在教學(xué)過(guò)程中,教師設(shè)置問(wèn)題情景讓學(xué)生想辦法解決;通過(guò)教師的啟發(fā)點(diǎn)撥,學(xué)生的不斷探索,最終把解決問(wèn)題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過(guò)對(duì)函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問(wèn)題解決。整個(gè)過(guò)程學(xué)生學(xué)生主動(dòng)參與、積極思考、探索嘗試的動(dòng)態(tài)活動(dòng)之中;同時(shí)讓學(xué)生體驗(yàn)到了學(xué)習(xí)數(shù)學(xué)的快樂(lè),培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度研究問(wèn)題的習(xí)慣。

四.說(shuō)過(guò)程。

通過(guò)設(shè)置問(wèn)題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點(diǎn)撥、啟發(fā)、引導(dǎo)為教師職責(zé)。

設(shè)置問(wèn)題情景。

[引例]學(xué)校準(zhǔn)備建造一個(gè)矩形花壇,面積設(shè)計(jì)為16平方米。由于周圍環(huán)境的限制,其中一邊的長(zhǎng)度長(zhǎng)不能超過(guò)10米,短不能少于4米。記花壇受限制的一邊長(zhǎng)為x米,半周長(zhǎng)為y米。

寫(xiě)出y與x的函數(shù)表達(dá)式;。

(用多媒體出示問(wèn)題,并讓學(xué)生思考)。

高中數(shù)學(xué)冪函數(shù)教案篇九

熟練掌握三角函數(shù)式的求值。

教學(xué)重難點(diǎn)。

熟練掌握三角函數(shù)式的求值。

教學(xué)過(guò)程。

【知識(shí)點(diǎn)精講】。

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。

三角函數(shù)式的求值的類型一般可分為:。

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次。

注意點(diǎn):靈活角的變形和公式的變形。

重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論。

【例題選講】。

課堂小結(jié)】。

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。

三角函數(shù)式的求值的類型一般可分為:。

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次。

注意點(diǎn):靈活角的變形和公式的變形。

重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論。

【作業(yè)布置】。

p172能力提高5,6,7,8高考預(yù)測(cè)。

高中數(shù)學(xué)冪函數(shù)教案篇十

教材分析:

冪函數(shù)作為一類重要的函數(shù)模型,是學(xué)生在系統(tǒng)地學(xué)習(xí)了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。?冪函數(shù)模型在生活中是比較常見(jiàn)的,學(xué)習(xí)時(shí)結(jié)合生活中的具體實(shí)例來(lái)引出常見(jiàn)的冪函數(shù)?.組織學(xué)生畫(huà)出他們的圖象,根據(jù)圖象觀察、總結(jié)這幾個(gè)常見(jiàn)冪函數(shù)的性質(zhì)。對(duì)于冪函數(shù),只需重點(diǎn)掌握?這五個(gè)函數(shù)的圖象和性質(zhì)。學(xué)習(xí)中學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學(xué)生對(duì)兩類不同函數(shù)的表達(dá)式進(jìn)行辨析。學(xué)生已經(jīng)有了學(xué)習(xí)冪函數(shù)和對(duì)象函數(shù)的學(xué)習(xí)經(jīng)歷,這為學(xué)習(xí)冪函數(shù)做好了方法上的準(zhǔn)備。因此,學(xué)習(xí)過(guò)程中,引入冪函數(shù)的概念之后,嘗試放手讓學(xué)生自己進(jìn)行合作探究學(xué)習(xí)。

課時(shí)分配1課時(shí)。

教學(xué)目標(biāo)。

重點(diǎn):從五個(gè)具體的冪函數(shù)中認(rèn)識(shí)的概念和性質(zhì)。

難點(diǎn):從冪函數(shù)的圖象中概括其性質(zhì),據(jù)冪函數(shù)的單調(diào)性比較兩個(gè)同指數(shù)的指數(shù)式的大小。

知識(shí)點(diǎn):冪函數(shù)的定義、五個(gè)冪函數(shù)圖象特征。

能力點(diǎn):通過(guò)具體實(shí)例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行簡(jiǎn)單的應(yīng)用。

自主探究點(diǎn):通過(guò)作圖歸納總結(jié)冪函數(shù)的相關(guān)性質(zhì)。

考試點(diǎn):了解冪函數(shù)的概念,

結(jié)合函數(shù)的圖象了解它們的變化情況。

易錯(cuò)易混點(diǎn):學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆。

拓展點(diǎn):通過(guò)指數(shù)函數(shù)的圖象性質(zhì)研究?jī)绾瘮?shù)指數(shù)的變化。

教具準(zhǔn)備:多媒體輔助教學(xué)。

課堂模式:導(dǎo)學(xué)案。

一、引入新課。

(一)回顧引入。

【師生互動(dòng)】師:數(shù)學(xué)的內(nèi)在美常常讓我感動(dòng),下面我們共同來(lái)欣賞運(yùn)算的完美性,

思考:由8、2、3、這四個(gè)數(shù),運(yùn)用數(shù)學(xué)符號(hào)可組成哪些等式?

生:探討,交流。

師生共同分析:

師:我們知道對(duì)于等式。

1.如果一定,隨著的變化而變化,我們建立了指數(shù)函數(shù)。

2.如果一定,隨著的變化而變化,我們建立了對(duì)數(shù)函數(shù)。

設(shè)想:如果一定,隨著的變化而變化,是不是也可以確定一個(gè)函數(shù)呢?

【設(shè)計(jì)說(shuō)明】使學(xué)生回憶所學(xué)兩個(gè)基本初等函數(shù),為所要學(xué)習(xí)的冪函數(shù)作鋪墊。

(二)觀察下列對(duì)象:

問(wèn)題(1):如果張紅購(gòu)買(mǎi)了每千克1元的蔬菜千克,那么她需要付的錢(qián)數(shù)=元,

問(wèn)題(2):如果正方形的邊長(zhǎng)為,那么正方形的面是=。

問(wèn)題3):如果正方體的邊長(zhǎng)為,那么正方體的體積是=。

問(wèn)題(4):如果正方形場(chǎng)地面積為,那么正方形的邊長(zhǎng)=。

問(wèn)題(5):如果某人s內(nèi)騎車行進(jìn)了1km,那么他騎車的平均速度=。

【師生互動(dòng)】師:(1)它們的對(duì)應(yīng)法則分別是什么?

(2)以上問(wèn)題中的函數(shù)有什么共同特征?

讓學(xué)生獨(dú)立思考后交流,引導(dǎo)學(xué)生概括出結(jié)論。

生:(1)乘以1(2)求平方(3)求立方。

(4)求算術(shù)平方根(5)求-1次方。

師:上述的問(wèn)題涉及到的函數(shù),都是形如:,其中是自變量,是常數(shù)。

師生:共同辨析這種新函數(shù)與指數(shù)函數(shù)的異同。

二、探究新知。

組織探究。

1.冪函數(shù)的定義。

一般地,形如(r)的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。

如等都是冪函數(shù),冪函數(shù)與指數(shù)函數(shù),對(duì)數(shù)函數(shù)一樣,都是基本初等函數(shù)。

【師生互動(dòng)】師:1.冪函數(shù)的定義來(lái)自于實(shí)踐,它同指數(shù)函數(shù)、對(duì)數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種“形式定義”的函數(shù),引導(dǎo)學(xué)生注意辨析。

2.研究函數(shù)的圖像。

(1)(2)(3)。

(4)(5)。

生:利用所學(xué)知識(shí)和方法嘗試作出五個(gè)具體冪函數(shù)的圖象,觀察所作圖象,體會(huì)冪函數(shù)的變化規(guī)律。

師:引導(dǎo)學(xué)生應(yīng)用函數(shù)的性質(zhì)畫(huà)圖象,如:定義域、奇偶性。

師生共同分析:強(qiáng)調(diào)畫(huà)圖象易犯的錯(cuò)誤。

【設(shè)計(jì)意圖】(1)通過(guò)具體作圖,可使學(xué)生加深對(duì)圖象的直觀印象,記憶比較牢固;同時(shí)也提高了學(xué)生數(shù)形結(jié)合的思維能力;(2)符合學(xué)生的認(rèn)知規(guī)律,由特殊到一般,從具體到抽象;(3)充分發(fā)揮學(xué)生學(xué)習(xí)的能動(dòng)性,以學(xué)生為主體,展開(kāi)課堂教學(xué)。

【師生互動(dòng)】師:引導(dǎo)學(xué)生觀察圖象,歸納概括冪函數(shù)的的性質(zhì)及圖象變化規(guī)律。

生:觀察圖象,分組討論,探究?jī)绾瘮?shù)的性質(zhì)和圖象的變化規(guī)律,并展示各自的結(jié)論進(jìn)行交流評(píng)析,并填表。

定義域值域奇偶性單調(diào)性定點(diǎn)。

師生共同分析冪函數(shù)性質(zhì):

(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過(guò)點(diǎn)(1,1);。

高中數(shù)學(xué)冪函數(shù)教案篇十一

通過(guò)學(xué)生的討論,使學(xué)生更清楚以下事實(shí):

(1)分解因式與整式的乘法是一種互逆關(guān)系;。

(2)分解因式的結(jié)果要以積的形式表示;。

(3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來(lái)的多項(xiàng)式的次數(shù);。

(4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。

活動(dòng)5:應(yīng)用新知。

例題學(xué)習(xí):

p166例1、例2(略)。

在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。

讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。

活動(dòng)6:課堂練習(xí)。

1.p167練習(xí);。

2.看誰(shuí)連得準(zhǔn)。

x2-y2(x+1)2。

9-25x2y(x-y)。

x2+2x+1(3-5x)(3+5x)。

xy-y2(x+y)(x-y)。

3.下列哪些變形是因式分解,為什么?

(1)(a+3)(a-3)=a2-9。

(2)a2-4=(a+2)(a-2)。

(3)a2-b2+1=(a+b)(a-b)+1。

(4)2πr+2πr=2π(r+r)。

學(xué)生自主完成練習(xí)。

通過(guò)學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。

活動(dòng)7:課堂小結(jié)。

從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?

學(xué)生發(fā)言。

通過(guò)學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。

活動(dòng)8:課后作業(yè)。

課本p170習(xí)題的第1、4大題。

學(xué)生自主完成。

通過(guò)作業(yè)的鞏固對(duì)因式分解,特別是提公因式法理解并學(xué)會(huì)應(yīng)用。

板書(shū)設(shè)計(jì)(需要一直留在黑板上主板書(shū))。

15.4.1提公因式法例題。

1.因式分解的定義。

2.提公因式法。

高中數(shù)學(xué)冪函數(shù)教案篇十二

2.通過(guò)對(duì)抽象符號(hào)的認(rèn)識(shí)與使用,使學(xué)生在符號(hào)表示方面的能力得以提高.。

難點(diǎn):重點(diǎn)是在映射的基礎(chǔ)上理解的概念;

難點(diǎn)是對(duì)抽象符號(hào)的認(rèn)識(shí)與使用.。

投影儀。

自學(xué)研究與啟發(fā)討論式.。

(要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過(guò)的例子)。

提問(wèn)1.是嗎?

(由學(xué)生討論,發(fā)表各自的意見(jiàn),有的認(rèn)為它不是,理由是沒(méi)有兩個(gè)變量,也有的認(rèn)為是,理由是可以可做.)。

現(xiàn)在請(qǐng)同學(xué)們打開(kāi)書(shū)翻到第50頁(yè),從這開(kāi)始閱讀有關(guān)的內(nèi)容,再回答我的問(wèn)題.(約2-3分鐘或開(kāi)始提問(wèn))。

提問(wèn)2.新的的定義是什么?能否用最簡(jiǎn)單的語(yǔ)言來(lái)概括一下.。

(板書(shū))2.2。

一、的概念。

問(wèn)題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。

引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。

2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書(shū))。

然后讓學(xué)生試回答剛才關(guān)于是不是的問(wèn)題,要求從映射的角度解釋.。

此時(shí)學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的定義,故是一個(gè),這樣解釋就很自然.。

教師繼續(xù)把問(wèn)題引向深入,提出在映射的觀點(diǎn)下如何解釋是個(gè)?

從映射角度看可以是其中定義域是,值域是.。

3.的三要素及其作用(板書(shū))。

例1以下關(guān)系式表示嗎?為什么?

(1);(2).。

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。

(2)由有意義得,解得.定義域?yàn)?,值域?yàn)椋?/p>

由以上兩題可以看出三要素的作用。

(1)判斷一個(gè)關(guān)系是否存在.(板書(shū))。

例2下列各中,哪一個(gè)與是同一個(gè).。

(1);(2)(3);(4).。

解:先認(rèn)清,它是(定義域)到(值域)的映射,其中。

再看(1)定義域?yàn)榍?,是不同的?2)定義域?yàn)?,是不同的?/p>

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.。

(2)判斷兩個(gè)是否相同.(板書(shū))。

4.對(duì)符號(hào)的理解(板書(shū))。

例3已知試求(板書(shū))。

分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算.。

含義1:當(dāng)自變量取3時(shí),對(duì)應(yīng)的值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。

計(jì)算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個(gè)特殊值.。

1.的定義。

2.對(duì)三要素的認(rèn)識(shí)。

3.對(duì)符號(hào)的認(rèn)識(shí)。

五、

2.2例1.例3.。

一.的概念。

1.定義。

2.本質(zhì)例2.小結(jié):

3.三要素的認(rèn)識(shí)及作用。

4.對(duì)符號(hào)的理解。

探究活動(dòng)。

答案:

高中數(shù)學(xué)冪函數(shù)教案篇十三

投影儀

自學(xué)研究與啟發(fā)討論式.

一、復(fù)習(xí)與引入

(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過(guò)的函數(shù)例子)

提問(wèn)1.是函數(shù)嗎?

(由學(xué)生討論,發(fā)表各自的意見(jiàn),有的認(rèn)為它不是函數(shù),理由是沒(méi)有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)

二、新課

現(xiàn)在請(qǐng)同學(xué)們打開(kāi)書(shū)翻到第50頁(yè),從這開(kāi)始閱讀有關(guān)的內(nèi)容,再回答我的問(wèn)題.(約2-3分鐘或開(kāi)始提問(wèn))

提問(wèn)2.新的函數(shù)的定義是什么?能否用最簡(jiǎn)單的語(yǔ)言來(lái)概括一下.

(板書(shū))2.2函數(shù)

一、函數(shù)的概念

問(wèn)題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)

引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.

2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書(shū))

然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問(wèn)題,要求從映射的角度解釋.

此時(shí)學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的函數(shù)定義,故是一個(gè)函數(shù),這樣解釋就很自然.

教師繼續(xù)把問(wèn)題引向深入,提出在映射的觀點(diǎn)下如何解釋是個(gè)函數(shù)?

從映射角度看可以是其中定義域是,值域是.

3.函數(shù)的三要素及其作用(板書(shū))

以下關(guān)系式表示函數(shù)嗎?為什么?

(1);(2).

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).

(2)由有意義得,解得.定義域?yàn)?,值域?yàn)椋?/p>

由以上兩題可以看出三要素的作用

(1)判斷一個(gè)函數(shù)關(guān)系是否存在.(板書(shū))

(1);(2) (3);(4).

解:先認(rèn)清,它是(定義域)到(值域)的映射,其中

再看(1)定義域?yàn)榍?,是不同的?2)定義域?yàn)?,是不同的?/p>

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.

(2)判斷兩個(gè)函數(shù)是否相同.(板書(shū))

4.對(duì)函數(shù)符號(hào)的理解(板書(shū))

已知函數(shù)試求(板書(shū))

分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算.

含義1:當(dāng)自變量取3時(shí),對(duì)應(yīng)的函數(shù)值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.

計(jì)算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個(gè)特殊值.

三、小結(jié)

1.函數(shù)的定義

2.對(duì)函數(shù)三要素的認(rèn)識(shí)

3.對(duì)函數(shù)符號(hào)的認(rèn)識(shí)

四、作業(yè):略

五、

2.2函數(shù)例1.例3.

一.函數(shù)的概念

1.定義

2.本質(zhì)例2.小結(jié):

3.函數(shù)三要素的認(rèn)識(shí)及作用

4.對(duì)函數(shù)符號(hào)的理解

答案:

高中數(shù)學(xué)冪函數(shù)教案篇十四

1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。

過(guò)程與方法。

1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感與價(jià)值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。

2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

1、掌握函數(shù)概念。

2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

3、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

1、理解函數(shù)的概念。

2、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課。

『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?

高中數(shù)學(xué)冪函數(shù)教案篇十五

一、教學(xué)目標(biāo):

知識(shí)與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質(zhì),培養(yǎng)學(xué)生實(shí)際應(yīng)用函數(shù)的能力。

過(guò)程與方法:通過(guò)觀察圖象,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的性質(zhì)。領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問(wèn)題的能力。

情感態(tài)度與價(jià)值觀:在指數(shù)函數(shù)的學(xué)習(xí)過(guò)程中,體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

二、教學(xué)重點(diǎn)、難點(diǎn):

教學(xué)難點(diǎn):對(duì)底數(shù)的分類,如何由圖象、解析式歸納指數(shù)函數(shù)的性質(zhì)。

三、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情景。

學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=2x。

問(wèn)題2:一種放射性物質(zhì)不斷衰變?yōu)槠渌镔|(zhì),每經(jīng)過(guò)一年剩留的質(zhì)量約是原來(lái)的84%。求出這種物質(zhì)的剩留量隨時(shí)間(單位:年)變化的函數(shù)關(guān)系。設(shè)最初的質(zhì)量為1,時(shí)間變量用x表示,剩留量用y表示。

學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=0.84x。

引導(dǎo)學(xué)生觀察,兩個(gè)函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。

問(wèn)題:指數(shù)函數(shù)定義中,為什么規(guī)定“a?0且a?1”如果不這樣規(guī)定會(huì)出現(xiàn)什么情況?

(1)若a0會(huì)有什么問(wèn)題?

x1則在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)2(2)若a=0會(huì)有什么問(wèn)題?(對(duì)于x0,a無(wú)意義)。

(3)若a=1又會(huì)怎么樣?(1x無(wú)論x取何值,它總是1,對(duì)它沒(méi)有研究的必要。)。

師:為了避免上述各種情況的發(fā)生,所以規(guī)定a?0且a?1。

1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大?。?/p>

設(shè)計(jì)意圖:這是指數(shù)函數(shù)性質(zhì)的簡(jiǎn)單應(yīng)用,使學(xué)生在解題過(guò)程中加深對(duì)指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。

(五)課堂小結(jié)。

(六)布置作業(yè)。

高中數(shù)學(xué)冪函數(shù)教案篇十六

數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱思想發(fā)現(xiàn)任意角與終邊的對(duì)稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.

(1).基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;。

(4).個(gè)性品質(zhì)目標(biāo):通過(guò)誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.

理解并掌握誘導(dǎo)公式.

正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式.

“授人以魚(yú)不如授之以魚(yú)”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析.

數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).

在本節(jié)課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂(lè)和成功的喜悅.

“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問(wèn)題.

在本節(jié)課的教學(xué)過(guò)程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問(wèn)題共同探討解決問(wèn)題簡(jiǎn)單應(yīng)用重現(xiàn)探索過(guò)程練習(xí)鞏固.讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識(shí)及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí).

1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;。

2.復(fù)習(xí)任意角的三角函數(shù)定義;。

3.問(wèn)題:由,你能否知道sin2100的值嗎?引如新課.

自信的鼓勵(lì)是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡(jiǎn)單易做的題加強(qiáng)了每個(gè)學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問(wèn)題的出現(xiàn),讓學(xué)生既有好像會(huì)做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會(huì)證明我能行,從而思考解決的辦法.

1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。

2100與sin300之間有什么關(guān)系.

由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.

高中數(shù)學(xué)冪函數(shù)教案篇十七

3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.

利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.

(1). ;(2). ;(3). .

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問(wèn)題.

由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;

2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.

遺忘的規(guī)律是先快后慢,過(guò)程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問(wèn)題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過(guò)程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對(duì)知識(shí)的理解與掌握以深入腦中,此時(shí)以類同問(wèn)題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個(gè)過(guò)程,加深了知識(shí)的深刻記憶,對(duì)學(xué)生無(wú)形中鼓舞了氣勢(shì),增強(qiáng)了自信,加大了挑戰(zhàn).而新知識(shí)點(diǎn)的自主探討,對(duì)教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.

誘導(dǎo)公式(三)、(四)

給出本節(jié)課的課題

三角函數(shù)誘導(dǎo)公式

標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個(gè)探索過(guò)程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來(lái)知識(shí)點(diǎn)已經(jīng)輕松掌握,同時(shí)也是對(duì)本節(jié)課內(nèi)容的小結(jié).

的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個(gè)把 看成銳角時(shí)原函數(shù)值的符合.(即:函數(shù)名不變,符號(hào)看象限.)

設(shè)計(jì)意圖

簡(jiǎn)便記憶公式.

求下列三角函數(shù)的值:(1).sin( ); (2). co.

設(shè)計(jì)意圖

本練習(xí)的設(shè)置重點(diǎn)體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會(huì)靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問(wèn)題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對(duì)具體負(fù)角而言的.

學(xué)生練習(xí)

化簡(jiǎn): .

設(shè)計(jì)意圖

重點(diǎn)加強(qiáng)對(duì)三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.

1.小結(jié)使用誘導(dǎo)公式化簡(jiǎn)任意角的三角函數(shù)為銳角的步驟.

2.體會(huì)數(shù)形結(jié)合、對(duì)稱、化歸的思想.

3.“學(xué)會(huì)”學(xué)習(xí)的習(xí)慣.

1.課本p-27,第1,2,3小題;

2.附加課外題 略.

設(shè)計(jì)意圖

加強(qiáng)學(xué)生對(duì)三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.

八.課后反思

對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對(duì)教材的內(nèi)容,編排了一系列問(wèn)題,讓學(xué)生親歷知識(shí)發(fā)生、發(fā)展的過(guò)程,積極投入到思維活動(dòng)中來(lái),通過(guò)與學(xué)生的互動(dòng)交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開(kāi)中,引導(dǎo)學(xué)生用已學(xué)的知識(shí)、方法予以解決,并獲得知識(shí)體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過(guò)個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),感受“觀察——?dú)w納——概括——應(yīng)用”等環(huán)節(jié),在知識(shí)的形成、發(fā)展過(guò)程中展開(kāi)思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、解決問(wèn)題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。

然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。

在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來(lái)設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來(lái)武裝自己,讓自己的課堂更有效。

高中數(shù)學(xué)冪函數(shù)教案篇十八

(3)能正確使用“區(qū)間”及相關(guān)符號(hào),能正確求解各類的定義域.。

2.通過(guò)概念的學(xué)習(xí),使學(xué)生在符號(hào)表示,運(yùn)算等方面的能力有所提高.。

(1)對(duì)記號(hào)有正確的理解,準(zhǔn)確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;

(2)在求定義域中注意運(yùn)算的合理性與簡(jiǎn)潔性.。

3.通過(guò)定義由變量觀點(diǎn)向映射觀點(diǎn)的過(guò)渡,是學(xué)生能從發(fā)展的角度看待數(shù)學(xué)的學(xué)習(xí).。

1.教材分析。

(1)知識(shí)結(jié)構(gòu)。

(2)重點(diǎn)難點(diǎn)分析。

是的定義和符號(hào)的認(rèn)識(shí)與使用.。

2.教法建議。

高中數(shù)學(xué)冪函數(shù)教案篇十九

對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

(3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。

(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

高中數(shù)學(xué)冪函數(shù)教案篇二十

(二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會(huì)判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性、會(huì)確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問(wèn)題,理解它關(guān)鍵就是要學(xué)會(huì)轉(zhuǎn)換式子。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識(shí),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點(diǎn)是應(yīng)用定義證明函數(shù)在某個(gè)區(qū)間上的單調(diào)性,解決重點(diǎn)的關(guān)鍵是嚴(yán)格按過(guò)程進(jìn)行證明。

二、教學(xué)目標(biāo)及解析。

(一)教學(xué)目標(biāo):

掌握用定義證明函數(shù)單調(diào)性的步驟,會(huì)求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識(shí)解決問(wèn)題的能力。

(二)解析:

會(huì)證明就是指會(huì)利用三步曲證明函數(shù)的單調(diào)性;會(huì)求函數(shù)的單調(diào)區(qū)間就是指會(huì)利用函數(shù)的圖象寫(xiě)出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識(shí)解決問(wèn)題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問(wèn)題。

三、問(wèn)題診斷分析。

在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是如何才能準(zhǔn)確確定的符號(hào),產(chǎn)生這一問(wèn)題的原因是學(xué)生對(duì)代數(shù)式的恒等變換不熟練。要解決這一問(wèn)題,就是要根據(jù)學(xué)生的實(shí)際情況進(jìn)行知識(shí)補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí)。

在本節(jié)課的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂茫ǎ?,有利于()?/p>

【本文地址:http://mlvmservice.com/zuowen/15654222.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔