初中數(shù)學(xué)勾股定理教學(xué)設(shè)計(模板24篇)

格式:DOC 上傳日期:2023-11-27 10:22:13
初中數(shù)學(xué)勾股定理教學(xué)設(shè)計(模板24篇)
時間:2023-11-27 10:22:13     小編:文鋒

有時候,只有冷靜地停下腳步,才能看到那些被忽略的美好。善于運(yùn)用修辭和技巧,如排比、比喻、應(yīng)用句型等,以增加文章的表現(xiàn)力和吸引力。總結(jié)是一種常見的寫作形式,通過閱讀范文可以了解到不同領(lǐng)域的總結(jié)寫作風(fēng)格。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇一

教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。

2、切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

三、教學(xué)程序。

本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:

(一)創(chuàng)設(shè)情境以古引新。

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

2、是不是所有的`直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

3、板書課題,出示學(xué)習(xí)目標(biāo)。

(二)初步感知理解教材。

教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。

(三)質(zhì)疑解難討論歸納。

1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。

2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

(1)這兩個圖形有什么特點(diǎn)?

(2)你能寫出這兩個圖形的面積嗎?

(3)如何運(yùn)用勾股定理?是否還有其他形式?

這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補(bǔ)充。教師及時進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習(xí)強(qiáng)化提高。

1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。

2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

(五)歸納總結(jié)練習(xí)反饋。

引導(dǎo)學(xué)生對知識要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇二

一、教材分析:。

(一)、本節(jié)課在教材中的地位作用。

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

(二)、教學(xué)目標(biāo):。

根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標(biāo)。

知識技能:

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

過程與方法:

2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應(yīng)用。

3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。

情感態(tài)度:

(三)、學(xué)情分析:

盡管已到初二下學(xué)期學(xué)生知識增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。

關(guān)鍵:輔助線的添法探索。

二、教學(xué)過程:

(一)、復(fù)習(xí)回顧:復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。

(二)、創(chuàng)設(shè)問題情境。

一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的'知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)。

因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機(jī),讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點(diǎn),我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

(四)、組織變式訓(xùn)練。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇三

勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認(rèn)識。

一、知識與技能。

1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

2、應(yīng)用勾股定理解決簡單的實際問題。

3學(xué)會簡單的合情推理與數(shù)學(xué)說理。

二、過程與方法。

引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識。

三、情感與態(tài)度目標(biāo)。

通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進(jìn)行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。

四、重點(diǎn)與難點(diǎn)。

一、創(chuàng)設(shè)情景,揭示課題。

1、教師展示圖片并介紹第一情景。

以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>

2、教師展示圖片并介紹第二情景。

畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

二、師生協(xié)作,探究問題。

1、現(xiàn)在請你也動手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

3、你能得到什么結(jié)論嗎?

三、得出命題。

勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。

第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的。

角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞”。

因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。

這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

勾股定理的靈活運(yùn)用勾股定理在實際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。

六、歸納總結(jié)。

2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

七、討論交流。

讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機(jī)會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇四

學(xué)生通過上節(jié)課的學(xué)習(xí),已經(jīng)掌握了如何用沒有刻度的直尺和圓規(guī)作一條線段等于已知線段。同時在學(xué)習(xí)中學(xué)生已經(jīng)初步理解了作圖的步驟,具備了基本的作圖能力,并能簡單的表達(dá)作圖過程,為本節(jié)課的學(xué)習(xí)奠定了良好的知識基礎(chǔ)。同時在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗,具備了一定的合作與交流的能力。

二、教學(xué)目標(biāo)分析。

教科書基于學(xué)生在上節(jié)課學(xué)習(xí)了如何作一條線段等于已知線段,并積累了一定的活動經(jīng)驗,提出本節(jié)課的主要教學(xué)任務(wù)是:會用尺規(guī)作一個角等于已知角,并了解它在尺規(guī)作圖中的簡單應(yīng)用。為此,本節(jié)課的教學(xué)目標(biāo)是:

1、能按照作圖語言來完成作圖動作,能用尺規(guī)作一個角等于已知角,并了解它在尺規(guī)作圖中的簡單應(yīng)用。

2、能利用尺規(guī)作角的和、差、倍。

3、能夠通過尺規(guī)設(shè)計并繪制簡單的圖案。

4、在尺規(guī)作圖過程當(dāng)中,積累數(shù)學(xué)活動經(jīng)驗,培養(yǎng)動手能力和邏輯分析能力。

1、回顧與思考。

活動內(nèi)容:

(1)怎樣利用沒有刻度的直尺和圓規(guī)作一條線段等于已知線段?

(2)練習(xí):已知線段a,b,c,作一條線段m,使得m=a+b—c。

活動目的:

通過回顧上節(jié)課學(xué)習(xí)的用尺規(guī)作線段,既達(dá)到了復(fù)習(xí)鞏固,反饋落實的目的,同時熟練尺規(guī)的使用,積累活動經(jīng)驗,也為后面學(xué)習(xí)用尺規(guī)作角起到了鋪墊的作用。

2、情境引入,探索發(fā)現(xiàn)。

活動內(nèi)容:如圖2。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇五

今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級數(shù)學(xué)下冊第十八章第一節(jié)的第一課時。

1、教材分析。

本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過2002年國際數(shù)學(xué)家大會的會徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

2、學(xué)情分析。

通過前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識,能夠進(jìn)行一般的推理和論證,但如何通過拼圖來證明勾股定理,學(xué)生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動手、動口、動腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識的樂趣。

3、教學(xué)目標(biāo):

根據(jù)八年級學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):

過程與方法目標(biāo):通過創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問題,運(yùn)用了觀察、演示、實驗、操作等方法學(xué)習(xí)新知。

情感態(tài)度價值觀目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。

4、教學(xué)重點(diǎn)、難點(diǎn)。

根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,以創(chuàng)設(shè)問題情境為先導(dǎo),運(yùn)用直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動學(xué)生學(xué)習(xí)積極性,并開展以探究活動為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。

1、教法。

“教必有法,而教無定法”,只有方法恰當(dāng),才會有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級學(xué)生思維活動特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。

2、學(xué)法。

“授人以魚,不如授人以漁”,通過設(shè)計問題序列,引導(dǎo)學(xué)生主動探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

3、教學(xué)模式。

根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。

利用多媒體課件,給學(xué)生出示2002年國際數(shù)學(xué)家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時為探索勾股定理提供背景材料,進(jìn)而引出課題。

1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當(dāng)補(bǔ)充等腰直角三角形邊長為1、2時,所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。

2、提出猜想:在活動1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個一般的直角三角形進(jìn)行證明.通過活動3,充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實驗,在動手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導(dǎo)學(xué)生進(jìn)行證法的'探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問題的能力。

4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語言表達(dá)能力和歸納概括能力。

學(xué)生對所學(xué)的知識是否掌握了,達(dá)到了什么程度?為了檢測學(xué)生對本課目標(biāo)的達(dá)成情況和加強(qiáng)對學(xué)生能力的培養(yǎng),設(shè)計一組有坡度的練習(xí)題:a組動腦筋,想一想,是本節(jié)基礎(chǔ)知識的理解和直接應(yīng)用;b組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識的能力。c組議一議,是一道實際應(yīng)用題型,給學(xué)生施展才智的機(jī)會,讓學(xué)生獨(dú)立思考后,討論交流得出解決問題的方法,增強(qiáng)了數(shù)學(xué)來源于實踐,反過來又作用于實踐的應(yīng)用意識,達(dá)到了學(xué)以致用的目的。

本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么?通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識成為體系。

讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

本節(jié)課的板書設(shè)計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇六

理解并掌握勾股定理的逆定理,會應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

【過程與方法】。

經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

【情感、態(tài)度與價值觀】。

體會事物之間的聯(lián)系,感受幾何的魅力。

【重點(diǎn)】勾股定理的逆定理及其證明。

【難點(diǎn)】勾股定理的逆定理的證明。

(一)導(dǎo)入新課。

復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。

提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。

出示古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的方法,以其中蘊(yùn)含何道理為切入點(diǎn)引出課題。

(二)講解新知。

請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗明確。

出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計算驗證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。

學(xué)生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇七

今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級數(shù)學(xué)下冊第十八章第一節(jié)的第一課時。

一、教學(xué)背景分析。

1、教材分析。

本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過20xx年國際數(shù)學(xué)家大會的會徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

2、學(xué)情分析。

通過前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識,能夠進(jìn)行一般的推理和論證,但如何通過拼圖來證明勾股定理,學(xué)生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動手、動口、動腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識的樂趣。

3、教學(xué)目標(biāo):

根據(jù)八年級學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):

過程與方法目標(biāo):通過創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問題,運(yùn)用了觀察、演示、實驗、操作等方法學(xué)習(xí)新知。

情感態(tài)度價值觀目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。

4、教學(xué)重點(diǎn)、難點(diǎn)。

二、教材處理。

根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,以創(chuàng)設(shè)問題情境為先導(dǎo),運(yùn)用直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動學(xué)生學(xué)習(xí)積極性,并開展以探究活動為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。

三、教學(xué)策略。

1、教法。

“教必有法,而教無定法”,只有方法恰當(dāng),才會有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級學(xué)生思維活動特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。

2、學(xué)法。

“授人以魚,不如授人以漁”,通過設(shè)計問題序列,引導(dǎo)學(xué)生主動探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

3、教學(xué)模式。

根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。

四、教學(xué)過程。

(一)創(chuàng)設(shè)情境,引入新課。

利用多媒體課件,給學(xué)生出示20xx年國際數(shù)學(xué)家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時為探索勾股定理提供背景材料,進(jìn)而引出課題。

(二)引導(dǎo)學(xué)生,探究新知。

1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當(dāng)補(bǔ)充等腰直角三角形邊長為1、2時,所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。

2、提出猜想:在活動1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個一般的直角三角形進(jìn)行證明.通過活動3,充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實驗,在動手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問題的能力。

4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語言表達(dá)能力和歸納概括能力。

(三)反饋訓(xùn)練,鞏固新知。

學(xué)生對所學(xué)的知識是否掌握了,達(dá)到了什么程度?為了檢測學(xué)生對本課目標(biāo)的達(dá)成情況和加強(qiáng)對學(xué)生能力的培養(yǎng),設(shè)計一組有坡度的練習(xí)題:a組動腦筋,想一想,是本節(jié)基礎(chǔ)知識的理解和直接應(yīng)用;b組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識的能力。c組議一議,是一道實際應(yīng)用題型,給學(xué)生施展才智的機(jī)會,讓學(xué)生獨(dú)立思考后,討論交流得出解決問題的方法,增強(qiáng)了數(shù)學(xué)來源于實踐,反過來又作用于實踐的應(yīng)用意識,達(dá)到了學(xué)以致用的目的。

(四)歸納小結(jié),深化新知。

本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么?通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識成為體系。

(五)布置作業(yè),拓展新知。

讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

(六)板書設(shè)計,明確新知。

本節(jié)課的板書設(shè)計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇八

勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

據(jù)此,制定教學(xué)目標(biāo)如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運(yùn)用勾股定理及其計算。

3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇九

教學(xué)。

設(shè)計、|板書設(shè)計及其依據(jù)面對面地對同行(同學(xué)科教師)或其他聽眾作全面講述的一項教研活動或交流活動。以下是小編整理的初中數(shù)學(xué)《勾股定理的逆定理》說課稿,歡迎大家閱讀參考。

一、教材分析:。

(一)、本節(jié)課在教材中的地位作用。

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

(二)、教學(xué)目標(biāo):。

根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標(biāo)。

知識技能:

1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

過程與方法:

1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程。

2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應(yīng)用。

3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。

情感態(tài)度:

(三)、學(xué)情分析:

盡管已到初二下學(xué)期學(xué)生知識增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。

重點(diǎn):勾股定理逆定理的應(yīng)用。

難點(diǎn):勾股定理逆定理的證明。

關(guān)鍵:輔助線的添法探索。

二、教學(xué)過程:

本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。

(一)、復(fù)習(xí)回顧:復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。

(二)、創(chuàng)設(shè)問題情境。

一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,

總結(jié)。

規(guī)律(包括難點(diǎn)突破)。

因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機(jī),讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點(diǎn),我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

(四)、組織變式訓(xùn)練。

本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運(yùn)用以往知識的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強(qiáng)有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

(五)、歸納小結(jié),納入知識體系。

本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。

(六)、作業(yè)布置。

由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。a組是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。b組題適當(dāng)加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。

三、

說教法、學(xué)法與教學(xué)手段。

為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨(dú)立探討、主動獲取知識。

總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十

1.知識與技能目標(biāo):會用勾股定理及直角三角形的判定條件解決實際問題。

2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

3.情感態(tài)度與價值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。

一、知識點(diǎn)講解。

知識點(diǎn)1:(已知兩邊求第三邊)。

1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。

2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。

3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?

知識點(diǎn)2:

利用方程求線段長。

(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?

(2)de與ce的位置關(guān)系。

(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?

利用方程解決翻折問題。

3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點(diǎn)b與點(diǎn)d重合,折痕為ef,求de的長。

5、折疊矩形abcd的一邊ad,折痕為ae,且使點(diǎn)d落在bc邊上的點(diǎn)f處,已知ab=8cm,bc=10cm,以b點(diǎn)為原點(diǎn),bc為x軸,ba為y軸建立平面直角坐標(biāo)系。求點(diǎn)f和點(diǎn)e坐標(biāo)。

6、邊長為8和4的矩形oabc的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對角線ac折疊后,點(diǎn)b落在第四象限b1處,設(shè)b1c交x軸于點(diǎn)d,求(1)三角形adc的面積,(2)點(diǎn)b1的坐標(biāo),(3)ab1所在的直線解析式.

知識點(diǎn)3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關(guān)系。

1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。

(2).將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,得到的三角形是____________。

(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。

二、課堂小結(jié)。

談一談你這節(jié)課都有哪些收獲?

三、課堂練習(xí)以上習(xí)題。

四、課后作業(yè)卷子。

本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學(xué)生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識和應(yīng)用能力。

針對本班學(xué)生的特點(diǎn),學(xué)生知識水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):

一、復(fù)習(xí)引入。

對上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯點(diǎn)。由于學(xué)生的注意力集中時間較短,學(xué)生知識水平低,引入內(nèi)容簡短明了,花費(fèi)時間短。

二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法。

活動一:用對媒體展示搬運(yùn)工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書。整個活動以學(xué)生為主體,教師及時的引導(dǎo)和強(qiáng)調(diào)。

活動二:解決例二梯子滑落的問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程。

活動三:學(xué)生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動中發(fā)展了學(xué)生的探究意識和合作交流的習(xí)慣;體會勾股定理的應(yīng)用價值,讓學(xué)生體會到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。

二、鞏固練習(xí),熟練新知。

通過測量旗桿活動,發(fā)展學(xué)生的探究意識,培養(yǎng)學(xué)生動手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的經(jīng)驗和感受。

在教學(xué)設(shè)計的實施中,也存在著一些問題:

1.由于本班學(xué)生能力的差距,本想著通過學(xué)生幫帶活動,使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設(shè)計中轉(zhuǎn)接的快,未給學(xué)困生充分的時間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來。

2.課堂上質(zhì)疑追問要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。

3.對學(xué)生課堂展示的評價方式應(yīng)體現(xiàn)生評生,師評生,及評價的針對性和及時性。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十一

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

(二)、教學(xué)目標(biāo):。

根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標(biāo)。

知識技能:

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

過程與方法:

2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應(yīng)用。

3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。

情感態(tài)度:

(三)、學(xué)情分析:

盡管已到初二下學(xué)期學(xué)生知識增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。

關(guān)鍵:輔助線的添法探索。

本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。

(一)、復(fù)習(xí)回顧:復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。

(二)、創(chuàng)設(shè)問題情境。

一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如***那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)。

因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機(jī),讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點(diǎn),我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

(四)、組織變式訓(xùn)練。

本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運(yùn)用以往知識的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強(qiáng)有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

(五)、歸納小結(jié),納入知識體系。

本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的`補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。

(六)、作業(yè)布置。

由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。a組是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。b組題適當(dāng)加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。

為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生***探討、主動獲取知識。

總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十二

教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說明勾股定理的正確性。

學(xué)生分析:

1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。

2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運(yùn)用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

教學(xué)目標(biāo):

1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達(dá)能力等,感受勾股定理的文化價值。

3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。

4、欣賞設(shè)計圖形美。

教學(xué)準(zhǔn)備階段:

學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

(一)引入。

同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。

(二)實驗探究。

設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:

(討論難點(diǎn):以斜邊為邊的正方形的面積找法)。

交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。

(三)探索所得結(jié)論的正確性。

當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?

1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)。

在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來交流講解,并引導(dǎo)學(xué)生進(jìn)行說理:

如圖2(用補(bǔ)的方法說明)。

師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)。

如圖3(用割的方法去探索)。

師介紹:(出示圖片)中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個結(jié)論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)。

20xx年,世界數(shù)學(xué)家大會在中國北京召開,當(dāng)時選用這個圖案作為會場主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)。

如圖4(構(gòu)造新圖形的方法去探索)。

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十三

全期共有六章。新授課程主要有一元一次不等式組、二元一次方程組、平面上直線的位置關(guān)系和度量關(guān)系、多項式的運(yùn)算、軸對稱圖形、數(shù)據(jù)的分析與比較。

二、學(xué)情分析。

本學(xué)期是本年級學(xué)生初中學(xué)習(xí)階段的第二學(xué)期。通過上期的學(xué)習(xí),大多數(shù)學(xué)生對學(xué)習(xí)數(shù)學(xué)產(chǎn)生了濃厚的學(xué)習(xí)興趣。更有像陳琦、嚴(yán)細(xì)毛、瞿俐純等同學(xué)更是對數(shù)學(xué)探究活動情有獨(dú)衷。上期期末考試中,0901整體水平稍高于兄弟班級,但有兩極分化的趨勢。0902班的及格率稍高于兄弟班,但低分段學(xué)生高于10%,而且這部分學(xué)生對學(xué)習(xí)缺乏應(yīng)有的熱情和自信,有自暴自棄之嫌。

三、目標(biāo)任務(wù)。

本學(xué)期的數(shù)學(xué)教學(xué)要從學(xué)生的實際問題出發(fā),積極引導(dǎo)學(xué)生觀察、思考、探究、討論、歸納數(shù)學(xué)問題,要鼓勵學(xué)生去探索、發(fā)現(xiàn)數(shù)學(xué)的奧妙,用學(xué)到的本領(lǐng)去解決復(fù)習(xí)鞏固、綜合運(yùn)用、拓展探索等不同層次的問題。教學(xué)中既要注意知識的覆蓋面,關(guān)注中考的重點(diǎn)、熱點(diǎn)和難點(diǎn),又要突出數(shù)學(xué)知識在社會、科技中的運(yùn)用,讓學(xué)生在學(xué)習(xí)、練習(xí)中熟記知識要點(diǎn)、考試內(nèi)容,掌握應(yīng)試技巧和數(shù)學(xué)思想方法,提高綜合素質(zhì),培養(yǎng)創(chuàng)新意識和探索能力。在期中、期末考試中力爭生均分70分左右,合格率60%以上,優(yōu)秀率30%以上,并將低分率控制到10%以下。

1、認(rèn)真鉆研教材,積極捕捉課改信息,盡力倡導(dǎo)自主、合作、探究學(xué)習(xí),努力培養(yǎng)學(xué)生的學(xué)習(xí)興趣和個性品質(zhì)。

2、把握學(xué)生思想動態(tài),及時與學(xué)生溝通,搞好師生關(guān)系。

3、充分利用課堂教學(xué)時間,幫助學(xué)生理解教學(xué)重難點(diǎn),訓(xùn)練考點(diǎn)、熱點(diǎn),強(qiáng)化記憶,形成能力,提高成績。

4、改進(jìn)教學(xué)方法,用多媒體課件,實物等創(chuàng)設(shè)情景進(jìn)行教學(xué),力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機(jī)會。

5、精講多練,在教學(xué)新知識的同時,注重舊知識的復(fù)習(xí),使所學(xué)知識系統(tǒng)化,條理化,讓學(xué)生在練習(xí)、測試中鞏固提高,減少遺忘。

6、開辟第二課堂,在不加重學(xué)生負(fù)擔(dān)的前提下,積極引導(dǎo)學(xué)生閱讀課外書,促進(jìn)學(xué)生自主、合作,探究學(xué)習(xí),培養(yǎng)興趣,提高能力。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十四

各位熱愛數(shù)學(xué)的初中同學(xué)們要注意啦,小編通過認(rèn)真分析和詳細(xì)的筆記,已經(jīng)將初中數(shù)學(xué)知識點(diǎn)歸納總結(jié)大全整理出來了。下面大家就跟隨小編一起來看看勾股定理的知識點(diǎn)總結(jié)吧。更多更全的初中數(shù)學(xué)訊息盡在。

1.勾股定理內(nèi)容:如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。

2.勾股定理的證明:

勾股定理的證明方法很多,常見的是拼圖的方法。

用拼圖的方法驗證勾股定理的思路是:

(1)圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會改變;。

(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。

4.勾股定理的適用范圍:

勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征。

1.逆定理的內(nèi)容:如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。

(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b.

2.利用勾股定理的逆定理判斷一個三角形是否為直角三角形的一般步驟:

(1)確定最大邊;。

(2)算出最大邊的平方與另兩邊的平方和;。

(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。

能夠構(gòu)成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù).

由直角三角形三邊為邊長所構(gòu)成的三個正方形滿足“兩個較小面積和等于較大面積”。

解決圓柱側(cè)面兩點(diǎn)間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十五

1、了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;。

2、初步培養(yǎng)學(xué)生觀察、分析及概括的能力;。

3、通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。

一、教學(xué)重點(diǎn)、難點(diǎn)。

重點(diǎn):通過具體例子了解公式、應(yīng)用公式、

難點(diǎn):從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。

二、重點(diǎn)、難點(diǎn)分析。

人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運(yùn)算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認(rèn)識和改造世界帶來很多方便。

三、知識結(jié)構(gòu)。

本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議。

1、對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對公式的靈活應(yīng)用。

2、在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運(yùn)算推導(dǎo)新公式。

3、在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再從一般到特殊認(rèn)識過程,有助于提高學(xué)生分析問題、解決問題的能力。

(一)知識教學(xué)點(diǎn)。

1、使學(xué)生能利用公式解決簡單的實際問題、

2、使學(xué)生理解公式與代數(shù)式的關(guān)系、

(二)能力訓(xùn)練點(diǎn)。

1、利用數(shù)學(xué)公式解決實際問題的能力、

2、利用已知的公式推導(dǎo)新公式的能力、

(三)德育滲透點(diǎn)。

數(shù)學(xué)來源于生產(chǎn)實踐,又反過來服務(wù)于生產(chǎn)實踐、

(四)美育滲透點(diǎn)。

二、學(xué)法引導(dǎo)。

1、數(shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問小學(xué)里學(xué)過的公式為基礎(chǔ)、突破難點(diǎn)。

2、學(xué)生學(xué)法:觀察分析推導(dǎo)計算。

三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法。

1、重點(diǎn):利用舊公式推導(dǎo)出新的圖形的計算公式、

2、難點(diǎn):同重點(diǎn)、

3、疑點(diǎn):把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差、

四、課時安排。

1課時。

五、教具學(xué)具準(zhǔn)備。

投影儀,自制膠片。

六、師生互動活動設(shè)計。

七、教學(xué)步驟。

(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入。

板書:公式。

師:小學(xué)里學(xué)過哪些面積公式?

板書:s=ah。

(出示投影1)。解釋三角形,梯形面積公式。

【教法說明】讓學(xué)生感知用割補(bǔ)法求圖形的面積。

(二)探索求知,講授新課。

師:下面利用面積公式進(jìn)行有關(guān)計算。

(出示投影2)。

例1如圖是一個梯形,下底(米),上底,高,利用梯形面積公式求這個梯形的面積s。

師生共同分析:

1、根據(jù)梯形面積計算公式,要計算梯形面積,必須知道哪些量?這些現(xiàn)在知道嗎?

2、題中“m”是什么意思?(師補(bǔ)充說明厘米可寫作cm,千米寫作km,平方厘米寫作等)。

學(xué)生口述解題過程,教師予以指正并指出,強(qiáng)調(diào)解題的規(guī)范性。

【教法說明】。

1、通過分析,引導(dǎo)學(xué)生在一個實際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個問題,必須已知哪些量。

2、用公式計算時,要先寫出公式,然后代入計算,養(yǎng)成良好的解題習(xí)慣。

(出示投影3)。

例2如圖是一個環(huán)形,外圓半徑,內(nèi)圓半徑求這個環(huán)形的面積。

學(xué)生討論:

1、環(huán)形是怎樣形成的、

2、如何求環(huán)形的面積討論后請學(xué)生板演,其他同學(xué)做在練習(xí)本上,教育巡回指導(dǎo)。

評講時注意:

1、如果有學(xué)生作了簡便計算,則給予表揚(yáng)和鼓勵:如果沒有學(xué)生這樣計算,則啟發(fā)學(xué)生這樣計算。

2、本題實際上是由圓的面積公式推導(dǎo)出環(huán)形面積公式。

3、進(jìn)一步強(qiáng)調(diào)解題的規(guī)范性。

教法說明,讓學(xué)生做例題,學(xué)生能自己評判對與錯,優(yōu)與劣,是獲取知識的一個很好的途徑。

測試反饋,鞏固練習(xí)。

(出示投影4)。

1、計算底,高的三角形面積。

3、已知圓的半徑,,求圓的周長c和面積s。

4、從a地到b地有20千米上坡路和30千米下坡路,某車上坡時每小時走千米,下坡時每小時走千米。

(1)求a地到b地所用的時間公式。

(2)若千米/時,千米/時,求從a地到b地所用的時間。

【教法說明】面向全體,分層教學(xué),能照顧兩極,使所有的同學(xué)有所發(fā)展、

八、隨堂練習(xí)。

(一)填空。

1、圓的半徑為r,它的面積________,周長_____________。

(二)一種塑料三角板形狀,尺寸如圖,它的厚度是,求它的體積v,如果,v是多少?

九、布置作業(yè)。

(一)必做題課本第___頁x、x、x第___頁x組x。

(二)選做題課本第___頁___組x。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十六

隨著社會的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識的學(xué)習(xí),更重要的是體現(xiàn)知識的認(rèn)知發(fā)展過程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動進(jìn)行觀察、實驗、猜想、驗證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。

本節(jié)知識是在學(xué)生掌握了直角三角形的三個性質(zhì):直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個非常重要的性質(zhì),它揭示了一個直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無論是課前準(zhǔn)備和課上交流以及課下活動都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實際生活中的重要作用,是進(jìn)行愛國教育的重要題材!

本節(jié)課的教育對象是初二下的學(xué)生,共性是思維活躍,參與意識較強(qiáng)。而且一般家庭都有電腦,對教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十七

掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。

2、能力與過程目標(biāo)。

經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。

3、情感與態(tài)度目標(biāo)。

通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

二、教學(xué)重點(diǎn)、難點(diǎn)。

重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計算。

難點(diǎn):有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

學(xué)生:26米。

教師:能寫出算式嗎?學(xué)生:……。

教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問題。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十八

教學(xué)目標(biāo):

1、知識與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計算,并解決一些簡單的實際問題。

2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。

3、情感、態(tài)度與價值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷探索及驗證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡單的實際問題。

教學(xué)難點(diǎn):

課前準(zhǔn)備:

多媒體ppt,相關(guān)圖片。

教學(xué)過程:

(一)情境導(dǎo)入。

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國際數(shù)學(xué)大會會標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價值。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇十九

教學(xué)設(shè)計是把教學(xué)原理轉(zhuǎn)化為教學(xué)材料和教學(xué)活動的計劃。教學(xué)設(shè)計要遵循教學(xué)過程的基本規(guī)律,選擇教學(xué)目標(biāo),以解決教什么的問題。

《用函數(shù)的觀點(diǎn)看一元二次方程》。

一、教學(xué)目標(biāo):

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.。

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

二、教學(xué)重點(diǎn)。

利用二次函數(shù)的圖象求一元二次方程的近似根。

教學(xué)難點(diǎn):

理解二次函數(shù)與x軸交點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

三、教學(xué)方法:啟發(fā)引導(dǎo)合作交流。

四:教具、學(xué)具:課件。

五、教學(xué)媒體:計算機(jī)、實物投影。

六、教學(xué)過程:

[活動1]檢查預(yù)習(xí)引出課題。

預(yù)習(xí)作業(yè):

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。

教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。

[活動2]創(chuàng)設(shè)情境探究新知。

問題。

1.課本p16問題.

(結(jié)合預(yù)習(xí)題1,完成課本p16觀察中的題目。)。

師生行為:教師提出問題1,給學(xué)生獨(dú)立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨(dú)立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。

二次函數(shù)y=ax2+bx+c的。

圖象和x軸交點(diǎn)。

兩個交點(diǎn)。

一個交點(diǎn)。

沒有交點(diǎn)。

教師重點(diǎn)關(guān)注:

1.學(xué)生能否把實際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;

2.學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;

3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。

設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。

[活動3]例題學(xué)習(xí)鞏固提高。

問題:例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).

師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。

教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。

設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。

問題:(1)p97.習(xí)題1、2(1)。

師生行為:教師提出問題,學(xué)生獨(dú)立思考后寫出答案,師生共同評價;問題(2)學(xué)生獨(dú)立思考后同桌交流,實物投影出學(xué)生解題過程,教師強(qiáng)調(diào)正確解題思路。

教師關(guān)注:學(xué)生能否準(zhǔn)確應(yīng)用本節(jié)課的知識解決問題;學(xué)生解題時候暴露的共性問題作針對性的點(diǎn)評,積累解題經(jīng)驗。

設(shè)計意圖:這兩個題目就是對本節(jié)課知識的鞏固應(yīng)用,讓新知識內(nèi)化升華,培養(yǎng)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。

[活動5]自主小結(jié),深化提高:

1.通過這節(jié)課的學(xué)習(xí),你獲得了哪些數(shù)學(xué)知識和方法?

2.這節(jié)課你參與了哪些數(shù)學(xué)活動?談?wù)勀惬@得知識的方法和經(jīng)驗。

師生活動:學(xué)生思考后回答,教師對學(xué)生的錯誤予以糾正,不足的予以補(bǔ)充,精彩的適當(dāng)表揚(yáng)。

設(shè)計意圖:

1.題促使學(xué)生反思在知識和技能方面的收獲;

2.題讓學(xué)生反思自己的學(xué)習(xí)活動、認(rèn)知過程,總結(jié)解決問題的策略,積累學(xué)習(xí)知識的方法,力求不同的學(xué)生有不同的發(fā)展。

[活動6]分層作業(yè),發(fā)展個性:

1.(必做題)閱讀教材并完成p97習(xí)題21。2:3、4.。

2.(備選題)p97習(xí)題21。2:5、6。

設(shè)計意圖:分層作業(yè),使不同層次的學(xué)生都能有所收獲。

七、教學(xué)反思:

1.注重知識的發(fā)生過程與思想方法的應(yīng)用。

《用函數(shù)的觀點(diǎn)看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學(xué)生“跳一跳就可以摘到桃子”。

法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。

2.關(guān)注學(xué)生學(xué)習(xí)的過程。

在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動空間、為學(xué)生搭建自主學(xué)習(xí)的平臺;學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實踐、思考、交流、合作的過程,其知識的形成和能力的培養(yǎng)相伴而行,創(chuàng)造“海闊憑魚躍,天高任鳥飛”的課堂境界。

3.強(qiáng)化行為反思。

“反思是數(shù)學(xué)的重要活動,是數(shù)學(xué)活動的核心和動力”,本節(jié)課在教學(xué)過程中始終融入反思的環(huán)節(jié),用問題的設(shè)計,課堂小結(jié),課后的數(shù)學(xué)日記等方式引發(fā)學(xué)生反思,使學(xué)生在掌握知識的同時,領(lǐng)悟解決問題的策略,積累學(xué)習(xí)方法。說到數(shù)學(xué)日記,“數(shù)學(xué)日記”就是學(xué)生以日記的形式,記述學(xué)生在數(shù)學(xué)學(xué)習(xí)和應(yīng)用過程中的感受與體會。通過日記的方式,學(xué)生可以對他所學(xué)的數(shù)學(xué)內(nèi)容進(jìn)行總結(jié),寫出自己的收獲與困惑?!皵?shù)學(xué)日記”該如何寫,寫什么呢?開始摸索寫數(shù)學(xué)日記的時候,我根據(jù)課程標(biāo)準(zhǔn)的內(nèi)容給學(xué)生提出寫數(shù)學(xué)日記的簡單模式:日記參考格式:課題;所涉及的重要數(shù)學(xué)概念或規(guī)律;理解得最好的地方;不明白的或還需要進(jìn)一步理解的地方;所涉及的數(shù)學(xué)思想方法;所學(xué)內(nèi)容能否應(yīng)用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學(xué)日記大致分為:課堂日記、復(fù)習(xí)日記、錯題日記。

4.優(yōu)化作業(yè)設(shè)計。

作業(yè)的設(shè)計分必做題和選做題,必做題鞏固本課基礎(chǔ)知識,基本要求;選做題屬于拓廣探索題目,培養(yǎng)學(xué)生的創(chuàng)新能力和實踐能力。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇二十

新學(xué)期已到來,我們又要投入到緊張、繁忙而有序地教育教學(xué)工作中,使自己今后的教學(xué)工作中能有效地、有序地貫徹新的教育精神,圍繞我校新學(xué)期的工作計劃要求制定初中一年級數(shù)學(xué)教學(xué)設(shè)計方案:

一、教材分析:

二、教學(xué)目標(biāo):

三、教學(xué)措施:

2、把握學(xué)生思想動態(tài),及時與學(xué)生溝通,搞好師生關(guān)系、

7、加強(qiáng)培優(yōu)補(bǔ)中促差生的個別輔導(dǎo),因材施教,培養(yǎng)學(xué)生的個性特長、特別要多鼓勵后進(jìn)生,提高他們的學(xué)習(xí)興趣,培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣:(1)課前預(yù)習(xí)習(xí)慣;(2)積極思考,主動發(fā)言習(xí)慣;(3)自主作業(yè)習(xí)慣;(4)課后復(fù)習(xí)習(xí)慣。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇二十一

全期共有六章。新授課程主要有一元一次不等式組、二元一次方程組、平面上直線的位置關(guān)系和度量關(guān)系、多項式的運(yùn)算、軸對稱圖形、數(shù)據(jù)的分析與比較。

本學(xué)期是本年級學(xué)生初中學(xué)習(xí)階段的第二學(xué)期。通過上期的學(xué)習(xí),大多數(shù)學(xué)生對學(xué)習(xí)數(shù)學(xué)產(chǎn)生了濃厚的學(xué)習(xí)興趣。更有像陳琦、嚴(yán)細(xì)毛、瞿俐純等同學(xué)更是對數(shù)學(xué)探究活動情有獨(dú)衷。上期期末考試中,0901整體水平稍高于兄弟班級,但有兩極分化的趨勢。0902班的及格率稍高于兄弟班,但低分段學(xué)生高于10%,而且這部分學(xué)生對學(xué)習(xí)缺乏應(yīng)有的熱情和自信,有自暴自棄之嫌。

本學(xué)期的數(shù)學(xué)教學(xué)要從學(xué)生的實際問題出發(fā),積極引導(dǎo)學(xué)生觀察、思考、探究、討論、歸納數(shù)學(xué)問題,要鼓勵學(xué)生去探索、發(fā)現(xiàn)數(shù)學(xué)的奧妙,用學(xué)到的本領(lǐng)去解決復(fù)習(xí)鞏固、綜合運(yùn)用、拓展探索等不同層次的問題。教學(xué)中既要注意知識的覆蓋面,關(guān)注中考的重點(diǎn)、熱點(diǎn)和難點(diǎn),又要突出數(shù)學(xué)知識在社會、科技中的運(yùn)用,讓學(xué)生在學(xué)習(xí)、練習(xí)中熟記知識要點(diǎn)、考試內(nèi)容,掌握應(yīng)試技巧和數(shù)學(xué)思想方法,提高綜合素質(zhì),培養(yǎng)創(chuàng)新意識和探索能力。在期中、期末考試中力爭生均分70分左右,合格率60%以上,優(yōu)秀率30%以上,并將低分率控制到10%以下。

1、認(rèn)真鉆研教材,積極捕捉課改信息,盡力倡導(dǎo)自主、合作、探究學(xué)習(xí),努力培養(yǎng)學(xué)生的學(xué)習(xí)興趣和個性品質(zhì)。

2、把握學(xué)生思想動態(tài),及時與學(xué)生溝通,搞好師生關(guān)系。

3、充分利用課堂教學(xué)時間,幫助學(xué)生理解教學(xué)重難點(diǎn),訓(xùn)練考點(diǎn)、熱點(diǎn),強(qiáng)化記憶,形成能力,提高成績。

4、改進(jìn)教學(xué)方法,用多媒體課件,實物等創(chuàng)設(shè)情景進(jìn)行教學(xué),力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機(jī)會。

5、精講多練,在教學(xué)新知識的同時,注重舊知識的復(fù)習(xí),使所學(xué)知識系統(tǒng)化,條理化,讓學(xué)生在練習(xí)、測試中鞏固提高,減少遺忘。

6、開辟第二課堂,在不加重學(xué)生負(fù)擔(dān)的前提下,積極引導(dǎo)學(xué)生閱讀課外書,促進(jìn)學(xué)生自主、合作,探究學(xué)習(xí),培養(yǎng)興趣,提高能力。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇二十二

教學(xué)目標(biāo):

1、知識與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計算,并解決一些簡單的實際問題。

2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。

3、情感、態(tài)度與價值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷探索及驗證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡單的實際問題。

教學(xué)難點(diǎn):

課前準(zhǔn)備:

多媒體ppt,相關(guān)圖片。

教學(xué)過程:

(一)情境導(dǎo)入。

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國際數(shù)學(xué)大會會標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價值。

已知一直角三角形的兩邊,如何求第三邊?

學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。

(二)學(xué)習(xí)新課。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇二十三

1、讓學(xué)生了解鄂倫春族的服飾特點(diǎn)、生活習(xí)性等簡單知識。培養(yǎng)學(xué)生熱愛少數(shù)民族的感情。

2、有感情地演唱歌曲《勇敢的鄂倫春》。

重點(diǎn):演唱歌曲《勇敢的鄂倫春》。

難點(diǎn):

1、歌曲中“一呀一桿槍”“日夜巡邏”的音準(zhǔn)及咬字吐字。

2、用打擊樂器敲打節(jié)奏并嘗試三個聲部的敲擊并能為歌曲伴奏。

一、情境引入。

教師頭戴小鹿頭飾:小朋友們,大家好!我是森林里的小鹿,今天,我想邀請大家到森林里去郊游。(課件:出示森林圖片,背景音樂《小鹿,小鹿》。)。

師:森林里有許多可愛的小動物,我們來看看都有誰呀!

(課件:逐一出示各種小動物圖片。)。

師:我還給大家?guī)硪皇缀寐牭膬焊?,請小朋友們輕輕拍手為我伴奏好嗎?

(教師拍手讀兩遍歌詞,適當(dāng)做簡單律動。)。

二、學(xué)唱歌曲。

師:小朋友快瞧,那里有一群我的小伙伴唱著歌向我們跑過來了。

(課件:出示一群奔跑的小鹿,同時播放歌曲錄音。)。

師:現(xiàn)在我們來到了森林游樂園,大家看,這只看門的小鹿好象有話要對我們說。

三、游戲創(chuàng)編。

學(xué)生戴上各種小動物的頭飾。

(課件:小鹿說:“大家先別著急,我還有要求呢,你們要把歌里唱的小鹿是怎么做的跟自己平時玩的游戲結(jié)合起來,教給游樂園里的小動物,怎么樣,能做到嗎?)。

學(xué)生分組創(chuàng)編,教師巡視指導(dǎo)。

四、分組展示。

學(xué)生依次展示兩到三組,每組展示完可由教師和學(xué)生進(jìn)行評價。

五、集體游戲。

師:小朋友們玩的游戲可真精彩,我也想把自己編的游戲跟大家一起玩,誰愿意上來?(挑選10人左右上臺)。下面的小朋友,請你拍手為我們伴奏,學(xué)會了這個游戲,下課后可以跟你的小伙伴一起玩呢!

教師講解游戲規(guī)則,與學(xué)生進(jìn)行游戲。

六、結(jié)束部分。

(課件:小鹿說:“小朋友們,時間過得真快,我們的郊游要結(jié)束了,可我看到咱們玩過的地方有許多小朋友留下的垃圾,如果每個人都這樣不愛護(hù)環(huán)境,我的家會變成什么樣子呀!”)。

師:小朋友們,我們該怎么辦呢?(學(xué)生自由說)。

師:那讓我們一起行動起來,還小動物們一個美麗的家吧!

將本文的word文檔下載到電腦,方便收藏和打印。

初中數(shù)學(xué)勾股定理教學(xué)設(shè)計篇二十四

(一)知識與技能目標(biāo):

2、會利用勾股定理進(jìn)行直角三角形的簡單計算。

3、了解有關(guān)勾股定理的歷史知識。

(二)過程與方法目標(biāo)。

經(jīng)歷課前預(yù)習(xí)和課上觀察、分析、歸納、猜想、驗證并運(yùn)用實踐的過程,了解數(shù)學(xué)知識的生成與發(fā)展過程。通過了解勾股定理的幾個著名證法(趙爽證法、歐幾里得證法等),使學(xué)生感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內(nèi)涵。使學(xué)生自主學(xué)習(xí)能力和分析問題解決問題的能力得到提高。培養(yǎng)與人合作的意識。

(三)情感、態(tài)度和價值觀。

1、通過自主學(xué)習(xí)培養(yǎng)學(xué)生探究、發(fā)現(xiàn)問題的能力,體驗獲取數(shù)學(xué)知識的過程。

2、通過小組合作、探索培養(yǎng)學(xué)生的團(tuán)隊精神,以及不畏艱難,實事求是的學(xué)習(xí)態(tài)度和嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣。

3、通過了解有關(guān)勾股定理的中西歷史知識,激發(fā)學(xué)生的愛國熱情,培養(yǎng)學(xué)生的民族自豪感。

【本文地址:http://mlvmservice.com/zuowen/15610610.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔