教案的撰寫應注重邏輯嚴密和表達準確,以保證教學安排的有效性。在編寫教案時,教師需要注意一些關鍵要素。首先,教案的目標要明確,具體而又可操作。其次,教案的內容要符合學生的實際需求,具有循序漸進的邏輯順序。此外,教案的教學方法要多樣化,能夠激發(fā)學生的興趣和積極性。最后,教案的評價要科學準確,能夠客觀地反映學生的學習情況和教學效果。以下是一些教育專家對于編寫教案的建議和指導。
高中數(shù)學必修教案篇一
曾經有同學問我,你是怎么學數(shù)學的,也沒見你做多少的練習題,可數(shù)學的成績不錯。我覺得課堂的學習是關鍵,要緊緊抓住課堂的45分鐘的時間。在這有限的時間內,是教師與學生的交流,這時候,作為學生你的思維要跟得上老師的變化,這個知識點的關鍵點在那兒,前后的聯(lián)系是什么,在聽課的過程中不能分心、走神,提高聽課的效率。為此,在每一堂課前,我都要做好以下幾項工作。
1、課前預習是關鍵。
相信我們學生都聽到過老師對我們的要求,要進行課前預習,不論什么課,這是所有的老師都會提的一個要求,可真正進行課前預習的學生有多少呢,班里面我們也沒有統(tǒng)計過,不過我覺得有一半的學生預習了,就是不錯的了,另外,既使有的學生也預習了,只是走馬觀花的看一下書,那效果可想而知。
預習也要講究方法,在預習中發(fā)現(xiàn)了難點,出現(xiàn)了自己解決不了的問題,這個就是聽課中的重點,要做好標記;通過預習還能發(fā)現(xiàn)自己沒有掌握住的舊知識,起到溫故而知新的作用,可以對知識起到查漏補缺的效果;另外,預習的過程也是一個自學的過程,有助于提高自己分析問題、解決問題的能力,將自己在預習中的理解和老師講解的進行對照,不斷進行改進,可以起到提高自己思維水平的作用。
2、科學聽課是保障。
所謂科學聽課也就是說在教師授課的過程中學生的表現(xiàn),是不是為這節(jié)課做好了準備工作。在聽課的過程中要調動眼、耳、心、口、手等各個器官,全身心的投入到課堂學習中去,在聽課的過程中遇到重要的知識點同時又要做好筆記,但是不能因為筆記的原因而影響到聽課,所以,這里面有一個科學合理安排聽課時間的問題。聽課的過程中是一個高度集中注意力的過程,但同時也是有張有弛;聽課的過程中也的聽的技巧,聽教師如何分析?如何歸納總結?如何突破難點,結合自己在預習時又是如何理解的,相互比較,同時要用心思考,跟上教師的教學思路,能在教師的啟發(fā)和點撥下有所得,這是這一堂課最根本的關節(jié)所在。
3、做一定量的習題。
在數(shù)學的學習過程中,對于做多少習題并沒有確切的數(shù)據,但有兩種傾向:一種是做大量的習題;另一種是做適當?shù)牧曨}。做大量的習題的做法來源于題海戰(zhàn)術,曾經有一種說法,做題吧,在做題的過程中你就掌握了知識點,誠然,多做題對于掌握知識是有好處的,但并不是題做的越多越好。在高中的學習過程中,時間非常緊,在有限的時間內要學習好幾門知識,你數(shù)學題做的多了,難免會在其他科目上用時不夠,會對其他科目的學習造成影響。因此,大量的做題是不可取的。
在學習的過程中,我崇尚做適當?shù)牧曨},而且在實際的學習過程中我也是這樣做的。做題的過程中是一個舉一反三的過程,做會這一道題就掌握了這一類題目的做法,關鍵的問題是在做完這道題后的分析總結,數(shù)學的題目太多了,你是不可能做完所有的題的,因此,我們在掌握知識點的時候是一類一類的掌握,所謂的舉一反三,觸類旁通。每當做完一道題后尤其是難度大的題目,我會靜下心來再從頭看一遍,把其中的關鍵點再熟悉一遍,雖然當時看起來是費了一點時間,但那收獲是很大的。以后再遇到這類題目的時候,解決起來就相對容易的多。
高中數(shù)學必修教案篇二
集合這部分的主要內容是集合的概念、表示方法和集合之間的關系和運算。縱觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內容,也是高考的必考內容。復習中首先要把握基礎知識,深刻理解本章的基礎知識點,重點掌握集合的概念和運算。本章常用的數(shù)學思想方法主要有:數(shù)形結合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關系等。復習時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學思想方法來分析問題、解決問題的能力。
(二)規(guī)律方法總結。
1、集合中元素的互異性是集合概念的重點考查內容。一般給出兩個集合,并告知兩個集合之間的關系,求集合中某個參數(shù)的范圍或值的時候,要特別驗證是否符合元素之間互異性。2、考查集合的運算和包含關系,解題中常用到分類討論思想,分類時注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運算問題是以已知的集合或運算為背景,引出新的集合概念或運算,仔細審題,弄清新定義的意義才是關鍵。
基本初等函數(shù)。
基本初等函數(shù)的內容是函數(shù)的基礎,也是研究其他較復雜函數(shù)的轉化目標,掌握基本初等函數(shù)的圖象和性質是學習函數(shù)知識的必要的一步。與指數(shù)函數(shù)、對數(shù)函數(shù)有關的試題,大多以考查基本初等函數(shù)的性質為依托,結合運算推理來解題。所以這部分內容更注重通過函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質,熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運用數(shù)形結合思想來解題的能力。
(二)規(guī)律方法總結。
1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識結合考查綜合應用知識解決函數(shù)問題的能力。指數(shù)方程的求解常利用換元法轉化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結合成的函數(shù)的單調性的判定注意底數(shù)與1的關系的判定。
2、解對數(shù)方程(或不等式)就是將對數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉化必須是等價的,特別要考慮到對數(shù)函數(shù)定義域。
高中數(shù)學必修教案篇三
(二)倍角公式。
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍數(shù)關系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對公式會“正用”,“逆用”,“變形使用”;。
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識銜接起來使用。
重點難點。
重點:幾組三角恒等式的應用。
難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式。
高中數(shù)學必修教案篇四
根據德國心理學家艾賓浩斯繪制的遺忘曲線,學生對知識的遺忘遵從先快后慢的規(guī)律,有效的回憶可以加深對知識的理解,掌握知識的內在聯(lián)系,延緩知識的遺忘。教師要采用不同的形式,整理階段的基礎知識,使內容條理化、清晰化地呈現(xiàn)在同學的面前,從而完成由厚到薄的過程,對重難點和關鍵點,進行重點的、有針對性的講解。配以適當?shù)木毩?,提高學生對基本知識和基本方法的深刻性和準確性的理解掌握。促進學生科學合理的知識結構的形成,使知識系統(tǒng)化和網絡化。
舊知檢測。
要想有效的提高課堂的復習效率,就須克服“眼高手低”的毛病。很多同學上課時處于一種混沌的狀態(tài),一聽就懂,一做就錯;一聽就會,一到自己做就不會了。為避免這樣的情況,就必須讓學生更好地了解自己知識的掌握情況??梢栽O置幾個基礎的填空和一個左右的解答題,通過解答的過程讓學生“自知自明”。激發(fā)起興趣,有效地提高復習的效率。
精選精講。
精心的選擇適量的典型例題,分析解決這些問題應該是一堂復習課的核心內容。解題的目的絕不是僅僅解決這個問題本身,而是要給出通性通法,揭示解決問題的一般規(guī)律,熟練掌握數(shù)學思想方法,提高學生分析問題、解決問題的能力。
高中數(shù)學必修教案篇五
立體幾何的證明是數(shù)學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二、立足課本,夯實基礎。
學習立體幾何的一個捷徑就是認真學習課本中定理的證明,尤其是一些很關鍵的定理的證明。定理的內容都很簡單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學的時候一般都很復雜,甚至很抽象。深刻掌握定理的內容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力。
為了培養(yǎng)空間想象力,可以在剛開始學習時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關系。通過模型中的點、線、面之間的位置關系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀。空間想象力并不是漫無邊際的胡思亂想,而是以提設為根據,以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
四、“轉化”思想的應用。
解立體幾何的問題,主要是充分運用“轉化”這種數(shù)學思想,要明確在轉化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關鍵的。例如:
(1)兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內的射影所成的角。
(2)異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。
(3)面和面平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。
五、建立數(shù)學模型。
新課程標準中多次提到“數(shù)學模型”一詞,目的是進一步加強數(shù)學與現(xiàn)實世界的聯(lián)系。數(shù)學模型是把實際問題用數(shù)學語言抽象概括,再從數(shù)學角度來反映或近似地反映實際問題時,所得出的關于實際問題的描述。數(shù)學模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實際問題越復雜,相應的數(shù)學模型也越復雜。
從形狀的角度反映現(xiàn)實世界的物體時,經過抽象得到的空間幾何體就是現(xiàn)實世界物體的幾何模型。由于立體幾何學習的知識內容與學生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實世界中的許多物體。他們直觀、具體、對培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長方體,其中的棱與棱、棱與面、面與面之間的位置關系,是研究直線與直線、直線與平面、平面與平面位置關系的直觀載體。學習時,一方面要注意從實際出發(fā),把學習的知識與周圍的實物聯(lián)系起來,另一方面,也要注意經歷從現(xiàn)實的生活抽象空間圖形的過程,注重探索空間圖形的位置關系,歸納、概括它們的判定定理和性質定理。
高中數(shù)學必修教案篇六
引用:本文《高中化學必修二教案(人教版)》來源于師庫網,由師庫網博客摘錄整理,以下是的詳細內容:開發(fā)利用金屬礦物和海水...《基本營養(yǎng)物質》教案化學反應的速率和限度化學能與熱能化學與資源綜合利用、環(huán)...最簡單的有機化合物dd...《生活中兩種常見的'有機...來自石油和煤的兩種基本...引用:師庫網溫馨提示本篇內容來源于師庫網,旨在用于課件制作交流,非盈利性質,僅供參考,針對本文的問題如需了解更詳細,可留言或者聯(lián)系客服tags:教案、課件、師庫網、教案網、課件網
高中數(shù)學必修教案篇七
集合這部分的主要內容是集合的概念、表示方法和集合之間的關系和運算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內容,也是高考的必考內容。復習中首先要把握基礎知識,深刻理解本章的基礎知識點,重點掌握集合的概念和運算。
本章常用的數(shù)學思想方法主要有:數(shù)形結合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關系等。復習時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學思想方法來分析問題、解決問題的能力。
函數(shù)。
函數(shù)是高中數(shù)學的核心內容,函數(shù)的思想方法貫穿了高中數(shù)學的始終。近幾年高考試題函數(shù)熱點之一是考查函數(shù)的定義域、值域、單調性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關系密切,要學會對具體問題抽象概括、分析探索、透徹理解,從而構造函數(shù),借助方程、不等式的知識,最終解決問題。實現(xiàn)函數(shù)、方程、不等式的溝通與轉化,是高考的又一熱點??疾楹瘮?shù)內容的同時,用函數(shù)的思想觀點研究問題,以及數(shù)形結合思想、分類討論思想的靈活熟練應用,也是高考的一個重點。
規(guī)律方法總結。
求函數(shù)解析式時,針對條件的特點可選用換元法、待定系數(shù)法、湊項法、列方程組法等進行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。判斷函數(shù)單調性主要的方法有定義法、導數(shù)法、圖象法。
高中數(shù)學必修教案篇八
要學好數(shù)學,最關鍵的是要有一個好的基礎。只有打牢數(shù)學基礎,才能夠把高中數(shù)學好,同樣只有打好基礎,才能夠數(shù)學取得高分。打好基礎是最關鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。
想學好數(shù)學,對數(shù)學感興趣。
其實學好數(shù)學最好的辦法就是發(fā)自內心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數(shù)學的積極性也就提高了,覺得數(shù)學并沒有那么難,就愿意去多接觸了。
多做題反復做,有題感。
其實學好數(shù)學辦法就是要大量做題,反復去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數(shù)學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
高中數(shù)學必修教案篇九
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質。
(1)側棱都相等,側面是平行四邊形。
(2)兩個底面與平行于底面的截面是全等的多邊形。
(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形。
2、棱錐。
棱錐的性質:
(1)側棱交于一點。側面都是三角形。
3、正棱錐。
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個特殊的直角三角形。
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高中數(shù)學必修教案篇十
1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】 經歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系
【情感態(tài)度與價值觀】 感受數(shù)形結合的思想方法;
【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設情境,引入課題
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學生回答.
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學的內容―數(shù)軸(板書課題)
(二)得出定義,揭示內涵
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點
(2)標正方向
(3)選取單位長度,標數(shù)(強調:負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫
(四)動手練習,歸納總結
1、在數(shù)軸上的點表示有理數(shù)。
一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題
(1)在數(shù)軸上表示的兩個數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
(2)正數(shù)都(大于 )0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
鞏固所學知識
(五)、歸納小結,強化思想
師生總結本課內容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關系
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示
師:你感到自己今天的表現(xiàn)怎樣?
習題2.2 1、2、3
選作第4題
高中數(shù)學必修教案篇十一
一、教學目標:1.了解普查的意義.2.結合具體的實際問題情境,理解隨機抽樣的必要性和重要性.
二、重難點:結合具體的實際問題情境,理解隨機抽樣的必要性和重要性.
三、教學方法:閱讀材料、思考與交流。
四、教學過程。
(一)、普查。
1、【問題提出】p7。
通過我國第五次人口普查的有關數(shù)據,讓學生體會到統(tǒng)計對政府決策的重要作用――統(tǒng)計數(shù)據可以提供大量的信息,為國家的宏觀決策提供有關的支持.教科書通過對人口普查的有關新聞報道,讓學生體會人口普查的規(guī)模是何等的宏大與艱辛.
教科書提出了三個有代表性的問題.第一個問題主要是針對人口普查的作用,人口普查可以了解一個國家人口全面情況,比如,人口總數(shù)、男女性別比、受教育狀況、增長趨勢等.人口普查是對國家的政府決策實行情況的一個檢驗,比如,國家計劃生育政策,經濟發(fā)展戰(zhàn)略,國家“普及九年義務教育”政策,人民群眾的生活水平等.第二個問題是針對普查本身存在的問題提出的,以加深學生對于普查的理解.學生可能有一個誤解,普查就是100%的準確,其實不然,即使是最周全的調查方案,在實際執(zhí)行時都會產生一個誤差.教科書通過這個問題,目的是讓學生理解在人口普查中出現(xiàn)漏登是正常情況,調查方案的設計是盡可能讓這個誤差降低到最小.同時,也要讓學生理解人口普查的工作,即使出現(xiàn)漏登現(xiàn)象,人口普查的數(shù)據對國家的宏觀決策依然具有重要的作用.第三個問題是針對人口普查工作的艱辛而提出的,讓學生體會人口普查數(shù)據得來不易,要尊重人口普查人員的勞動,對人口普查工作要大力支持.
2、【閱讀材料】p4。
“閱讀材料”是課堂閱讀,目的是讓學生了解普查工作的特點和重要性,以及我國目前主要的一些普查工作.進而,總結出普查的主要不足之處,這是從一個方面說明了抽樣調查的必要性.
普查是指一個國家或一個地區(qū)專門組織的一次性大規(guī)模的全面調查,目的是為了詳細地了解某項重要的國情、國力.
普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調查在特定時段的社會經濟現(xiàn)象總體的數(shù)量.
普查是一項非常艱巨的工作,它要對所有的對象進行調查.當普查的對象很少時,普查無疑是一項非常好的調查方式.
(二)、抽樣調查。
【例1和其后的“思考交流”】p8~9。
緊接著,教科書通過例1和“思考交流”的兩個問題,讓學生了解普查有時候難以實現(xiàn).這主要有兩個方面的原因,其一,被調查對象的量大;其二,普查對被調查對象本身具有一定的破壞性.這從另一個方面說明了抽樣調查的必要性.然后,教科書通過抽象概括總結出抽樣調查的兩個主要優(yōu)點.
【例2和其后的“思考交流”】p9~10。
主要是討論在抽樣調查時,什么樣的樣本才具有代表性.在抽樣時,如果抽樣不當,那么調查的結果可能會出現(xiàn)與實際情況不符,甚至是錯誤的結果,導致對決策的誤導.在抽樣調查時,一定要保證隨機性原則,盡可能地避免人為因素的干擾;并且要保證每個個體以一定的概率被抽取到;同時,還要注意到要盡可能地控制抽樣調查中的.誤差.
由于檢驗對象的量很大,或檢驗對檢驗對象具有破壞性時,通常情況下,所以采用普查的方法有時是行不通的.通常情況下,從調查對象中按照一定的方法抽取一部分,進行調查或觀測,獲取數(shù)據,并以此調查對象的某項指標做出推斷,這就是抽樣調查.其中,調查對象的全體稱為總體,被抽取的一部分稱為樣本.
抽樣調查的優(yōu)點:抽樣調查與普查相比,有很多優(yōu)點,最突出的有兩點:(1)迅速、及時;(2)節(jié)約人力、物力和財力.
解:統(tǒng)計的總體是指該地10000名學生的體重;個體是指這10000名學生中每一名學生的體重;樣本指這10000名學生中抽出的200名學生的體重;總體容量為10000;樣本容量為200.若對每一個個體逐一進行“調查”,有時費時、費力,有時根本無法實現(xiàn),一個行之有效的辦法就是在每一個個體被抽取的機會均等的前提下從總體中抽取部分個體,進行抽樣調查.
例2為了制定某市高一、高二、高三三個年級學生校服的生產計劃,有關部門準備對180名初中男生的身高作調查,現(xiàn)有三種調查方案:
a.測量少年體校中180名男子籃球、排球隊員的身高;。
b.查閱有關外地180名男生身高的統(tǒng)計資料;。
c.在本市的市區(qū)和郊縣各任選一所完全中學,兩所初級中學,在這六所學校有關年級的小班中,用抽簽的方法分別選出10名男生,然后測量他們的身高.
解:選c方案.理由:方案c采取了隨機抽樣的方法,隨機樣本比較具有代表性、普遍性,可以被用來估計總體.
例3中央電視臺希望在春節(jié)聯(lián)歡晚會播出后一周內獲得當年春節(jié)聯(lián)歡晚會的收視率.下面三名同學為電視臺設計的調查方案.
甲同學:我把這張《春節(jié)聯(lián)歡晚會收視率調查表》放在互聯(lián)網上,只要上網登錄該網址的人就可以看到這張表,他們填表的信息可以很快地反饋到我的電腦中.這樣,我就可以很快統(tǒng)計收視率了.
乙同學:我給我們居民小區(qū)的每一份住戶發(fā)一個是否在除夕那天晚上看過中央電視臺春節(jié)聯(lián)歡晚會的調查表,只要一兩天就可以統(tǒng)計出收視率.
丙同學:我在電話號碼本上隨機地選出一定數(shù)量的電話號碼,然后逐個給他們打電話,問一下他們是否收看了中央電視臺春節(jié)聯(lián)歡晚會,我不出家門就可以統(tǒng)計出中央電視臺春節(jié)聯(lián)歡晚會的收視率.
請問:上述三名同學設計的調查方案能夠獲得比較準確的收視率嗎?為什么?
解:綜上所述,這三種調查方案都有一定的片面性,不能得到比較準確的收視率.
(三)、課堂小結:1、普查是一項非常艱巨的工作,它要對所有的對象進行調查.當普查的對象很少時,普查無疑是一項非常好的調查方式.普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調查在特定時段的社會經濟現(xiàn)象總體的數(shù)量.2、通常情況下,從調查對象中按照一定的方法抽取一部分,進行調查或觀測,獲取數(shù)據,并以此調查對象的某項指標做出推斷,這就是抽樣調查.其中,調查對象的全體稱為總體,被抽取的一部分稱為樣本.抽樣調查的優(yōu)點:抽樣調查與普查相比,有很多優(yōu)點,最突出的有兩點:(1)迅速、及時;(2)節(jié)約人力、物力和財力.
(四)、作業(yè):p10練習題;p10【習題1―2】。
五、教后反思:
高中數(shù)學必修教案篇十二
1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】經歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系。
【情感態(tài)度與價值觀】感受數(shù)形結合的.思想方法;
【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設情境,引入課題。
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學生回答.。
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學的內容—數(shù)軸(板書課題)。
(二)得出定義,揭示內涵。
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點。
(2)標正方向。
(3)選取單位長度,標數(shù)(強調:負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解。
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫。
(四)動手練習,歸納總結。
1、在數(shù)軸上的點表示有理數(shù)。
一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育。
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題。
(1)在數(shù)軸上表示的兩個數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
(2)正數(shù)都(大于)0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。
鞏固所學知識。
(五)、歸納小結,強化思想。
師生總結本課內容。
1、數(shù)軸的概念,數(shù)軸的三要素。
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關系。
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示。
師:你感到自己今天的表現(xiàn)怎樣?
習題2.21、2、3。
選作第4題。
高中數(shù)學必修教案篇十三
2.教學重點。
函數(shù)單調性的概念,判斷和證明簡單函數(shù)的單調性.。
3.教學難點。
函數(shù)單調性概念的生成,證明單調性的代數(shù)推理論證.。
1.教學有利因素。
2.教學不利因素。
1.理解函數(shù)單調性的相關概念.掌握證明簡單函數(shù)單調性的方法.。
為達成課堂教學目標,突出重點,突破難點,我們主要采取以下形式組織學習材料:
(一)創(chuàng)設情境,引入課題。
問題1:觀察下列函數(shù)圖象,請你說說這些函數(shù)有什么變化趨勢?
設函數(shù)的定義域為,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數(shù)在區(qū)間上是遞增的,區(qū)間稱為函數(shù)的單調增區(qū)間(學生類比定義“遞減”,接著推出下圖,讓學生準確回答單調性.)。
(二)引導探索,生成概念。
問題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?
(2)函數(shù)在區(qū)間上有何單調性?
預設:學生會不置可否,或者憑感覺猜測,可追問判定依據.。
問題3:(1)如何用數(shù)學符號描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?
(2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?
拖動“拖動點”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.。
(3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?
拖動“拖動點”,觀察函數(shù)在區(qū)間上的圖象變化.。
(4)已知,若有。
能保證函數(shù)在區(qū)間上遞增嗎?
設計說明:可先請持贊同觀點的同學說明理由,再請持反對意見的學生畫出反駁,然后追問:無數(shù)個也不能保證函數(shù)遞增,那該怎么辦呢?若學生回答全部取完或任取,追問“總不能一個一個驗證吧?”
問題4:如何用數(shù)學語言準確刻畫函數(shù)在區(qū)間上遞增呢?
問題5:請你試著用數(shù)學語言定義函數(shù)在區(qū)間上是遞減的.。
(三)學以致用,理解感悟。
判斷題:你認為下列說法是否正確,請說明理由.(舉例或者畫圖)。
(1)設函數(shù)的定義域為,若對任意,都有,則在區(qū)間上遞增;
(2)設函數(shù)的定義域為r,若對任意,且,都有,則是遞增的;
(3)反比例函數(shù)的單調遞減區(qū)間是.。
例題:判斷并證明函數(shù)的單調性.。
高中數(shù)學必修教案篇十四
掌握三角函數(shù)模型應用基本步驟:。
(1)根據圖象建立解析式;。
(2)根據解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型.
教學重難點。
利用收集到的數(shù)據作出散點圖,并根據散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
教學過程。
一、練習講解:《習案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習:教材p65面3題。
三、小結:1、三角函數(shù)模型應用基本步驟:。
(1)根據圖象建立解析式;。
(2)根據解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型.
2、利用收集到的數(shù)據作出散點圖,并根據散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習案》作業(yè)十四及十五。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學必修教案篇十五
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結合的能力;。
教學重點:型的不等式的解法;。
教學難點:利用絕對值的意義分析、解決問題.
教學過程設計。
教師活動。
學生活動。
設計意圖。
一、導入新課。
【提問】正數(shù)的絕對值什么?負數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.。
二、新課。
【提問】如何解絕對值方程.。
【質疑】的解集有幾部分?為什么也是它的解集?
【練習】解下列不等式:
(1);
(2)。
【設問】如果在中的,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.。
所以,原不等式的解集是。
【設問】如果中的是,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.。
或
由得。
由得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式的解集表示為。
畫出數(shù)軸。
思考答案。
不等式的解集為。
或表示為,或。
筆答。
(1)。
(2),或。
筆答。
筆答。
根據絕對值的意義自然引出絕對值方程()的解法.。
由淺入深,循序漸進,在型絕對值方程的基礎上引出()型絕對值方程的解法.。
針對解()絕對值不等式學生常出現(xiàn)的情況,運用數(shù)軸質疑、解惑.。
落實會正確解出與()絕對值不等式的教學目標.。
在將看成一個整體的關鍵處點撥、啟發(fā),使學生主動地進行練習.。
繼續(xù)強化將看成一個整體繼續(xù)強化解不等式時不要犯丟掉這部分解的錯誤.。
三、課堂練習。
解下列不等式:
(1);
(2)。
筆答。
(1);
(2)。
檢查教學目標落實情況.。
四、小結。
的解集是;的解集是。
解絕對值不等式注意不要丟掉這部分解集.。
五、作業(yè)。
1.閱讀課本含絕對值不等式解法.。
2.習題2、3、4。
課堂教學設計說明。
1.抓住解型絕對值不等式的關鍵是絕對值的意義,為此首先通過復習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎.
2.在解與絕對值不等式中的關鍵處設問、質疑、點撥,讓學生融會貫通的掌握它們解法之間的內在聯(lián)系,以達到提高學生解題能力的目的.
3.針對學生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學中應根據絕對值的意義從數(shù)軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力.
高中數(shù)學必修教案篇十六
本章的中心內容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應用上。通過本章學習,學生應當達到以下學習目標:
(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的生活實際問題。
數(shù)學思想方法的教學是中學數(shù)學教學中的重要組成部分,有利于學生加深數(shù)學知識的理解和掌握。
本章重視與內容密切相關的數(shù)學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導。本章的兩個主要數(shù)學結論是正弦定理和余弦定理,它們都是關于三角形的邊角關系的結論。在初中,學生已經學習了相關邊角關系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O置這些問題,都是為了加強數(shù)學思想方法的教學。
加強與前后各章教學內容的聯(lián)系,注意復習和應用已學內容,并為后續(xù)章節(jié)教學內容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數(shù)學知識的學習和鞏固。
本章內容處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!边@樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結構。
《課程標準》和教科書把“解三角形”這部分內容安排在數(shù)學五的第一部分內容,
位置相對靠后,在此內容之前學生已經學習了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內容,這使這部分內容的處理有了比較多的工具,某些內容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的'關系?”,并進而指出,“從余弦定理以及余弦函數(shù)的性質可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學數(shù)學的最終目的是應用數(shù)學,而如今比較突出的兩個問題是,學生應用數(shù)學的意識不強,創(chuàng)造能力較弱。學生往往不能把實際問題抽象成數(shù)學問題,不能把所學的數(shù)學知識應用到實際問題中去,對所學數(shù)學知識的實際背景了解不多,雖然學生機械地模仿一些常見數(shù)學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學課題,最后把數(shù)學知識應用于實際問題。
1.1正弦定理和余弦定理(約3課時)
1.2應用舉例(約4課時)
1.3實習作業(yè)(約1課時)
1.要在本章的教學中,應該根據教學實際,啟發(fā)學生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應該因勢利導,根據具體教學過程中學生思考問題的方向來啟發(fā)學生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應用兩個定理解決有關的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應該鼓勵學生提出自己的解決辦法,并對于不同的方法進行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學生設計應用的程序,得到在實際中可以直接應用的算法。
2.適當安排一些實習作業(yè),目的是讓學生進一步鞏固所學的知識,提高學生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學語言表達實習過程和實習結果能力,增強學生應用數(shù)學的意識和數(shù)學實踐能力。教師要注意對于學生實習作業(yè)的指導,包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。
高中數(shù)學必修教案篇十七
3、情感態(tài)度與價值觀目標:感受代數(shù)與幾何問題的相互轉換。體會品面直角坐標系在解決實際問題的作用,培養(yǎng)數(shù)學學習興趣。
重點:理解平面直角坐標中點與數(shù)的一一對應關系;
難點:根據坐標描出點的位置,以及坐標軸上的點的坐標特點。
教師準備四張大的紙質坐標格子。
一、溫故知新,導入新課。
游戲導入:上一節(jié)課我們學習了有序數(shù)對,大家學習積極性很高,今天老師先考考你們, 看你們掌握了多少。
我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學們先找準自己的數(shù)對號。聽老師報數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。
我們可以發(fā)現(xiàn),通過教室平面內的有序數(shù)對,可以唯一的確定與之對應的同學。
二、新課教學
課本例子:我們知道數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標。例如點a數(shù)軸上的坐標是-4,點b數(shù)軸上的坐標是2;我們說坐標是3.5的點,也可以在數(shù)軸上唯一確定。
學生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小
b說我們可以每個點列一個數(shù)軸???
教師活動:引導學生思考,怎么才能用同一標準,方便的確定每一點的位置?
結合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個橫縱的數(shù)軸?
得出結論:我們可以在平面內畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標系,水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標軸的交點為平面直角坐標系的原點。
那有了這樣的平面直角坐標系,平面內的點就可以用之前學的有序數(shù)對來表示了。例如:由a分別向x軸和y軸作垂線。垂足m在x軸上的`坐標是3,垂足n在y軸上的坐標是4,我們說a的坐標是3,縱坐標是4,有序數(shù)對(3,4)就叫做a的坐標,記作a(3,4)
教師提問2:同學們按照這種做法,在坐標紙上標出b、c、d的坐標。
教師活動:走下講臺,關注學生的匯坐標過程方法,指出學生出現(xiàn)問題的地方,并予以改正。
教師提問3:在橫縱坐標軸上各標一點e、f,問:坐標原點以及這兩點的坐標是什么?
教師活動:引導學生思考歸納坐標軸上的點的坐標的特點。
得出結論:原點的坐標是(0,0),x軸上的點的坐標的縱坐標為0;y軸上的點的坐標的橫坐標為0。
三、課程鞏固
師生互動:與學生一起回憶平面直角坐標系的各部分的意義,平面內的點怎么對應坐標,以及坐標軸上的點的坐標特點。
“練一練”:
在黑板上貼出四張事先準備好的紙質坐標格子,在上面標出任意的abcdefg等點,每組我點一個按坐標序列對,對應的同學上黑板,來描出各點的坐標。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學生不能提示,提示一次扣2分。比賽看哪組學生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同學上黑板來描點。
教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚,表現(xiàn)稍遜的學生不要氣餒,給予鼓勵,爭取下一次可以獲勝。
四、小結作業(yè):
思考平面直角坐標系中坐標與點的對應關系,如何由坐標值確定點的位置。下節(jié)課我們會探討這個問題。
平面直角坐標系:平面內畫兩條相互垂直、原點重合的數(shù)軸組成
水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;
豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;
兩坐標軸的交點為平面直角坐標系的原點。
高中數(shù)學必修教案篇十八
了解現(xiàn)實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式。
會從實際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過程.
高中數(shù)學必修教案篇十九
學生全面認識數(shù)學的科學價值、應用價值和文化價值。
2。通過實際問題的研究,促進學生分析問題、解決問題以及數(shù)學建模能力的提高。
教學重點:
如何建立實際問題的目標函數(shù)是教學的重點與難點。
教學過程:
一、問題情境。
問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?
問題3做一個容積為256l的方底無蓋水箱,它的高為多少時材料最???
二、新課引入。
導數(shù)在實際生活中有著廣泛的應用,利用導數(shù)求最值的方法,可以求出實際生活中的某些最值問題。
1。幾何方面的應用(面積和體積等的最值)。
2。物理方面的應用(功和功率等最值)。
3。經濟學方面的應用(利潤方面最值)。
三、知識建構。
說明1解應用題一般有四個要點步驟:設——列——解——答。
說明2用導數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個極。
值及端點值比較即可。
例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應怎樣選取,才。
能使所用的材料最???
說明1這種在定義域內僅有一個極值的函數(shù)稱單峰函數(shù)。
說明2用導數(shù)法求單峰函數(shù)最值,可以對一般的求法加以簡化,其步驟為:
s1列:列出函數(shù)關系式。
s2求:求函數(shù)的導數(shù)。
s3述:說明函數(shù)在定義域內僅有一個極大(小)值,從而斷定為函數(shù)的最大(小)值,必要時作答。
例3在如圖所示的電路中,已知電源的內阻為,電動勢為。外電阻為。
多大時,才能使電功率最大?最大電功率是多少?
說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應的自變量必須有解。
例4強度分別為a,b的兩個光源a,b,它們間的距離為d,試問:在連接這兩個光源的線段ab上,何處照度最???試就a=8,b=1,d=3時回答上述問題(照度與光的強度成正比,與光源的距離的平方成反比)。
例5在經濟學中,生產單位產品的成本稱為成本函數(shù),記為;出售單位產品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。
(1)設,生產多少單位產品時,邊際成本最低?
(2)設,產品的單價,怎樣的定價可使利潤最大?
四、課堂練習。
1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應分成____和___。
2。在半徑為r的圓內,作內接等腰三角形,當?shù)走吷细邽闀r,它的面積最大。
4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面abcd的面積為定值s時,使得濕周l=ab+bc+cd最小,這樣可使水流阻力小,滲透少,求此時的高h和下底邊長b。
五、回顧反思。
(1)解有關函數(shù)最大值、最小值的實際問題,需要分析問題中各個變量之間的關系,找出適當?shù)暮瘮?shù)關系式,并確定函數(shù)的定義區(qū)間;所得結果要符合問題的實際意義。
(2)根據問題的實際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。
(3)相當多有關最值的實際問題用導數(shù)方法解決較簡單。
六、課外作業(yè)。
課本第38頁第1,2,3,4題。
高中數(shù)學必修教案篇二十
一)、培養(yǎng)良好的學習興趣。
1、課前預習,對所學知識產生疑問,產生好奇心。
2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價,變?yōu)楸薏邔W習的動力。
3、思考問題注意歸納,挖掘你學習的潛力。
5、把概念回歸自然。所有學科都是從實際問題中產生歸納的,數(shù)學概念也回歸于現(xiàn)實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現(xiàn)實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。
二)、建立良好的學習數(shù)學習慣。
習慣是經過重復練習而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學習數(shù)學習慣,會使自己學習感到有序而輕松。高中數(shù)學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數(shù)學習慣還包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養(yǎng)自己再學習能力。
三)、有意識培養(yǎng)自己的各方面能力。
數(shù)學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學學習環(huán)境中得到培養(yǎng)的。在平時學習中要注意開發(fā)不同的學習場所,參與一切有益的學習實踐活動,如數(shù)學第二課堂、數(shù)學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養(yǎng)都必須學習、理解、訓練、應用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數(shù)學能力的培養(yǎng)開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發(fā)展。
高中數(shù)學必修教案篇二十一
專題八當今世界經濟的全球化趨勢。
通史概要:
當今世界經濟發(fā)展有兩個明顯的趨勢:一是世界經濟區(qū)域集團化,二是世界經濟全球化。世界經濟區(qū)域集團化是最終實現(xiàn)經濟全球化的重要步驟和途徑,經濟全球化則是區(qū)域經濟集團化的最終歸宿。
世界經濟區(qū)域集團化是生產力高度發(fā)展的必然產物,是生產國家化、國際分工向縱深發(fā)展需要加強合作的結果,也是世界經濟競爭激烈的表現(xiàn)。它產生的原因有:現(xiàn)代科技的發(fā)展、國際間經濟競爭和客觀上存在的分工。區(qū)域集團化的發(fā)展分為三個階段:第一階段為五六十年代,世界經濟集團化的趨勢主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團化成為一種世界經濟現(xiàn)象。歐洲區(qū)域集團化趨勢進一步發(fā)展,如歐共體的建立;一些發(fā)展中國家的地區(qū)性經濟集團也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團化掀起新的浪潮,進入了較高層次的經濟一體化時期,出現(xiàn)了歐盟、北美自由貿易區(qū)和亞太經合組織三大區(qū)域經濟集團。
世界經濟全球化是世界生產力發(fā)展的要求和結果,是不以人的意志為轉移的歷史趨勢。它突出的表現(xiàn)在國際貿易、國際投資、國際金融和跨國公司的發(fā)展。經濟全球化的過程中的問題是:在經濟全球化的過程中,不可避免地把資本主義固有的矛盾擴展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機、全球性的經濟金融危機、恐怖組織活動猖獗等等,直接影響到人類的生存與發(fā)展。
我國在當今世界經濟發(fā)展趨勢中,作為發(fā)展中國家,應該如何面對機遇和挑戰(zhàn),成了新時期經濟發(fā)展人們共同關心的話題。從中國加入亞太經合組織、加入世界貿易組織,加強同東盟的聯(lián)系的史實中,我們的態(tài)度是:在堅持獨立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強國際的合作與交流,參與國際競爭,抓住機遇,接受挑戰(zhàn),在國際的競爭和合作中,提高我國的經濟發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經濟發(fā)展趨勢這一經濟現(xiàn)象,樹立正確的.發(fā)展觀。
一歐洲的聯(lián)合。
課標要求:以歐洲聯(lián)盟、北美自由貿易區(qū)及亞太經濟合作組織為例,認識當今世界經濟區(qū)域集團化發(fā)展趨勢。
教學目標:
(1)知識與能力:分析第二次世界大戰(zhàn)后西歐經濟進入“黃金時代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認識歐洲聯(lián)盟成立對世界經濟和政治格局的影響。
概述歐元產生的影響,培養(yǎng)多角度、多層次理解問題的能力。
(2)過程與方法:通過討論西歐經濟在二戰(zhàn)后進入“黃金時代”的共同原因,進一步思考中國的社會主義建設應如何借鑒其合理的方法與正確的經驗,學習用聯(lián)系的方法看待問題,提高理論指導實踐的能力;通過分組學習,搜集“歐共體”及“歐盟”成立的資料,了解整個歐洲走向聯(lián)合的過程,認識當今世界經濟區(qū)域集團化發(fā)展趨勢。
(3)情感、態(tài)度與價值觀:通過對歐洲走向聯(lián)合這段歷史的學習,認識當今國際社會國家間團結協(xié)作的重要性,樹立國際意識;通過對歐洲走向聯(lián)合的史實的歸納,得出一個別國家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結合我國的實際,進一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會主義現(xiàn)代化建設而奮斗的責任感。
教學課時:1課時。
重點難點:
重點:歐洲走向聯(lián)合過程及影響。
難點:歐洲走向聯(lián)合的原因。
教學建議:
1、本課共有三個方面的內容,“西歐經濟的'黃金時代'”主要講述:二戰(zhàn)后的20世紀50年代到60年代,西歐各國經濟在恢復的基礎上,進入調整增長期,被稱為西歐經濟的“黃金時代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經濟一體化到政治一體化的發(fā)展趨勢;“貨幣王國的世界公民”主要以歐元的流通為例,進一步表明歐洲走向聯(lián)合的趨勢。
2、西歐經濟高速發(fā)展的共同原因:第一,西歐各國進行社會改革和政策調整。進行社會改革,例如:推行福利制度,適當改善人民的生活條件,緩和社會矛盾,穩(wěn)定社會秩序;進行政策調整,如:將一些私人壟斷企業(yè)國有化,并建立有關國計民生的重要工業(yè)部門。這些政策的推行,促進了西歐經濟的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計劃的實施,解決了西歐戰(zhàn)后經濟發(fā)展的啟動資金,西歐重工業(yè)在短時期內完成了新的裝備,并有能力購買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對產業(yè)部門進行了改造,使勞動生產率大大提高,從而有力地推動了經濟的高速發(fā)展。
3、伴隨著歐洲經濟合作的成功,歐洲經濟不斷的恢復,要求在國際上發(fā)揮更重要的作用。因而要加強在政治領域的合作成為歐洲各國的一致要求。面對二戰(zhàn)結束后以美蘇為首的兩極爭霸的冷戰(zhàn)格局,歐洲各國迫切要求組成一個更加強大的團體來維護自己的利益。于是在政治領域的合作很快便實施開來。
4、為進一步加強歐洲共同體之間的經濟合作與交流,減少共同體內部成員國存在的貿易壁壘,用統(tǒng)一的貨幣在歐共體各國之間流通,實現(xiàn)經濟的聯(lián)合,從而進一步加強歐洲各國之間的政治合作。
二、發(fā)展的亞太。
課標要求:以歐洲聯(lián)盟、北美自由貿易區(qū)及亞太經濟合作組織為例,認識當今世界經濟區(qū)域集團化發(fā)展趨勢。
教學目標:
(1)知識與能力:了解東盟的發(fā)展歷程,說說中國與東盟的交往情況;分析北美自由貿易區(qū)建立的原因和影響,比較北美自由貿易區(qū)與歐盟的異同;概述亞太經濟合作組織建立的過程,探討亞太國家加強合作的途徑與方式。
(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴大及其影響;用列表等方式比較北美自由貿易區(qū)與歐盟的異同,學習用比較的方法認識歷史問題;通過上網等途徑搜集中國參加apec會議的資料,多渠道去了解和認識apec建立的史實及影響。
(3)情感、態(tài)度與價值觀:通過對東盟、北美自由貿易區(qū)和亞太經合組織等區(qū)域經濟一體化進程的學習和了解,體會當今世界國家間加強合作、競爭與發(fā)展的重要性,樹立合作與競爭的意識。
教學課時:1課時。
重點難點:
重點:通過了解歐洲聯(lián)盟、北美自由貿易區(qū)及亞太經濟合作組織,認識當今世界經濟區(qū)域集團化發(fā)展趨勢。
難點:中國積極參與世界區(qū)域經濟組織的意義。
教學建議:
1、在經濟全球化的進程中,亞太地區(qū)的經濟集團化也在不斷深入發(fā)展。世界三大區(qū)域性經濟集團有兩個分別在該地區(qū)。這一地區(qū)成為當今世界上經濟發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿易區(qū)”和“亞太經全組織”三個經濟區(qū)域集團為例,介紹了當今世界經濟區(qū)域集團化發(fā)展趨勢。每個集團內部有著自身的規(guī)則的同時也不斷與其它區(qū)域集團相聯(lián)系,從而使世界經濟形成了密不可分的一個整體。
2、東南亞國家聯(lián)盟自1967成立以來,已經歷時近三分之一世紀。東盟在維護和促進各成員國相互間的政治和經濟合作,實現(xiàn)地區(qū)和平穩(wěn)定,加快成員國經濟增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強了東盟的國際地位。東盟在由四大洲國家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺上成為使日本、中國和印度等大國瞠乎其后的主角。
3、日本經濟的崛起,特別是歐洲經濟一體化實施的外在壓力,美國、加拿大和墨西哥3國發(fā)展各自經濟的內在動力,是北美自由貿易區(qū)成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價值觀念、風俗習慣等又頗相似;經濟互補性強;相互貿易基礎良好,美、加、墨3國具有實行經濟一體化的必要性,又具有實行經濟一體化的可能性。美國認為要取得世界經濟的主導地位,只有建立以自己為中心經濟區(qū)域集團,才能在經濟全球化大潮中立于不敗之地。
4、二十世紀七十年代后,亞太地區(qū),特別是東亞各國和地區(qū)的對外開放經濟政策和經濟迅速發(fā)展為亞太區(qū)域經濟合作創(chuàng)造了條件。東亞地區(qū)經濟的發(fā)展,國際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經濟合作創(chuàng)造了條件。歐共體統(tǒng)一市場和美加自由貿易區(qū)的建立,刺激了亞太向區(qū)域經濟合作的方向發(fā)展。亞太經合組織的主要活動,為各成員提供區(qū)域經濟,科技,貿易和發(fā)展等方面多邊合作的機會,交流各成員在這些領域內的經驗,促進本區(qū)域的共同發(fā)展.它從產生、發(fā)展及運作模式均區(qū)別于歐盟和nafta,有自身的特點,這些特點適應了apec各成員國經濟發(fā)展的狀況和經濟運行模式。
三、經濟全球化的世界。
課標要求:
(1)以“布雷頓森林體系”建立為例,認識第二次世界大戰(zhàn)后以美國為主導的資本主義世界經濟體系的形成。
(2)了解世界貿易組織(wto)的由來和發(fā)展,認識它在世界經濟全球化進程中的作用。了解中國參加世界貿易組織(wto)的史實,認識其影響和作用。
(3)了解經濟全球化的發(fā)展趨勢,探討經濟全球化進程中的問題。
教學目標:
(1)知識與能力:了解“布雷頓森林體系”建立的基本史實,分析其影響;簡述世界貿易組織(wto)的由來和發(fā)展,認識它在世界經濟全球化進程中的作用;了解中國參加世界貿易組織(wto)的史實,認識其影響和作用;概述經濟全球化的發(fā)展趨勢,探討經濟全球化進程中的問題。
(2)過程與方法:閱讀課文和查找中國加入世貿組織談判的歷程等,了解“從gatt到wto”的過程,圍繞世界貿易組織建立的必要性并對中國加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經濟全球化對本地區(qū)的影響是利大于弊還是弊大于利?如何解決經濟全球化出現(xiàn)的問題?從多角度去分析歷史問題。
【本文地址:http://mlvmservice.com/zuowen/15426369.html】