數(shù)學余弦定理說課稿范文(19篇)

格式:DOC 上傳日期:2023-11-26 17:37:16
數(shù)學余弦定理說課稿范文(19篇)
時間:2023-11-26 17:37:16     小編:紙韻

在回顧過去的同時,我們也能找到未來的方向。發(fā)表一篇優(yōu)秀的總結(jié)可以提升我們在學術界或職場中的聲譽和競爭力。范文內(nèi)容豐富多樣,既有自我總結(jié),也有對團隊和項目的總結(jié),適用范圍廣泛。

數(shù)學余弦定理說課稿篇一

大家好!

今天我說課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時,今天我將就第1課時的余弦定理的證明與簡單應用進行說課。下面我分別從教材分析。目標的確定。方法的選擇和教學過程的設計這四個方面來闡述我對這節(jié)課的教學設想。

本節(jié)內(nèi)容是江蘇出版社出版的普通高中課程標準實驗教科書《數(shù)學》必修五的第一章第2節(jié),在此之前學生已經(jīng)學習過了勾股定理。平面向量、正弦定理等相關知識,這為過渡到本節(jié)內(nèi)容的學習起著鋪墊作用。本節(jié)內(nèi)容實質(zhì)是學生已經(jīng)學習的勾股定理的延伸和推廣,它描述了三角形重要的邊角關系,將三角形的“邊”與“角”有機的聯(lián)系起來,實現(xiàn)邊角關系的互化,為解決斜三角形中的邊角求解問題提供了一個重要的工具,同時也為在日后學習中判斷三角形形狀,證明三角形有關的等式與不等式提供了重要的依據(jù)。

在本節(jié)課中教學重點是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計算中的運用;教學難點是余弦定理的發(fā)現(xiàn)及證明;教學關鍵是余弦定理在三角形邊角計算中的運用。

基于以上對教材的認識,根據(jù)數(shù)學課程標準的“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者。引導者與合作者”這一基本理念,考慮到學生已有的認知結(jié)構和心理特征,我認為本節(jié)課的教學目標有:

基于本節(jié)課是屬于新授課中的數(shù)學命題教學,根據(jù)《學記》中啟發(fā)誘導的思想和布魯納的發(fā)現(xiàn)學習理論,我將主要采用“啟發(fā)式教學”和“探究性教學”的教學方法即從一個實際問題出發(fā),發(fā)現(xiàn)無法使用剛學習的正弦定理解決,造成學生在認知上的沖突,產(chǎn)生疑惑,從而激發(fā)學生的探索新知的欲望,之后進一步啟發(fā)誘導學生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養(yǎng)能力。

在教學中利用計算機多媒體來輔助教學,充分發(fā)揮其快捷、生動、形象的特點。

為達到本節(jié)課的教學目標、突出重點、突破難點,在教材分析、確定教學目標和合理選擇教法與學法的基礎上,我把教學過程設計為以下四個階段:創(chuàng)設情境、引入課題;探索研究、構建新知;例題講解、鞏固練習;課堂小結(jié),布置作業(yè)。具體過程如下:

1、創(chuàng)設情境,引入課題。

利用多媒體引出如下問題:

a地和b地之間隔著一個水塘現(xiàn)選擇一地點c,可以測得的大小及,求a、b兩地之間的距離c。

【設計意圖】由于學生剛學過正弦定理,一定會采用剛學的知識解題,但由于無法找到一組已知的邊及其所對角,從而產(chǎn)生疑惑,激發(fā)學生探索欲望。

2、探索研究、構建新知。

(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領學生從特殊情況為直角三角形()時考慮。此時使用勾股定理,得。

(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。

通過解決問題可以得到在任意三角形中都有,之后讓同學們類比出……這樣我就完成了對余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。

在學生已學習了向量的基礎上,考慮到新課改中要求使用新工具、新方法,我會引導同學類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導學生對余弦定理公式進行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構建。

根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:

(1)已知三邊,求三個角;

(2)已知三角形兩邊及其夾角,求第三邊和其他兩個角。

3、例題講解、鞏固練習。

本階段的教學主要是通過對例題和練習的思考交流、分析講解以及反思小結(jié),使學生初步掌握使用余弦定理解決問題的方法。其中例題先以學生自己思考解題為主,教師點評后再規(guī)范解題步驟及板書,課堂練習請同學們自主完成,并請同學上黑板板書,從而鞏固余弦定理的運用。

例題講解:

例1在中,

(1)已知,求;

(2)已知,求。

【設計意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個形式分別得到了運用,進而鞏固了學生對余弦定理的運用。

例2對于例題1(2),求的大小。

【設計意圖】已經(jīng)求出了的度數(shù),學生可能會有兩種解法:運用正弦定理或運用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問題可以避免解的取舍問題。

例3使用余弦定理證明:在中,當為銳角時;當為鈍角時,

【設計意圖】例3通過對和的比較,體現(xiàn)了“余弦定理是勾股定理的'推廣”這一思想,進一步加深了對余弦定理的認識和理解。

課堂練習:

練習1在中,

(1)已知,求;

(2)已知,求。

【設計意圖】檢驗學生是否掌握余弦定理的兩個形式,鞏固學生對余弦定理的運用。

練習2若三條線段長分別為5,6,7,則用這三條線段()。

a、能組成直角三角形。

b、能組成銳角三角形。

c、能組成鈍角三角形。

d、不能組成三角形。

【設計意圖】與例題3相呼應。

練習3在中,已知,試求的大小。

【設計意圖】要求靈活使用公式,對公式進行變形。

4、課堂小結(jié),布置作業(yè)。

先請同學對本節(jié)課所學內(nèi)容進行小結(jié),教師再對以下三個方面進行總結(jié):

(3)余弦定理的可以解決的兩類解斜三角形的問題。

通過師生的共同小結(jié),發(fā)揮學生的主體作用,有利于學生鞏固所學知識,也能培養(yǎng)學生的歸納和概括能力。

布置作業(yè)。

必做題:習題1、2、1、2、3、5、6;

選做題:習題1、2、12、13。

【設計意圖】。

作業(yè)分為必做題和選做題、針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高。

各位老師,以上所說只是我預設的一種方案,但課堂是千變?nèi)f化的,會隨著學生和教師的臨時發(fā)揮而隨機生成。預設效果如何,最終還有待于課堂教學實踐的檢驗。

本說課一定存在諸多不足,懇請老師提出寶貴意見,謝謝。

數(shù)學余弦定理說課稿篇二

一、教材分析:(說教材)。

《余弦定理》是全日制中等教育國家規(guī)劃教材(人教版)數(shù)學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關三角形的三類問題:1)、已知兩邊及其夾角,求第三邊和其他兩個角。2)、已知三邊求三個內(nèi)角;3)、判斷三角形的形狀。以及相關的證明題。

二、說教學思路。

本著數(shù)學與專業(yè)有機結(jié)合的指導思想,讓數(shù)學服務于專業(yè)的需要。以及最大限度的提高學生的學習興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學生,而是創(chuàng)造設情境,設計了與機械相關聯(lián)并具有愛國主題的二個任務,通過任務驅(qū)動法教學,極大提高了學生的學習興趣,激發(fā)學生探索新知識的強烈求知欲望,在完成數(shù)學教學任務的同時,強化了數(shù)學與專業(yè)的有機結(jié)合,培養(yǎng)了學生將數(shù)學知識運用于自身專業(yè)中的能力。同時通過任務驅(qū)動,培養(yǎng)了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的激發(fā)了愛國主義精神。

三、說教法。

教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,提高學生學習的興趣,激發(fā)求知欲,啟發(fā)學生對問題進行思考。在研究過程中,激發(fā)學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發(fā)了愛國主義精神。

2.引導發(fā)現(xiàn)法、觀察法。

通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3.歸納總結(jié)法。

學生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關規(guī)律。

4.講練結(jié)合法。

講授充分發(fā)揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發(fā)揮出學生的主觀能動性,成為學習的主體。

四、說學法。

學生學法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導,學生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質(zhì)。

五、教學目標。

(一)知識目標。

1、使學生掌握余弦定理及其證明。

2、使學生初步掌握應用余弦定理解斜三角形。

1

(二)能力目標。

1、培養(yǎng)學生在本專業(yè)范圍內(nèi)熟練運用余弦定理解決實際問題的能力。

2、通過啟發(fā)、誘導學生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對余弦定理的推導,培養(yǎng)學生的知識遷移能力和建模意識,及合作學習的意識。

(三)德育目標。

1、培養(yǎng)學生的愛國主義精神、及團結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

六、教學重點。

教學重點是余弦定理及應用余弦定理解斜三角形;

七、教學難點。

教學中注重突出重點、突破難點,從五個層次進行教學。

創(chuàng)設情境、任務驅(qū)動;

引導探究、發(fā)現(xiàn)定理;

完成任務、應用遷移;

拓展升華、交流反思;

小結(jié)歸納、布置作業(yè)。

(一)、導入。

1、教師創(chuàng)設情境設置二個任務,做為貫穿本課的主線和數(shù)學與專業(yè)有機結(jié)合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經(jīng)教師啟發(fā)、誘導,學生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)、新課。

3.證明猜想,導出余弦定理及余弦定理的變形。

經(jīng)過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4.解決二個任務。

5.操作演練,鞏固提高。

6.小結(jié):

通過學生口答方式小結(jié),讓學生強化記憶,分清重點,深化對余弦定理的理解。

7.作業(yè):

九、板書設計。

板書是課堂教學重要部分,為再現(xiàn)知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。

十、課后反思。

在教學設計上,采用任務驅(qū)動,教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,即提高學生學習的興趣,又激發(fā)求知欲;知識點學習則循序漸進,符合學生的認知特點。經(jīng)教師啟發(fā)、誘導,學生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時,培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。

數(shù)學余弦定理說課稿篇三

《余弦定理》是全日制中等教育國家規(guī)劃教材(人教版)數(shù)學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關三角形的三類問題:

1、已知兩邊及其夾角,求第三邊和其他兩個角。

2、已知三邊求三個內(nèi)角;

3、判斷三角形的形狀。以及相關的證明題。

本著數(shù)學與專業(yè)有機結(jié)合的指導思想,讓數(shù)學服務于專業(yè)的需要。以及最大限度的提高學生的學習興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學生,而是創(chuàng)造設情境,設計了與機械相關聯(lián)并具有愛國主題的二個任務,通過任務驅(qū)動法教學,極大提高了學生的學習興趣,激發(fā)學生探索新知識的強烈求知欲望,在完成數(shù)學教學任務的同時,強化了數(shù)學與專業(yè)的有機結(jié)合,培養(yǎng)了學生將數(shù)學知識運用于自身專業(yè)中的能力。同時通過任務驅(qū)動,培養(yǎng)了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的`激發(fā)了愛國主義精神。

在確定教學方法前,首先要求教師吃透教材,選擇恰當?shù)慕虒W方法和教學手段把知識傳授給學生。本節(jié)課主要采用任務驅(qū)動法、引導發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學。

1、任務驅(qū)動法。

教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,提高學生學習的興趣,激發(fā)求知欲,啟發(fā)學生對問題進行思考。在研究過程中,激發(fā)學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發(fā)了愛國主義精神。

2、引導發(fā)現(xiàn)法、觀察法。

通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3、歸納總結(jié)法。

學生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關規(guī)律。

4、講練結(jié)合法。

講授充分發(fā)揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發(fā)揮出學生的主觀能動性,成為學習的主體。

學生學法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導,學生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質(zhì)。

(一)知識目標。

2、使學生初步掌握應用余弦定理解斜三角形。

(二)能力目標。

1、培養(yǎng)學生在本專業(yè)范圍內(nèi)熟練運用余弦定理解決實際問題的能力。

2、通過啟發(fā)、誘導學生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對余弦定理的推導,培養(yǎng)學生的知識遷移能力和建模意識,及合作學習的意識。

(三)德育目標。

1、培養(yǎng)學生的愛國主義精神、及團結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

分析勾股定理的結(jié)構特征,從而突破發(fā)現(xiàn)余弦定理,應用余弦定理解斜三角形。

教學中注重突出重點、突破難點,從五個層次進行教學。

創(chuàng)設情境、任務驅(qū)動;

引導探究、發(fā)現(xiàn)定理;

完成任務、應用遷移;

拓展升華、交流反思;

(一)導入。

1、教師創(chuàng)設情境設置二個任務,做為貫穿本課的主線和數(shù)學與專業(yè)有機結(jié)合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經(jīng)教師啟發(fā)、誘導,學生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)新課。

3、證明猜想,導出余弦定理及余弦定理的變形。

經(jīng)過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4、解決二個任務。

5、操作演練,鞏固提高。

6、小結(jié):

通過學生口答方式小結(jié),讓學生強化記憶,分清重點,深化對余弦定理的理解。

7、作業(yè):

板書是課堂教學重要部分,為再現(xiàn)知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。

數(shù)學余弦定理說課稿篇四

奇偶性是人教a版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

奇偶性是函數(shù)的一條重要性質(zhì),教材從學生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎。因此,本節(jié)課起著承上啟下的重要作用。

2、學情分析。

從學生的認知基礎看,學生在初中已經(jīng)學習了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時,剛剛學習了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。

3、教學目標。

基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:

數(shù)學余弦定理說課稿篇五

《余弦定理》是全日制中等教育國家規(guī)劃教材(人教版)數(shù)學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關三角形的三類問題:

1)、已知兩邊及其夾角,求第三邊和其他兩個角。

2)、已知三邊求三個內(nèi)角;

3)、判斷三角形的形狀。以及相關的證明題。

本著數(shù)學與專業(yè)有機結(jié)合的指導思想,讓數(shù)學服務于專業(yè)的需要。以及最大限度的提高學生的學習興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學生,而是創(chuàng)造設情境,設計了與機械相關聯(lián)并具有愛國主題的二個任務,通過任務驅(qū)動法教學,極大提高了學生的學習興趣,激發(fā)學生探索新知識的強烈求知欲望,在完成數(shù)學教學任務的同時,強化了數(shù)學與專業(yè)的有機結(jié)合,培養(yǎng)了學生將數(shù)學知識運用于自身專業(yè)中的能力。同時通過任務驅(qū)動,培養(yǎng)了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的激發(fā)了愛國主義精神。

在確定教學方法前,首先要求教師吃透教材,選擇恰當?shù)慕虒W方法和教學手段把知識傳授給學生。本節(jié)課主要采用任務驅(qū)動法、引導發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學。

1.任務驅(qū)動法。

教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,提高學生學習的興趣,激發(fā)求知欲,啟發(fā)學生對問題進行思考。在研究過程中,激發(fā)學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發(fā)了愛國主義精神。

2.引導發(fā)現(xiàn)法、觀察法。

通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3.歸納總結(jié)法。

學生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關規(guī)律。

4.講練結(jié)合法。

講授充分發(fā)揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發(fā)揮出學生的主觀能動性,成為學習的主體。

學生學法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導,學生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質(zhì)。

(一)知識目標。

2、使學生初步掌握應用余弦定理解斜三角形。

(二)能力目標。

1、培養(yǎng)學生在本專業(yè)范圍內(nèi)熟練運用余弦定理解決實際問題的能力。

2、通過啟發(fā)、誘導學生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對余弦定理的推導,培養(yǎng)學生的知識遷移能力和建模意識,及合作學習的意識。

(三)德育目標。

1、培養(yǎng)學生的愛國主義精神、及團結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

教學重點是余弦定理及應用余弦定理解斜三角形;

分析勾股定理的'結(jié)構特征,從而突破發(fā)現(xiàn)余弦定理,應用余弦定理解斜三角形。

教學中注重突出重點、突破難點,從五個層次進行教學。

創(chuàng)設情境、任務驅(qū)動;

引導探究、發(fā)現(xiàn)定理;

完成任務、應用遷移;

拓展升華、交流反思;

小結(jié)歸納、布置作業(yè)。

(一)、導入。

1、教師創(chuàng)設情境設置二個任務,做為貫穿本課的主線和數(shù)學與專業(yè)有機結(jié)合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經(jīng)教師啟發(fā)、誘導,學生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)、新課。

3.證明猜想,導出余弦定理及余弦定理的變形。

經(jīng)過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4.解決二個任務。

5.操作演練,鞏固提高。

6.小結(jié):

通過學生口答方式小結(jié),讓學生強化記憶,分清重點,深化對余弦定理的理解。

7.作業(yè):

數(shù)學余弦定理說課稿篇六

《余弦定理》是全日制中等國家規(guī)劃教材(人教版)數(shù)學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關三角形的三類問題:

1)、已知兩邊及其夾角,求第三邊和其他兩個角。

2)、已知三邊求三個內(nèi)角;

3)、判斷三角形的形狀。以及相關的證明題。

本著數(shù)學與專業(yè)有機結(jié)合的指導思想,讓數(shù)學服務于專業(yè)的需要。以及最大限度的提高學生的學習興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學生,而是創(chuàng)造設情境,設計了與機械相關聯(lián)并具有愛國主題的二個任務,通過任務驅(qū)動法教學,極大提高了學生的學習興趣,激發(fā)學生探索新知識的強烈求知欲望,在完成數(shù)學教學任務的同時,強化了數(shù)學與專業(yè)的有機結(jié)合,培養(yǎng)了學生將數(shù)學知識運用于自身專業(yè)中的能力。同時通過任務驅(qū)動,培養(yǎng)了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的激發(fā)了愛國主義精神。

在確定教學方法前,首先要求教師吃透教材,選擇恰當?shù)慕虒W方法和教學手段把知識傳授給學生。本節(jié)課主要采用任務驅(qū)動法、引導發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學。

1.任務驅(qū)動法。

教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,提高學生學習的興趣,激發(fā)求知欲,啟發(fā)學生對問題進行思考。在研究過程中,激發(fā)學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發(fā)了愛國主義精神。

2.引導發(fā)現(xiàn)法、觀察法。

通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3.歸納總結(jié)法。

學生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關規(guī)律。

4.講練結(jié)合法。

講授充分發(fā)揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發(fā)揮出學生的主觀能動性,成為學習的主體。

學生學法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導,學生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質(zhì)。

(一)知識目標。

2、使學生初步掌握應用余弦定理解斜三角形。

1

(二)能力目標。

1、培養(yǎng)學生在本專業(yè)范圍內(nèi)熟練運用余弦定理解決實際問題的能力。

2、通過啟發(fā)、誘導學生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對余弦定理的推導,培養(yǎng)學生的知識遷移能力和建模意識,及合作學習的意識。

(三)德育目標。

1、培養(yǎng)學生的愛國主義精神、及團結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

教學重點是余弦定理及應用余弦定理解斜三角形;

教學中注重突出重點、突破難點,從五個層次進行教學。

創(chuàng)設情境、任務驅(qū)動;

引導探究、發(fā)現(xiàn)定理;

完成任務、應用遷移;

拓展升華、交流反思;

小結(jié)歸納、布置作業(yè)。

(一)、導入。

1、教師創(chuàng)設情境設置二個任務,做為貫穿本課的主線和數(shù)學與專業(yè)有機結(jié)合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經(jīng)教師啟發(fā)、誘導,學生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)、新課。

3.證明猜想,導出余弦定理及余弦定理的變形。

經(jīng)過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4.解決二個任務。

5.操作演練,鞏固提高。

6.小結(jié):

通過學生口答方式小結(jié),讓學生強化記憶,分清重點,深化對余弦定理的理解。

7.作業(yè):

板書是課堂教學重要部分,為再現(xiàn)知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。

在教學設計上,采用任務驅(qū)動,教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,即提高學生學習的興趣,又激發(fā)求知欲;知識點學習則循序漸進,符合學生的認知特點。經(jīng)教師啟發(fā)、誘導,學生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時,培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。

數(shù)學余弦定理說課稿篇七

一、教材分析:(說教材)。

二、說教學思路。

本著數(shù)學與專業(yè)有機結(jié)合的指導思想,讓數(shù)學服務于專業(yè)的需要。以及最大限度的提高學生的學習興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學生,而是創(chuàng)造設情境,設計了與機械相關聯(lián)并具有愛國主題的二個任務,通過任務驅(qū)動法教學,極大提高了學生的學習興趣,激發(fā)學生探索新知識的強烈求知欲望,在完成數(shù)學教學任務的同時,強化了數(shù)學與專業(yè)的有機結(jié)合,培養(yǎng)了學生將數(shù)學知識運用于自身專業(yè)中的能力。同時通過任務驅(qū)動,培養(yǎng)了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的激發(fā)了愛國主義精神。

三、說教法。

教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,提高學生學習的興趣,激發(fā)求知欲,啟發(fā)學生對問題進行思考。在研究過程中,激發(fā)學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發(fā)了愛國主義精神。

2.引導發(fā)現(xiàn)法、觀察法。

通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3.歸納總結(jié)法。

學生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關規(guī)律。

4.講練結(jié)合法。

講授充分發(fā)揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發(fā)揮出學生的主觀能動性,成為學習的主體。

四、說學法。

學生學法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導,學生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質(zhì)。

五、教學目標。

(一)知識目標。

2、使學生初步掌握應用余弦定理解斜三角形。

1

(二)能力目標。

1、培養(yǎng)學生在本專業(yè)范圍內(nèi)熟練運用余弦定理解決實際問題的能力。

2、通過啟發(fā)、誘導學生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對余弦定理的推導,培養(yǎng)學生的知識遷移能力和建模意識,及合作學習的意識。

(三)德育目標。

1、培養(yǎng)學生的愛國主義精神、及團結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

六、教學重點。

教學重點是余弦定理及應用余弦定理解斜三角形;

七、教學難點。

教學中注重突出重點、突破難點,從五個層次進行教學。

創(chuàng)設情境、任務驅(qū)動;

引導探究、發(fā)現(xiàn)定理;

完成任務、應用遷移;

拓展升華、交流反思;

小結(jié)歸納、布置作業(yè)。

(一)、導入。

1、教師創(chuàng)設情境設置二個任務,做為貫穿本課的主線和數(shù)學與專業(yè)有機結(jié)合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經(jīng)教師啟發(fā)、誘導,學生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)、新課。

3.證明猜想,導出余弦定理及余弦定理的變形。

經(jīng)過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4.解決二個任務。

5.操作演練,鞏固提高。

6.小結(jié):

通過學生口答方式小結(jié),讓學生強化記憶,分清重點,深化對余弦定理的理解。

7.作業(yè):

九、板書設計。

板書是課堂教學重要部分,為再現(xiàn)知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。

十、課后反思。

在教學設計上,采用任務驅(qū)動,教師精心設計與機械專業(yè)相關聯(lián)的二個任務,作為貫穿整節(jié)課的主線,通過具體任務的完成,即提高學生學習的興趣,又激發(fā)求知欲;知識點學習則循序漸進,符合學生的認知特點。經(jīng)教師啟發(fā)、誘導,學生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時,培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。

數(shù)學余弦定理說課稿篇八

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學生必須掌握。

(二)、教學目標:。

根據(jù)數(shù)學課標的要求和教材的具體內(nèi)容,結(jié)合學生實際我確定了本節(jié)課的教學目標。

知識技能:

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

過程與方法:

2、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應用。

3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

情感態(tài)度:

(三)、學情分析:

盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據(jù)已知條件構造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節(jié)課的重點、難點和關鍵。

關鍵:輔助線的添法探索。

本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結(jié)構與幾何知識結(jié)構之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結(jié)構的目的。

(一)、復習回顧:復習回顧與勾股定理有關的內(nèi)容,建立新舊知識之間的聯(lián)系。

(二)、創(chuàng)設問題情境。

一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如***那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。

(三)、學生在教師的指導下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)。

因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。

接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。

(四)、組織變式訓練。

本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結(jié)合起來。

(五)、歸納小結(jié),納入知識體系。

本節(jié)課小結(jié)先讓學生歸納本節(jié)知識和技能,然后教師作必要的`補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。

(六)、作業(yè)布置。

由于學生的思維素質(zhì)存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。a組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。b組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質(zhì),發(fā)展學生的個性有積極作用。

為貫徹實施素質(zhì)教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學內(nèi)容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現(xiàn)、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調(diào)動學生的學習積極性,發(fā)展學生的思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。

此外,本節(jié)課我還采用了理論聯(lián)系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯(lián)系學生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生***探討、主動獲取知識。

總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調(diào)動學生學習的積極性;力爭把教師教的過程轉(zhuǎn)化為學生親自探索、發(fā)現(xiàn)知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。

數(shù)學余弦定理說課稿篇九

本課中,教師立足于所創(chuàng)設的情境,通過學生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應用反思的過程,學生成為余弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識目標、能力目標、情感目標均得到了較好的落實,為今后的“定理教學”提供了一些有用的借鑒。

創(chuàng)設數(shù)學情境是“情境。應用”教學的基礎環(huán)節(jié),教師必須對學生的身心特點、知識水平、教學內(nèi)容、教學目標等因素進行綜合考慮,對可用的情境進行比較,選擇具有較好的教育功能的情境。

從應用需要出發(fā),創(chuàng)設認知沖突型數(shù)學情境,是創(chuàng)設情境的常用方法之一?!坝嘞叶ɡ怼本哂袕V泛的應用價值,故本課中從應用需要出發(fā)創(chuàng)設了教學中所使用的數(shù)學情境。該情境源于教材第一章1。3正弦、余弦定理應用的例1。實踐說明,這種將教材中的例題、習題作為素材改造加工成情境,是創(chuàng)設情境的一條有效途徑。只要教師能對教材進行深入、細致、全面的研究,便不難發(fā)現(xiàn)教材中有不少可用的素材。

“情境。應用”教學模式主張以問題為“紅線”組織教學活動,以學生作為提出問題的主體,如何引導學生提出問題是教學成敗的關鍵,教學實驗表明,學生能否提出數(shù)學問題,不僅受其數(shù)學基礎、生活經(jīng)歷、學習方式等自身因素的影響,還受其所處的環(huán)境、教師對提問的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設適宜的數(shù)學情境(不僅具有豐富的內(nèi)涵,而且還具有“問題”的誘導性、啟發(fā)性和探索性),而且要真正轉(zhuǎn)變對學生提問的態(tài)度,提高引導水平,一方面要鼓勵學生大膽地提出問題,另一方面要妥善處理學生提出的問題。關注學生學習的結(jié)果,更關注學生學習的過程;關注學生數(shù)學學習的水平,更關注學生在數(shù)學活動中所表現(xiàn)出來的情感與態(tài)度;關注是否給學生創(chuàng)設了一種情境,使學生親身經(jīng)歷了數(shù)學活動過程.把“質(zhì)疑提問”,培養(yǎng)學生的數(shù)學問題意識,提高學生提出數(shù)學問題的能力作為教與學活動的起點與歸宿。

2、培養(yǎng)學生自主學習、合作學習、研究(探究)性學習的學習方式。

(1)新教材與一期教材相比,有一個很大的變化就是在課本中增加了若干“探究與實踐”的研究性課題,這些課題往往有著一定的實際生活情景,如出租車計價問題,測量建筑高度,郵資問題,“雪花曲線”等等,這些課題除了增強學生的數(shù)學應用能力之外,還有一個重要作用就是改變學生以往的學習方式。

在教學實踐中,我對不同內(nèi)容采取了不同的處理方式,像用單位圓中有向線段表示三角比;組合貸款中的數(shù)學問題主要在課堂引導學生完成;像郵件與郵費問題、上海出租車計價問題、聲音傳播問題、測建筑物的高度則采取課內(nèi)介紹、布置、檢查,學生主要在課外完成的方法。學生通過調(diào)查、上網(wǎng)收集數(shù)據(jù),集體研究討論,實踐動手操作,無形之中使自己學習的主動性得以大大提高,自學能力也有所長足發(fā)展,從而有效的培養(yǎng)學生自主獲取知識的能力,以適應未來社會發(fā)展的需要。

由此可見,新課程突出了“以學生發(fā)展為本”的素質(zhì)教育理念與目標,強調(diào)素質(zhì)的動態(tài)性和發(fā)展性,揭示了素質(zhì)教育的本質(zhì),把學生素質(zhì)的發(fā)展作為適應新世紀需要的培養(yǎng)目標和根本所在。因此,在教學實踐中必須確立學生的主體地位。

(2)從培養(yǎng)學生的學習興趣著手,變被動接受性學習為主動學習、自主學習、合作學習、研究(探究)性學習。根本改變重教法而輕學法的狀況,使學生真正做到不但“知其然”,而且“知其所以然”,教師不僅要授之于“魚”,更應該授之于“漁”,把本來應該讓學生分析、總結(jié)、歸納、解決的問題由學生自己來解決。對學習有困難的學生,教師要多給予及時的關照與幫助,鼓勵他們主動參與數(shù)學學習活動,嘗試用自己的方式解題,敢于發(fā)表自己的看法,對出現(xiàn)的問題要幫助他們分析產(chǎn)生的原因,并鼓勵他們自己去改正,從而增強學習數(shù)學的信心和興趣。對于學有余力并對數(shù)學有興趣的學生,教師可以為他們提供一些有價值的材料,指導他們閱讀,發(fā)展他們的數(shù)學才能。

數(shù)學余弦定理說課稿篇十

1.本節(jié)課的教學過程大體上可以分為四個階段,一是復習舊知識(余弦定理的內(nèi)容是什么?定理有什么特點?),二是推導余弦定理的推論,三是余弦定理及其推論的簡單運用和應用,四是總結(jié)歸納解斜三角形的一般思路、一般方法。

2.學生課堂表現(xiàn)非常積極,思維比較活躍,興趣比較高,形成了一個比較好的上課氛圍。就是本人給予學生的鼓勵和肯定不足,今后的教學中多給學生鼓勵和支持。

3.教學目標明確,能有效的對學生具有啟發(fā)性、思考性、發(fā)展性的培養(yǎng);多媒體的使用比較得當,既形象直觀又提高了效率;板書設計比較規(guī)范,但自己的字體不好,今后多多訓練。

4.我對本節(jié)課的課堂認知從教學效果看,應該說達到了預期的教學目標。學生在已有知識的基礎上,自主得出了余弦定理的推論與應用;能較好地運用新知識分析問題和解決問題;通過練習的訓練加強對知識的理解。

5.仍感到困惑的地方:

(1)自主學習時間與課堂容量;

(2)在課堂教學中如何關注學生的差異。

數(shù)學余弦定理說課稿篇十一

勾股定理是學生在已經(jīng)掌握了直角三角形的有關性質(zhì)的基礎上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

據(jù)此,制定教學目標如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運用勾股定理及其計算。

3、培養(yǎng)學生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

數(shù)學余弦定理說課稿篇十二

《余弦定理》選自人教a版高中數(shù)學必修五第一章第一節(jié)第一課時。本節(jié)課的主要教學內(nèi)容是余弦定理的內(nèi)容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。

余弦定理的學習有充分的基礎,初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節(jié)課內(nèi)容學習的知識基礎,同時又對本節(jié)課的學習提供了一定的方法指導。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經(jīng)常運用于空間幾何中,所以余弦定理是高中數(shù)學學習的一個十分重要的內(nèi)容。

1、理解并掌握余弦定理和余弦定理的推論。

2、掌握余弦定理的推導、證明過程。

3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。

1、通過從實際問題中抽象出數(shù)學問題,培養(yǎng)學生知識的遷移能力。

2、通過直角三角形到一般三角形的過渡,培養(yǎng)學生歸納總結(jié)能力。

3、通過余弦定理推導證明的過程,培養(yǎng)學生運用所學知識解決實際問題的能力。

1、在交流合作的過程中增強合作探究、團結(jié)協(xié)作精神,體驗解決問題的成功喜悅。

2、感受數(shù)學一般規(guī)律的美感,培養(yǎng)數(shù)學學習的興趣。

重點:余弦定理及其推論和余弦定理的運用。

難點:余弦定理的發(fā)現(xiàn)和推導過程以及多解情況的判斷。

普通教學工具、多媒體工具(以上均為命題教學的準備)。

數(shù)學余弦定理說課稿篇十三

教學。

設計、|板書設計及其依據(jù)面對面地對同行(同學科教師)或其他聽眾作全面講述的一項教研活動或交流活動。以下是小編整理的初中數(shù)學《勾股定理的逆定理》說課稿,歡迎大家閱讀參考。

一、教材分析:。

(一)、本節(jié)課在教材中的地位作用。

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學生必須掌握。

(二)、教學目標:。

根據(jù)數(shù)學課標的要求和教材的具體內(nèi)容,結(jié)合學生實際我確定了本節(jié)課的教學目標。

知識技能:

1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

過程與方法:

1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程。

2、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應用。

3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

情感態(tài)度:

(三)、學情分析:

盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據(jù)已知條件構造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節(jié)課的重點、難點和關鍵。

重點:勾股定理逆定理的應用。

難點:勾股定理逆定理的證明。

關鍵:輔助線的添法探索。

二、教學過程:

本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結(jié)構與幾何知識結(jié)構之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結(jié)構的目的。

(一)、復習回顧:復習回顧與勾股定理有關的內(nèi)容,建立新舊知識之間的聯(lián)系。

(二)、創(chuàng)設問題情境。

一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。

(三)、學生在教師的指導下嘗試解決問題,

總結(jié)。

規(guī)律(包括難點突破)。

因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。

接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。

(四)、組織變式訓練。

本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結(jié)合起來。

(五)、歸納小結(jié),納入知識體系。

本節(jié)課小結(jié)先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。

(六)、作業(yè)布置。

由于學生的思維素質(zhì)存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。a組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。b組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質(zhì),發(fā)展學生的個性有積極作用。

三、

說教法、學法與教學手段。

為貫徹實施素質(zhì)教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學內(nèi)容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現(xiàn)、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調(diào)動學生的學習積極性,發(fā)展學生的思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。

此外,本節(jié)課我還采用了理論聯(lián)系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯(lián)系學生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生獨立探討、主動獲取知識。

總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調(diào)動學生學習的積極性;力爭把教師教的過程轉(zhuǎn)化為學生親自探索、發(fā)現(xiàn)知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。

數(shù)學余弦定理說課稿篇十四

兩角差的余弦公式是推導其它十個公式的基礎,所以我想著重講這一小節(jié),本節(jié)課的重點和難點是兩角差的余弦公式的推導,所以在備課階段,我研究了教材和教師用書,并且還在網(wǎng)上下載了許多這節(jié)課的教學設計。同時我根據(jù)我們班學生對知識理解的快慢,把兩角差余弦公式的幾何證明方法舍去了,想只講它的向量的方法,有兩方面的考慮,第一是剛結(jié)束平面向量的學習,對數(shù)量積還有印象,第二是從另一個方面讓學生去體會向量作為一種工具的應用,從而使學生能對數(shù)學有那么一點點興趣。

在我準備好之后,我又問了其他的數(shù)學老師,她們也同意只講向量的證明方法,另一個方法對學生連提都不提,另外我還問了一下如何引入這一節(jié)的內(nèi)容,并提了我的引入方法——將教材上的例題進行適當?shù)母木?,降低了難度,但是老師告訴我就直接點明主題就行了,加入引入的話會把學生繞暈的。我自己也想了想上次課講數(shù)量積的時候?qū)ξ目粕霉Φ睦右?,結(jié)果可以想象,開頭學生就覺得好難,等到講數(shù)量積定義的時候?qū)W生完全聽不進去了,那節(jié)課算是失敗的。這一次我想了想采取了保守的策略——直接進入主題。

剛開始的時候效果還是不錯的,通過讓學生猜測15度《兩角差的余弦公式》的`教學反思——潘紅亞的余弦值引起了學生的興趣,很自然的進入了公式的推導,但是我沒有想到會在寫角的終邊與單位圓交點坐標時遇到了困難,學生一點想不起來三角函數(shù)是如何定義的,再加上當時快下課了,我沒有進一步引導,而只是按照我自己的進度講完推導過程,最后學生迷茫的表情讓我很有挫敗感,我就帶著學生一塊記憶公式,并告訴他們只要會用公式做題就可以了,聽不懂就算了。

這節(jié)課過后,我自己靜下心來想了想,我犯了數(shù)學課的大忌,一味地講公式,套解法是最快得分的捷徑,但它也是扼殺思考的最有效的管道。數(shù)學的根基在于理解而非公式或解法。通過最近的講課,我發(fā)現(xiàn)張碩老師對我們講的有關數(shù)學教學的理論我都沒用上,所以我想等到講必修五的時候,我需要的是花大量的時間備課,適當應用一些新的教學理論,改變一下數(shù)學課堂,實習就是將自己學到的理論應用于實踐。

數(shù)學余弦定理說課稿篇十五

一、教材分析:。

(一)、本節(jié)課在教材中的地位作用。

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學生必須掌握。

(二)、教學目標:。

根據(jù)數(shù)學課標的要求和教材的具體內(nèi)容,結(jié)合學生實際我確定了本節(jié)課的教學目標。

知識技能:

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

過程與方法:

2、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應用。

3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

情感態(tài)度:

(三)、學情分析:

盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據(jù)已知條件構造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節(jié)課的重點、難點和關鍵。

關鍵:輔助線的添法探索。

二、教學過程:

(一)、復習回顧:復習回顧與勾股定理有關的內(nèi)容,建立新舊知識之間的聯(lián)系。

(二)、創(chuàng)設問題情境。

一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的'知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。

(三)、學生在教師的指導下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)。

因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。

接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。

(四)、組織變式訓練。

數(shù)學余弦定理說課稿篇十六

引例:

例2:

例3:

4:

小結(jié):

教學評價分析。

診斷性評價:

1.按常規(guī),學生很可能想到先探究兩角和的正弦公式,怎樣想到先研究兩角差的余弦公式是一個難點(但非重點),教學時可以直接提出研究兩角差的余弦公式。但后面補充老教材的證明方法,讓學生明白和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,努力讓學習過程自然。

2.盡管教材在前面的習題中,已經(jīng)為用向量法證明兩角差的余弦公式做了鋪墊,多數(shù)學生仍難以想到.教師需要引導學生,聯(lián)想到向量的數(shù)量積公式和單位圓上點的坐標特點,努力使數(shù)學思維顯得自然、合理。

3.用向量的數(shù)量積公式證明兩角差的余弦公式時,學生容易犯思維不嚴謹?shù)腻e誤,教學時需要引導學生搞清楚兩角差與相應向量的夾角的聯(lián)系與區(qū)別。

預期效果:。

1、讓學生在掌握兩角差的余弦公式探究方法的基礎上,能夠自我總結(jié)形成公式探究的一般方法。

2、激發(fā)學生的探究欲望,能夠獨立或合作提出推導其它三角恒等式的方案,形成對三角恒等變換的本質(zhì)認識,加深對靈活運用公式的理解。

3、培養(yǎng)學生的“問題意識”,在探索的過程中學會將“知識問題化”,大膽、合理地提出猜測,通過證明、完善,最終達到將“問題知識化”的目的.

數(shù)學余弦定理說課稿篇十七

“兩角差的余弦公式”是課標教材人教版必修4第三章《三角恒等變換》第一節(jié)第一課時的內(nèi)容。學生已經(jīng)學習了三角函數(shù)的基本關系和誘導公式以及平面向量,在此基礎上,本章將學習任意兩個角和、差的三角函數(shù)式的變換。作為本章的第一節(jié)課,重點是引導學生通過合作、交流,探索兩角差的余弦公式,為后續(xù)簡單的恒等變換的學習打好基礎。由于兩角差的余弦公式推導方法有很多,書本上出現(xiàn)兩種證明方法——三角函數(shù)線法和向量法。課本中豐富的生活實例為學生用數(shù)學的眼光看待生活,體驗用數(shù)學知識解決實際問題,有助于增強學生的數(shù)學應用意識。

二、學情分析。

學生在第一章已經(jīng)學習了三角函數(shù)的基本關系和誘導公式以及平面向量,但只對有特殊關系的兩個角的三角函數(shù)關系通過誘導公式變換有一定的了解。對任意兩角和、差的三角函數(shù)知之甚少。本課時面對的學生是高一年級的學生,學生對探索未知世界有主動意識,對新知識充滿探求的渴望,但應用已有知識解決問題的能力還處在初期,需進一步提高。

三、教法學法分析。

(一)、說教法。

基于新課標的理念中“學生主體性和教師主導性”的原則以及本班學生的實際情況,我采取如下教學方法:

1、通過學生熟悉的實際生活問題引入課題,為公式學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生的求知欲,調(diào)動學生的主體參與的積極性。

2、突破教材,引導學生利用較為簡潔的兩種方法——兩點間距離公式和向量法,在鼓勵學生主體參與、樂于探究、勤于思考公式推導的同時,充分發(fā)揮教師的主導作用。

3、采用投影儀、多媒體等現(xiàn)代教學手段,增強教學簡易性和直觀性。

4、通過有梯度的練習、變式訓練、分層作業(yè),學生對知識掌握逐步提高。

(二)、說學法。

從學生已有的認知水平、認知能力出發(fā),經(jīng)過觀察分析、自主探究、推導證明、歸納總結(jié)等環(huán)節(jié),理解公式的推導過程,通過有梯度的練習、變式訓練、分層作業(yè),學生逐步提高對知識掌握。

四、教學目標。

(根據(jù)新課程標準和本節(jié)知識的特點,以及本班學生的實際情況,確立以下教學目標)。

(一)、知識目標。

1、理解兩角差的余弦公式的推導過程,并會利用兩角差的余弦公式解決簡單問題。

(二)、能力目標。

通過利用同角三角函數(shù)變換及向量推導兩角差的余弦公式,學生體會利用已有知識解決問題的一般方法,提高學生分析問題和解決問題的能力。

(三)、情感目標。

使學生經(jīng)歷數(shù)學知識的發(fā)現(xiàn)、探索和證明的過程,體驗成功探索新知的樂趣,激發(fā)學生提出問題的意識以及努力分析問題、解決問題的激情。

五、教學重難點。

(由于本節(jié)課主要內(nèi)容是公式的推導,所以教學重難點如下:)。

數(shù)學余弦定理說課稿篇十八

本節(jié)課是高中數(shù)學教材北師大版必修5第二章《解三角形》余弦定理的第一課時內(nèi)容,《課程標準》和教材把解三角形這部分內(nèi)容安排在必修5,位置相對靠后,在此前學生已經(jīng)學習了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,使得這部分知識的處理有了比較多的工具,某些內(nèi)容處理的更加簡潔。學數(shù)學的最終目的是應用數(shù)學,可是比較突出的是,學生應用數(shù)學的意識不強,創(chuàng)造能力弱,往往不能把實際問題抽象成數(shù)學問題,不能把所學的知識應用到實際問題中去,盡管對一些常見數(shù)學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的思維方法了解不夠,針對這些情況,教學中要重視從實際問題出發(fā),引入數(shù)學課題,最后把數(shù)學知識應用于實際問題。

余弦定理是關于任意三角形邊角之間的另一定理,是解決有關三角形問題與實際問題(如測量等)的重要定理,它將三角形的邊角有機的結(jié)合起來,實現(xiàn)了邊與角的互化,從而使三角和幾何有機的結(jié)合起來,為求與三角形有關的問題提供了理論依據(jù)。

教科書直接從三角形三邊的向量出發(fā),將向量等式轉(zhuǎn)化為數(shù)量關系,得到余弦定理,言簡意賅,簡潔明快,但給人感覺似乎跳躍較大,不夠自然,因此在創(chuàng)設問題情境中加了一個鋪墊,即讓學生想用向量方法證明勾股定理,再由特殊到一般,將直角三角形推廣為任意三角形,余弦定理水到渠成,并與勾股定理統(tǒng)一起來,這一嘗試是想回答:一個結(jié)論源自何處,是怎樣想到的。正弦定理和余弦定理源于向量的加減法運算,其實向量的加減法的三角法則和平行四四邊形法則從形上揭示了三角形的邊角關系,而正弦定理與余弦定理是從數(shù)量關系上揭示了三角形的邊角關系,向量的數(shù)量積則打通了三角形邊角的數(shù)形聯(lián)系,因此用向量方法證明正、余弦定理比較簡潔,在證明余弦定理時,讓學生自主探究,尋找新的證法,拓展思維,打通余弦定理與正弦定理、向量、解析幾何、平面幾何的聯(lián)系,在比較各種證法后體會到向量證法的優(yōu)美簡潔,使知識交融、方法熟練、能力提升。

數(shù)學教學的主要目標是激發(fā)學生的潛能,教會學生思考,讓學生變得聰明,學會數(shù)學的發(fā)現(xiàn)問題,具有創(chuàng)新品質(zhì),具備數(shù)學文化素養(yǎng)是題中之義,想一想,成人工作以后,有多少人會再用到余弦定理,但圍繞余弦定理學生學到的發(fā)現(xiàn)方法、思維方式、探究創(chuàng)造與數(shù)學精神則會受用不盡。數(shù)學教學活動首先應圍繞培養(yǎng)學生興趣、激發(fā)原動力,讓學生想學數(shù)學這門課,同時指導學生掌握數(shù)學學習的一般方法,具備終身學習的基礎。教師要不斷提出好的數(shù)學問題,還要教會學生提出問題,培養(yǎng)學生發(fā)現(xiàn)問題的意識和方法,并逐步將發(fā)現(xiàn)問題的意識變成直覺和習慣,在本節(jié)課中,通過余弦定理的發(fā)現(xiàn)過程,培養(yǎng)學生觀察、類比、發(fā)現(xiàn)、推理的能力,學生在教師引導下,自主思考、探究、小組合作相互交流啟發(fā)、思維碰撞,尋找不同的證明方法,既培養(yǎng)了學生學習數(shù)學的興趣,同時掌握了學習概念、定理的基本方法,增強了學生的問題意識。其次,掌握正確的學習方法,沒有正確的'學習方法,興趣不可能持久,概念、定理、公式、法則的學習方法是學習數(shù)學的主要方法,學習的過程就是知其然,知其所以然、舉一反三的過程,學習余弦定理的過程正是指導學生掌握學習數(shù)學的良好學習方法的范例,引導學生發(fā)現(xiàn)余弦定理的來龍去脈,掌握余弦定理證明方法,理解余弦定理與其他知識的密切聯(lián)系,應用余弦定理解決其他問題。在余弦定理教學中,尋求一題多解,探究證明余弦定理的多種方法,指導一題多變,改變余弦定理的形式,如已知兩邊夾角求第三邊的公式、已知三邊求角的余弦值的公式,啟發(fā)學生一題多想,引導學生思考余弦定理與正弦定理的聯(lián)系,與勾股定理的聯(lián)系、與向量的聯(lián)系、與三角知識的聯(lián)系以及與其他知識方法的聯(lián)系,通過不斷改變方法、改變形式、改變思維方式,夯實了數(shù)學基礎,打通了知識聯(lián)系,掌握了數(shù)學的基本方法,豐富了數(shù)學基本活動經(jīng)驗,激發(fā)了數(shù)學創(chuàng)造思維和潛能。

教學中也會有很多遺憾,有許多的漏洞,在創(chuàng)設情境,引導學生發(fā)現(xiàn)推導方法、鼓勵學生質(zhì)疑提問、猜想等方面有很多遺憾,比如:如何引入向量,解釋的不夠。最后,希望各位同仁批評指正。

數(shù)學余弦定理說課稿篇十九

今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數(shù)學下冊第十八章第一節(jié)的第一課時。

1、教材分析。

本節(jié)課是學生在已經(jīng)掌握了直角三角形有關性質(zhì)的基礎上進行學習的,通過2002年國際數(shù)學家大會的會徽圖案,引入勾股定理,進而探索直角三角形三邊的數(shù)量關系,并應用它解決問題。學好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

2、學情分析。

通過前面的學習,學生已具備一些平面幾何的知識,能夠進行一般的推理和論證,但如何通過拼圖來證明勾股定理,學生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學生動手、動口、動腦,化難為易,深入淺出,讓學生感受學習知識的樂趣。

3、教學目標:

根據(jù)八年級學生的認知水平,依據(jù)新課程標準和教學大綱的要求,我制定了如下的教學目標:

過程與方法目標:通過創(chuàng)設情境,導入新課,引導學生探索勾股定理,并應用它解決問題,運用了觀察、演示、實驗、操作等方法學習新知。

情感態(tài)度價值觀目標:感受數(shù)學文化,激發(fā)學生學習的熱情,體驗合作學習成功的喜悅,滲透數(shù)形結(jié)合的思想。

4、教學重點、難點。

根據(jù)學生情況,為有效培養(yǎng)學生能力,在教學過程中,以創(chuàng)設問題情境為先導,運用直觀教具、多媒體等手段,激發(fā)學生學習興趣,調(diào)動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發(fā)學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。

1、教法。

“教必有法,而教無定法”,只有方法恰當,才會有效。根據(jù)本課內(nèi)容特點和八年級學生思維活動特點,我采用了引導發(fā)現(xiàn)教學法,合作探究教學法,逐步滲透教學法和師生共研相結(jié)合的方法。

2、學法。

“授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現(xiàn)學習的自主性,從不同層次發(fā)掘不同學生的不同能力,從而達到發(fā)展學生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

3、教學模式。

根據(jù)新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創(chuàng)設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質(zhì)能力。

利用多媒體課件,給學生出示2002年國際數(shù)學家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實生活中提出趙爽弦圖,激發(fā)學生學習的熱情和求知欲,同時為探索勾股定理提供背景材料,進而引出課題。

1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關系,創(chuàng)設感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當補充等腰直角三角形邊長為1、2時,所形成的規(guī)律,使學生再次感知發(fā)現(xiàn)的規(guī)律。

2、提出猜想:在活動1的基礎上,學生已發(fā)現(xiàn)一些規(guī)律,進一步通過活動2進行看一看,想一想,做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學生由淺到深,由特殊到一般的提出問題,啟發(fā)學生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

3、證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.通過活動3,充分引導學生利用直觀教具,進行拼圖實驗,在動手操作中放手讓學生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學生交流,獲取信息,從而有針對性地引導學生進行證法的'探究,使學生創(chuàng)造性地得出拼圖的多種方法,并使學生在學習的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學生的發(fā)散思維、一題多解和探究數(shù)學問題的能力。

4、總結(jié)定理:讓學生自己總結(jié)定理,不完善之處由教師補充。在前面探究活動的基礎上,學生很容易得出直角三角形的三邊數(shù)量關系即勾股定理,培養(yǎng)了學生的語言表達能力和歸納概括能力。

學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課目標的達成情況和加強對學生能力的培養(yǎng),設計一組有坡度的練習題:a組動腦筋,想一想,是本節(jié)基礎知識的理解和直接應用;b組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養(yǎng)學生綜合運用知識的能力。c組議一議,是一道實際應用題型,給學生施展才智的機會,讓學生獨立思考后,討論交流得出解決問題的方法,增強了數(shù)學來源于實踐,反過來又作用于實踐的應用意識,達到了學以致用的目的。

本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么?通過小結(jié),使學生進一步明確掌握教學目標,使知識成為體系。

讓學生收集有關勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。

本節(jié)課的板書設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。

【本文地址:http://mlvmservice.com/zuowen/15351539.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔