教案能夠幫助教師對教學內(nèi)容進行深入思考和理解。教案的編寫要靈活運用不同的教學策略和方法,以適應學生的不同學習風格和能力水平。以下是根據(jù)教育部最新課程標準編寫的一批優(yōu)質(zhì)教案,供大家參考借鑒。
平方根教案篇一
教學內(nèi)容:
課本第52頁。
教學目標:
1.掌握用計算器進行一些稍復雜的小數(shù)加、減法的計算方法,能正確進行計算,正確率達到90%以上。
2.體會使用計算器工具進行計算更簡單,更快捷,初步學會使用計算器探索一些簡單的數(shù)學規(guī)律。
3.體會數(shù)學學習的趣味性和挑戰(zhàn)性。
教學重點:
平方根教案篇二
了解平方根與算術平方根的概念,理解負數(shù)沒有平方根及非負數(shù)開平方的意義。
理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數(shù)的平方根,并能用根號加以表示,能用科學計算器求平方根及其近似值。
體會平方與開平方這一對互逆運算的辯證關系,感受平方根在現(xiàn)實世界中的客觀存在,增強數(shù)學知識的應用意識。
理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數(shù)的平方根,并能用根號加以表示。
會用平方根的概念求某些數(shù)的平方根,并能用根號加以表示。
小黑板科學計算器。
1、通過七年級的學習,相信同學們都對數(shù)學這門課程有了更深入的認識,這個學期,我們將一起來學習八年級的數(shù)學知識,這個學期的知識將會更加有趣。
2、板書:實數(shù)1.1平方根。
(一)探求新知。
2、引入“無理數(shù)”的概念:像(2.82842712……)這樣無限不循環(huán)的小數(shù)就叫做無理數(shù)。
3、你還能舉出哪些無理數(shù)?(,)、、1/3是無理數(shù)嗎?
4、有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。
(二)知識歸納:
1、板書:1.1平方根。
2、李老師家裝修廚房,鋪地磚10.8平方米,用去正方形的地磚120塊,你能算出所用地磚的邊長是多少嗎?(0.3米)。
3、怎么算?每塊地磚的面積是:10.8120=0.09平方米。
由于0.32=0.09,因此面積為0.09平方米的正方形,它的邊長為0.3米。
4、練習:
由于()=400,因此面積為400平方厘米的正方形,它的邊長為()厘米。
5、在實際問題中,我們常常遇到要找一個數(shù),使它的平方等于給定的數(shù),如已知一個數(shù)a,要求r,使r2=a,那么我們就把r叫做a的一個平方根。(也可叫做二次方根)。
例如22=4,因此2是4的一個平方根;62=36,因此6是36的一個平方根。
6、說一說:9,16,25,49的一個平方根是多少?
(三)探求新知:
1、4的平方根除了2以外,還有別的數(shù)嗎?
2、學生探究:因為(-2)2=4,因此-2也是4的一個平方根。
3、除了2和-2以外,4的平方根還有別的數(shù)嗎?(4的平方根有且只有兩個:2與-2。)。
4、結(jié)論:如果r是正數(shù)a的一個平方根,那么a的平方根有且只有兩個:r與-r。
5、我們把a的正平方根叫做a的算術平方根,記作,讀作:“根號a”;
把a的負平方根記作-。
6、0的平方根有且只有一個:0。0的平方根記作,即=0。
7、負數(shù)沒有平方根。
8、求一個非負數(shù)的平方根,叫做開平方。
(四)鞏固練習:
1、分別求下列各數(shù)的平方根:36,25/9,1.21。
(6和-6,5/3和-5/3,1.1和-1.1)(也可用號表示)。
2、分別求下列各數(shù)的算術平方根:100,16/25,0.49。(10,4/5,0.7)。
1、面積是196平方厘米的正方形,它的邊長是多少厘米?
2、求算術平方根:81,25/144,0.16。
平方根教案篇三
小結(jié):這里要注意一個正數(shù)的平方根有兩個,且互為相反數(shù),用計算器求的式這個數(shù)的算術平方根。
分析:本題是由加、減、乘方、開方運算的混合運算題,由于計算器能自動識別運算順序,故按鍵順序與書寫順序完全一致。
解:按鍵的順序是:
顯示612.65685。
≈612.7。
練習:
求下列正數(shù)的算術平方根:
(1)49;(2)0.81;(3)1.5376;(4)5;(6)260;。
(7);(8)101.38。
六.總結(jié)。
利用計算器求解既快又精確,操作時要嚴格按照步驟執(zhí)行。特別注意要用到第二功能鍵,首先要先按“2f”在按需要的鍵。由于各種計算器的鍵的功能各不相同,因此要注意操作順序,查看說明書熟悉各鍵的具體功能。
八.作業(yè)。
教材a組1、2、3。
九、板書設計。
平方根教案篇四
由于不同的保險公司的車險價格不同,而且服務也存在一定差距,選擇車險計算器時,應該多方面了解保險公司的保險價格是否合理,并了解保險公司的售后服務是否優(yōu)質(zhì)。
查詢價格時,車主朋友可以通過網(wǎng)絡查詢,了解到價位合理的保險公司;查詢售后服務時,車主朋友可以咨詢身邊的朋友,也可以在汽車論壇上咨詢其他網(wǎng)友。
[汽車保險計算器怎么用]。
平方根教案篇五
教學目標:。
知識與技能目標:
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術平方根。
過程與方法目標:
1.通過學習算術平方根,建立初步的數(shù)感和符號感,發(fā)展抽象思維。
2.通過拼大正方形的活動,體驗解決問題的方法的多樣性,發(fā)展形象思維。
情感與態(tài)度目標:
1.通過對實際生活中問題的解決,讓學生體驗數(shù)學與生活實際是緊密聯(lián)系著的。
2.通過探究活動培養(yǎng)動手能力和鍛煉克服困難的意志,建立自信心,提高學習熱情。
教學重點:算術平方根的概念。
教學難點:根據(jù)算術平方根的概念正確求出非負數(shù)的算術平方根。
教學過程:
一、創(chuàng)設情境導入新課。
這節(jié)課我們先學習有關算術平方根的概念.。
[設計意圖]使學生感受到“神五”的成功發(fā)射這一偉大壯舉,竟然與我們將要學習的本章知識有著密切的聯(lián)系,激發(fā)起學生的好奇心和學習興趣,感受到學習算術平方根的必要性。
請看下面的問題.。
多媒體展示教科書第160頁的問題。
問題一:
很容易算出畫布的邊長等于5dm。
說說,你是怎樣算出來的?
(邊問邊展示幻燈片)。
[設計意圖]通過幻燈片的演示,直觀的把實際問題,抽象為數(shù)學問題,為學習算術平方根提供背景和素材,進而引入算術平方根的概念。
二、自主探究合作交流。
出示自學提綱:
1、算術平方根以及有關概念。
2、為什么規(guī)定:0的算術平方根為0。
3、自學例1,先試做后對照。
4、表示的意義是什么?它的值是多少?用等式怎樣表示?
5、144的算術平方根是多少?怎樣用符號表示?
學生活動:獨立思考1、2、3、4、5、(4分鐘)。
小組交流1、答案?2、提出疑難問題。
注意:每個小組作好紀錄(4分鐘)。
全班展開交流提出疑難問題。
平方根教案篇六
2、了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的平方根,進行簡單的開平方運算。
了解平方根的概念,求某些非負數(shù)的平方根。
了解被開方數(shù)的非負性;
1、我們已經(jīng)學習過哪些運算?它們中互為逆運算的是?
答:加法、減法、乘法、除法、乘方五種運算。加法與減法互逆;乘法與除法互逆。
2、什么叫乘方?什么叫冪?乘方有沒有逆運算?完成下面填空。
32=()()2=9。
(—3)2=()()2=。
()2=()()2=0。
()2=()。
02=()()2=—4。
3、左邊算式已知底數(shù)、指數(shù)求冪,右邊算式已知冪、指數(shù)求底數(shù)。
一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根,也叫做a的二次方根。
即如果x2=a,那么叫做的平方根。請按照第3頁的舉例你再舉兩個例子說明:
叫做開平方,平方與互為逆運算。
4、觀察上面兩組算式,歸納一個數(shù)的平方根的性質(zhì)是:
一個正數(shù)有兩個平方根,它們互為相反數(shù);
零有一個平方根,它是零本身;
交流:(1)的平方根是什么?
(2)0.16的平方根是什么?
(3)0的平方根是什么?
(4)—9的平方根是什么?
一個正數(shù)a有兩個平方根,它們互為相反數(shù)。
這兩個平方根合在一起記作。
如果x2=a,那么x=,其中符號讀作根號,a叫做被開方數(shù)。
這里的a表示什么樣的數(shù)?a是非負數(shù)。
1、判斷下面的說法是否正確:
1)—5是25的平方根;()。
2)25的平方根是—5;()。
3)0的平方根是0()。
4)1的平方根是1()。
5)(—3)2的平方根是—3()。
6)—32的平方根是—3()。
2、閱讀課本第4頁例題1,按例題格式判斷下列各數(shù)有沒有平方根,若有,求其平方根。若沒有,說明為什么。
(1)0.81(2)(3)—100(4)(—4)2。
(5)1.69(6)(7)10(8)5。
本節(jié)課你學到哪些知識?哪些地方是我們要注意的?你還有哪些疑惑?
1、檢驗下面各題中前面的數(shù)是不是后面的數(shù)的平方根。
(1)12,144()(2)0.2,0.04()。
(3)102,104()(4)14,256()。
2、選擇題(1)0.01的平方根是()。
a、0.1b、0.1c、0.0001d、0.0001。
(2)因為(0.3)2=0.09所以()。
a、0.09是0.3的平方根。b、0.09是0.3的3倍。
c、0.3是0.09的平方根。d、0.3不是0.09的平方根。
3、判斷下列說法是否正確:
(1)—9的平方根是—3;()。
(2)49的平方根是7;()。
(3)(—2)2的平方根是()。
(4)—1是1的平方根;()。
(5)若x2=16則x=4()。
(6)7的平方根是49。()。
1)812)0。253)4)(—6)2。
5、求下列各式中的x:
(1)x=16(2)x=(3)x=15(4)4x=81。
1、一個數(shù)的平方等于它本身,這個數(shù)是一個數(shù)的平方根等于它本身,這個數(shù)是。
2、若3a+1沒有平方根,那么a一定。3、若4a+1的平方根是5,則a=。
4、一個數(shù)x的平方根等于m+1和m—3,則m=。x=。
5、若|a—9|+(b—4)=0,則ab的平方根是。
6、熟背1至20的平方的結(jié)果。
平方根教案篇七
3、培養(yǎng)學生的探究能力和歸納問題的能力。
教學難點平方根和算術平方根的聯(lián)系與區(qū)別。
知識重點平方根的概念和求數(shù)的平方根。
教學過程(師生活動)設計理念。
思考歸納。
導入概念如果一個數(shù)的平方等于9,這個數(shù)是多少?
學生思考并討論,使學生明白這樣的數(shù)有兩個,它們是3和-3.受前面知識的影響學生可能不易想到-3這個數(shù),這時可提醒學生,這里的這個數(shù)可以是負數(shù)。注意中括號的作用。
又如:,則x等于多少呢?
使學生完成課本165頁的填表練習。
給出平方根的概念:如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根。即:如果=a,那么x叫做a的平方根。
求一個數(shù)的平方根的運算,叫做開平方。
例如:3的平方等于9,9的平方根是3,所以平方與開平方互為逆運算。
觀察:課本165頁中的圖10.1-2.
圖10.1-2中的兩個圖描述了平方與開平方互為逆運算的運算過程,揭示了開平方運算的本質(zhì)。
讓學生體驗平方和開平方的互逆關系,并根據(jù)這個關系說出1,4,9的平方根。
注意:這階段主要是讓學生建立平方根的概念,先不引入平方根的符號,給出的數(shù)是完全平方數(shù)。
例1:(課本165頁的例4)。求下列各數(shù)的平方根。
(1)100(2)(3)0.25。
建議教師要規(guī)范書寫格式。這個思考題是引入平方根概念的切入點,要讓學生有充分的時間進行思考和體驗。
在等式中求出x的值,為填表做準備。
通過填表中的x的值,進一步加深時“兩個互為相反數(shù)的平方等于同一個數(shù)”的。印象,為平方根的引入做準備。
教學中可以引導學生通過查閱資料等方式,了解平方根產(chǎn)。
生發(fā)展的過程。(通常稱為平方根。在研究有關n次方根的問題。
時,為使各次方根的說法協(xié)調(diào)起見,常采用二次方根的說法。
3表示+3和一3兩個數(shù)。這種寫法學生不太習慣,在以后的教學中宜不斷提到。
通過此例使學生明白平方根可以從平方運算中求得,并能規(guī)范地表述一個數(shù)的平方根。這個例題也為后面探討平方根的特征做好準備。
討論歸納。
深化概念按照平方根的概念,請同學們思考并討論下列問題:
正數(shù)的平方根有什么特點?0的平方根是多少?負數(shù)有平方根嗎?
建議:可引導學生通過觀察=a中的a和x的取值范圍和取值個數(shù)得出。
根據(jù)上面討論得出的結(jié)果填課本166頁的表。
一個是負數(shù)沒有平方根,即負數(shù)不能進行開平方運算,這種某數(shù)不能進行某種運算的情況在有理數(shù)的加、減、乘、除、乘方五種運算中一般不會遇到(0作除數(shù)的情況除外).教學時,可以通過較多實例說明這兩點,并在本節(jié)以后的教學中繼續(xù)強化這兩點。
引入符號:正數(shù)a的算術平方根可用表示;正數(shù)a的負的平方根可用-表示。例如……。
思考:表示什么意思,這里的x可取什么樣的數(shù)呢?
而對于又該怎樣理解呢?這里的x又可取什么樣的數(shù)呢?通過討論,使學生對有理數(shù)的平方根有一個全面的認識。也是平方根概念的進一步深化。
體驗分類思想,鞏固平方根概念。
加深對符號意義的理解和對平方根概念的靈活應用。
測試學生對平方根概念的掌握情況。
應用例2下列各數(shù)有平方根?如果有,求出它的平方根,如果沒有,說明理由。
-64、0,,
如果有要用平方根的符號來表示。
例3:課本第166頁的例5,求下列各式的值。
(1),(2)-,(3)。
(4),
建議:要讓學生明白各式所表示的意義;根據(jù)平方關系和平方根概念的格式書寫解題格式。平方根和算術平方根的概念是本章重點內(nèi)容,兩者既有區(qū)別又有聯(lián)系。區(qū)別在于正數(shù)的平方根有兩個,而它的算術平方根只有一個;聯(lián)系在于正數(shù)的負平方根是它的算術平方根的相反數(shù),根據(jù)它的算術平方根可以立即寫出它的負平方根,因此我們可以利用算術平方根來研究平方根。
思考:-的值是多少?熟練應用平方根的概念,計算有關算式的值,是本課的主要內(nèi)容。
被開方數(shù)不是完全平方數(shù)時,可用計算器求出它的近似值。
練習鞏固課本第167頁的練習。
小結(jié):
2、正數(shù)、0、負數(shù)的平方根有什么規(guī)律?
3、怎樣求出一個數(shù)的平方根?數(shù)a的平方怎樣表示?
小結(jié)與作業(yè)。
布置作業(yè)教科書第167頁習題10.1第3、4、7、8、11、12題。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
2、本課主要是在算術平方根的基礎上建立平方根的概念,要以等式=a和已有算術。
平方根概念為基礎,并使學生明確平方根與算術平方根之間的聯(lián)系與區(qū)別,明確開平方與平方之間的互逆關系,把握了這些平方根的有關概念,正數(shù)、零、負數(shù)的平方根的規(guī)律也就不難掌握了。
2、有關求算式的值的問題,一定要使學生體會到這個算式所表示的具體意義,這樣才能使學生在本質(zhì)上掌握其求法。
平方根教案篇八
1.內(nèi)容。
無限不循環(huán)小數(shù);求算術平方根的更一般的方法---用有理數(shù)估算、用計算器求值.。
2.內(nèi)容解析。
二、目標和目標解析。
1.教學目標。
2.目標解析。
三、教學問題診斷分析。
四、教學過程設計。
1.梳理舊知,引出新課。
問題1(1)什么是算術平方根?怎樣表示?
(2)負數(shù)有算術平方根嗎?
設計意圖:復習與本節(jié)課相關的知識,通過設問,引出本節(jié)課學習內(nèi)容.。
2.問題探究,學習新知。
問題2能否用兩個面積為1d的小正方形拼成一個面積為2d的大正方形?
師生活動:學生動手操作,在小組內(nèi)討論交流,教師展示剪拼方法.。
追問(1)拼成的這個面積為2d的大正方形的邊長應該是多少呢?
師生活動:學生自行解答,教師對解答有困難的學生進行指導.。
追問(2)小正方形的對角線的長是多少呢?
師生活動:學生根據(jù)圖形,不難回答,小正方形的對角線的長就是大正方形的邊長d.。
問題3有多大呢?為了弄清這個問題,請同學們探究“在哪兩個整數(shù)之間呢?”
追問(1)那么是1點幾呢?你能不能得到的更精確的范圍?
3.用計算器,求算術根。
例1用計算器求下列各式的值:
(1);(2)(精確到0.001)。
設計意圖:使學生會使用計算器求算術平方根.。
練習教科書第44頁練習1.。
師生活動:學生獨立完成后交流.。
設計意圖:鞏固計算器求算術平方根.。
4.綜合應用,鞏固所學。
現(xiàn)在我們來解決本章引言中的問題.。
問題4(1)你會表示出,嗎?
(2)用計算器求,.(用科學記數(shù)法把結(jié)果寫成的形式,其中保留小數(shù)點后一位)。
師生活動:學生理解題意,根據(jù)公式,可得,,將,代入,利用計算器求出,.。
設計意圖:讓學生體會計算器在解決實際問題中的應用.。
問題5利用計算器計算下表中的算術平方根,并將計算結(jié)果填在表中.。
…
師生共同回顧本節(jié)課所學內(nèi)容,并請學生回答以下問題:
(1)利用夾逼法來求算術平方根的近似值的依據(jù)是什么?
(2)利用計算器可以求出任意正數(shù)的算術平方根或近似值嗎?
(3)被開方數(shù)擴大(或縮小)與它的算術平方根擴大(或縮小)的規(guī)律是怎樣的呢?
(4)怎樣的數(shù)是無限不循環(huán)小數(shù)?
設計意圖:讓學生對本節(jié)課知識進行梳理,同時也幫助學生養(yǎng)成良好的習慣.。
6.布置作業(yè):
教科書習題6.1第6、9、10題.。
五、目標檢測設計。
1.求的整數(shù)部分.。
【設計意圖】主要考查學生的估算能力.。
2.比較下列各組數(shù)的大小.。
(1)與;(2)與12;(3)與.。
【設計意圖】主要考查學生的估算和比較大小的能力.。
3.若,,那么_______;_______.。
【設計意圖】主要考查學生對算術平方根概念以及有關規(guī)律的理解.。
【設計意圖】主要考查學生運用算術平方根解決實際問題的能力.。
平方根教案篇九
2、內(nèi)容解析。
基于以上分析,確定本節(jié)課的教學重點為:算術平方根的概念和求法、
1、教學目標。
(1)了解算術平方根的概念,會用根號表示一個非負數(shù)的算術平方根、
2、目標解析。
基于以上分析,本節(jié)課的教學難點是:深化對算術平方根的理解、
1、創(chuàng)設情境,引入新課。
2、師生互動,學習新知。
師生活動:學生可能很快答出邊長為5d、
追問請說一說,你是怎樣算出來的?
師生活動:學生理清解決問題的思路,回答,教師可結(jié)合圖片強調(diào)思路、
問題3完成下表:
正方形的面積。
追問(1)根據(jù)以上學習,你認為對于算術平方根中被開方數(shù)可以是哪些數(shù)?
師生活動:學生回答,教師明確:算術平方根中被開方數(shù)可以是正數(shù)或0,即非負數(shù)、
追問(2)為什么負數(shù)沒有算術平方根呢?
師生活動:學生思考、回答,教師點撥:因為任何一個正數(shù)的平方都不可能是負數(shù)、
追問(3)請判斷正誤:
(1)—5是—25的`算術平方根;
(2)6是的算術平方根;
(3)0的算術平方根是0;
(4)0、01是0、1的算術平方根;
(5)一個正方形的邊長就是這個正方形的面積的算術平方根、
師生活動:學生回答,其他學生討論,教師對有難度的進行適當引導、
設計意圖:檢驗對算術平方根的理解、
3、例題示范,學會應用。
例1求下列各數(shù)的算術平方根:
(1)100;(2);(3)0、0001、
追問從例1中,你能發(fā)現(xiàn)被開方數(shù)的大小與對應的算術平方根的大小之間有什么關系嗎?
例2求下列各式的值、
(1)_____;(2)_____;(3)_____。
師生活動:學生先說明所求式子的含義,然后三名學生板演,全班交流,教師點評、
設計意圖:使學生熟悉算術平方根的符號表示,全面了解算術平方根、
4、即時訓練,鞏固新知。
(1)教科書第41頁的練習、
5、課堂小結(jié)。
師生共同回顧本節(jié)課所學內(nèi)容,并請學生回答以下問題:
(1)什么是算術平方根?
(2)如何求一個正數(shù)的算術平方根?
(3)什么數(shù)才有算術平方根?
設計意圖:讓學生對本節(jié)課知識進行梳理,進一步落實相關概念、
6、布置作業(yè):
教科書習題6、1第1、2題、
1、若是49的算術平方根,則_____=(_____)。
a、7b、-7c、49d、-49。
設計意圖:本題考查學生對算術平方根概念的理解、
2、說出下列各式的意義,并求它們的值、
(1)_____;(2)_____;(3)_____;(4)_____。
設計意圖:本題考查學生對算術平方根概念的理解,以及是否能正確認識符號化語言、
3、_____的算術平方根是_____。
本題考查學生對算術平方根概念的全面理解、
平方根教案篇十
教學難點:
在計算器上暗處純小數(shù)的簡便方法,利用計算器探索規(guī)律。
教學準備:
課件。
教學過程:
一、口算熱身。(3分鐘左右)。
算一組一位小數(shù)、兩位小數(shù)的加減法(不進位、不退位),共8題。
0.2+0.8=0.76-0.36=。
5+4.8=6.9-0.5=。
5.4+3.6=7.72-6.52=。
3.6+2.1=9.1-1.1=。
二、自學例3。(15分鐘左右)。
1.明確例3中的數(shù)學信息及所需要解決的問題。
出示:教材例3情境圖。
導入:圖中有哪些數(shù)學信息?圍繞導學單進行自主學習。
2.自學。
導學單(時間:5分鐘)。
1.根據(jù)所求的問題列出算式,估算結(jié)果。
2.嘗試用計算器計算。(你遇到什么問題?)。
3.對照書本第52頁例3的提示,自己的方法不同在哪里?怎樣按鍵更簡便?
4.模仿練習:用計算器計算下面各題。
4.75+12.63=。
7.03-0.895=。
0.268+3.87=。
導學要點:
在計算器上輸入小數(shù),可以按照順序依次按鍵。
用計算器再算一遍,進行檢驗。
3.小組交流。
交流內(nèi)容。
1.你是怎樣在計算器上輸入買鉛筆的.錢數(shù)的?
2.小數(shù)部分是0的小數(shù)還可以怎樣按鍵?
4.全班交流。
分析學生在自學中出現(xiàn)的各種情況,給予適當點評。
三、練習。(15分鐘左右)。
(一)適應練習。
1.第52頁試一試,用計算器計算并驗算。
點撥:可以直接利用例3的得數(shù)來列式計算,也可以用100一次減去每種商品的金額。
2.第52頁練一練,比一比,看誰算得又對又快。
同桌互相核對計算結(jié)果。
提醒:
要按照運算順序連貫地進行計算。
(二)比較練習。
1.完成第53頁練習九第1題。
每桌南邊的學生用筆算或口算進行計算;
每桌北邊的學生用計算器進行計算。
2.完成第53頁練習九第2題。
用計算器進行計算并填表。
示范:
用上月余額減去9月2日買米、油等的金額等于9月2日的余額。
點撥:
用上次余額減去本次用去的金額就等于本次余額。將兩次收入相加等于合計。
收入,7次支出相加等于合計支出。
(三)探索練習。
第53頁練習九第3題。
用計算器計算上面三題。
思考:這三題有什么規(guī)律嗎?
(四)應用練習。
第53頁練習九第四題。
(五)創(chuàng)編練習。
1.小馬虎在計算1.86加上一個一位小數(shù)時,由于錯誤地把數(shù)的末尾對齊,結(jié)。
果得到2.19,你能幫他算出正確答案嗎?
2.用計算器計算,探索規(guī)律。
1122÷34=。
111222÷334=。
11112222÷3334=。
111111222222÷333334=。
四、課堂總結(jié):
通過這節(jié)課的學習,你學到了什么知識?
平方根教案篇十一
學科:數(shù)學年級:七年級審核:
內(nèi)容:滬科版七下6.1平方根(1)課型:新授時間:
學習目標:
1、了解平方根的概念,會用根號表示一個數(shù)的平方根,并了解被開方數(shù)的非負性;
2、了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的平方根,進行簡單的開平方運算。
學習重點:了解平方根的概念,求某些非負數(shù)的平方根。
學習難點:了解被開方數(shù)的非負性;
學習過程:
一、學習準備。
1、我們已經(jīng)學習過哪些運算?它們中互為逆運算的是?
答:加法、減法、乘法、除法、乘方五種運算。加法與減法互逆;乘法與除法互逆。
2、什么叫乘方?什么叫冪?乘方有沒有逆運算?完成下面填空。
32=()()2=9。
(-3)2=()()2=。
()2=()()2=0。
()2=()。
02=()()2=-4。
3、左邊算式已知底數(shù)、指數(shù)求冪,右邊算式已知冪、指數(shù)求底數(shù)。
一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根,也叫做a的二次方根。
即如果x2=a,那么叫做的平方根。請按照第3頁的舉例你再舉兩個例子說明:
叫做開平方,平方與互為逆運算。
4、觀察上面兩組算式,歸納一個數(shù)的平方根的性質(zhì)是:
一個正數(shù)有兩個平方根,它們互為相反數(shù);
零有一個平方根,它是零本身;
交流:(1)的平方根是什么?
一個正數(shù)a有兩個平方根,它們互為相反數(shù).
正數(shù)a的正的平方根,記作“”
正數(shù)a的負的平方根,記作“”
這兩個平方根合在一起記作“”
如果x2=a,那么x=,其中符號“”讀作根號,a叫做被開方數(shù)。
這里的a表示什么樣的數(shù)?a是非負數(shù)。
二、合作探究。
1、判斷下面的說法是否正確:
1).-5是25的平方根;()。
平方根教案篇十二
2.會用根號表示一個數(shù)的立方根,掌握開立方運算;。
3.培養(yǎng)學生用類比的思想求立方根的運算能力;。
4.由立方與立方根的教學,滲透數(shù)學的轉(zhuǎn)化思想;。
5.通過立方根符號的引入體驗數(shù)學的簡潔美.
二、教學重點和難點。
教學難點:會求某些數(shù)的立方根.
三、教學方法。
啟發(fā)式,講練結(jié)合。
四、教學手段。
幻燈片.
五、教學過程。
(一)復習提問。
請同學們回憶一下,平方根我們是如何定義的?平方根有哪些性質(zhì)?
在同學們回答后,啟發(fā)學生是否可試著給數(shù)的立方根下個定義.
如果一個數(shù)的立方等于a,這個數(shù)就叫做a的立方根.(也稱數(shù)a的三次方根)。
用數(shù)學式表示為:
若x3=a,則x叫做a的立方根,或稱x叫做a的三次方根.
類似于平方根德表示方法,數(shù)a的立方根我們用符號來表示.讀作“三次根號下a”,其中a叫做被開方數(shù),3叫做根指數(shù),注意,在前面我們平方根的表示方法說過當根指數(shù)為2時可以省略不寫,現(xiàn)在是立方根了,這個根指數(shù)3是絕對不可省的,否則就會與平方根混淆了,例如表示125的立方根,而則表示125的算術平方根.
練習:用根號表示下列各數(shù)的立方根:
3.開立方概念:
求一個數(shù)的立方根的運算,叫做開立方.
4.開立方運算與立方運算互為逆運算.
因此,我們可以根據(jù)立方運算來求一些數(shù)的立方根.
例1.求下列各數(shù)的立方根:
解:(1)∵(-2)3=-8,
(2)∵23=8,
(4)∵(0.6)3=0.216,
(5)∵03=0,
下面我們思考這樣一個問題:一個正數(shù)有幾個平方根?負數(shù)有沒有平方根?一個正數(shù)有幾個立方根?負數(shù)有沒有立方根?請學生來回答這個問題.由前面剛剛做過的題我們不難看出像8、0.126、103、這樣的正數(shù),有一個正的立方根;像-8、、這樣的負數(shù)有一個負的立方根;0的立方根是0.由此我們得了立方根的性質(zhì).
(1)正數(shù)有一個正的立方根.
(2)負數(shù)有一個負的立方根.
(3)0的立方根是0.
這里我們不妨與平方根的性質(zhì)做個比較,平方根中,正數(shù)有兩個平方根,它們互為相反數(shù),正數(shù)只有一個正的立方根;在平方根中負數(shù)是沒有平方根的,而負數(shù)有一個負的立方根;平方根與立方根唯一相同之處是0的平方根,立方根都是它本身.
例2.求下列各式的值:
解:(1)∵33=27,
(2)∵(-3)3=-27,
(5)∵(102)3=106,
(6)∵(103)3=109,
例3.解方程:
(1)x3=0.125;(2)3(x-4)3-1536=0.
解:(1)x3=0.125。
x=0.5.
(2)3(x-4)3-1536=0(此題可由學生先做,教師糾正錯誤)。
3(x-4)3=1536。
(x-4)3=512。
x-4=8。
x=12.
簡單的三次方程,所以像第(2)小題,我們要把(x-4)看成一個整體,依然轉(zhuǎn)化成為x3=a的形式,再由立方根定義去解.
填空練習:
(1)1的平方根是____;立方根為____;算術平方根為____.
(5)的立方根為________.
(6)的平方根為________.
(7)的立方根為________.
(8)一個自然數(shù)的算術平方根是a,那么與這個自然數(shù)相鄰的下一個自然數(shù)的平方根是____________;立方根是____________.
解:(1)±1;1;1.
(2)0.(此題學生容易把1也算進去,注意糾正他們的錯誤.)。
(3)±1和0.(由此題,再復習一道立方根的性質(zhì).)。
(4)0,1.(此題有學生可能會忘掉0.)。
(5)-2(此題學生易得出-4的答案,應引導學生將翻譯為-8,在求立方根,也有學生將看成得到,講解時注意)。
(6)(此題首先讓學生把計算出來,再求平方根,而且平方根有兩個)。
(7)-2.
(8),(此題引導學生先根據(jù)算術平方根來表示被開方數(shù)為a2,再表示相鄰的下一個自然數(shù)為a2+1,注意表示其平方根時有兩個值.)。
六、總結(jié)。
今天我們主要學習了立方根的概念和性質(zhì),一定要與平方根的概念和性質(zhì)相對比去理解.平方根與立方根是今后我們學習中經(jīng)常會用到的兩個非常重要的概念,希望同學們能夠熟練地掌握它,尤其是它們之間的聯(lián)系與區(qū)別.
七、作業(yè)。
教材p.141練習1、2、4.
八、板書設計。
探究活動。
下面就介紹它的巧妙求法.
因為23=8,83=512,就是說當被開方數(shù)的末位數(shù)是8和2時,立方根的個位數(shù)就分別是2和8,叫做2與8互換原則;同樣還有3與7互換原則(被開方數(shù)的末位數(shù)分別是3和7,立方根的個位數(shù)就分別是7和3).
一般地,如果103。
21952,50653,79507,287496,970299.
平方根教案篇十三
1、掌握平方根的概念,明確平方根和算術平方根之間的聯(lián)系和區(qū)別;。
3、培養(yǎng)學生的探究能力和歸納問題的能力.
教學難點平方根和算術平方根的聯(lián)系與區(qū)別。
知識重點平方根的概念和求數(shù)的平方根。
教學過程(師生活動)設計理念。
思考歸納。
導入概念如果一個數(shù)的平方等于9,這個數(shù)是多少?
學生思考并討論,使學生明白這樣的數(shù)有兩個,它們是3和-3.受前面知識的影響學生可能不易想到-3這個數(shù),這時可提醒學生,這里的這個數(shù)可以是負數(shù).注意中括號的作用.
又如:,則x等于多少呢?
使學生完成課本165頁的填表練習.
給出平方根的概念:如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根.即:如果=a,那么x叫做a的平方根.
求一個數(shù)的平方根的運算,叫做開平方.
例如:3的平方等于9,9的平方根是3,所以平方與開平方互為逆運算.
觀察:課本165頁中的圖10.1-2.
圖10.1-2中的兩個圖描述了平方與開平方互為逆運算的運算過程,揭示了開平方運算的本質(zhì).
讓學生體驗平方和開平方的互逆關系,并根據(jù)這個關系說出1,4,9的平方根.
注意:這階段主要是讓學生建立平方根的概念,先不引入平方根的符號,給出的數(shù)是完全平方數(shù).
例1:(課本165頁的例4)。求下列各數(shù)的平方根。
(1)100(2)(3)0.25。
建議教師要規(guī)范書寫格式。這個思考題是引入平方根概念的切入點,要讓學生有充分的時間進行思考和體驗.
在等式中求出x的值,為填表做準備.
通過填表中的x的值,進一步加深時“兩個互為相反數(shù)的平方等于同一個數(shù)”的印象,為平方根的引入做準備.
教學中可以引導學生通過查閱資料等方式,了解平方根產(chǎn)。
生發(fā)展的過程.(通常稱為平方根.在研究有關n次方根的問題。
時,為使各次方根的說法協(xié)調(diào)起見,常采用二次方根的說法.
3表示+3和一3兩個數(shù).這種寫法學生不太習慣,在以后的教學中宜不斷提到。
通過此例使學生明白平方根可以從平方運算中求得,并能規(guī)范地表述一個數(shù)的平方根.這個例題也為后面探討平方根的特征做好準備.
討論歸納。
深化概念按照平方根的概念,請同學們思考并討論下列問題:
正數(shù)的平方根有什么特點?0的平方根是多少?負數(shù)有平方根嗎?
建議:可引導學生通過觀察=a中的a和x的取值范圍和取值個數(shù)得出.
根據(jù)上面討論得出的結(jié)果填課本166頁的表.
一個是負數(shù)沒有平方根,即負數(shù)不能進行開平方運算,這種某數(shù)不能進行某種運算的情況在有理數(shù)的加、減、乘、除、乘方五種運算中一般不會遇到(0作除數(shù)的情況除外).教學時,可以通過較多實例說明這兩點,并在本節(jié)以后的教學中繼續(xù)強化這兩點.
引入符號:正數(shù)a的算術平方根可用表示;正數(shù)a的負的平方根可用-表示.例如……。
思考:表示什么意思,這里的x可取什么樣的數(shù)呢?
而對于又該怎樣理解呢?這里的x又可取什么樣的數(shù)呢?通過討論,使學生對有理數(shù)的平方根有一個全面的`認識.也是平方根概念的進一步深化.
體驗分類思想,鞏固平方根概念.
加深對符號意義的理解和對平方根概念的靈活應用.
測試學生對平方根概念的掌握情況.
應用例2下列各數(shù)有平方根?如果有,求出它的平方根,如果沒有,說明理由。
-64、0,,
如果有要用平方根的符號來表示。
例3:課本第166頁的例5,求下列各式的值。
(1),(2)-,(3)。
(4),
建議:要讓學生明白各式所表示的意義;根據(jù)平方關系和平方根概念的格式書寫解題格式。平方根和算術平方根的概念是本章重點內(nèi)容,兩者既有區(qū)別又有聯(lián)系.區(qū)別在于正數(shù)的平方根有兩個,而它的算術平方根只有一個;聯(lián)系在于正數(shù)的負平方根是它的算術平方根的相反數(shù),根據(jù)它的算術平方根可以立即寫出它的負平方根,因此我們可以利用算術平方根來研究平方根.
思考:-的值是多少?熟練應用平方根的概念,計算有關算式的值,是本課的主要內(nèi)容。
被開方數(shù)不是完全平方數(shù)時,可用計算器求出它的近似值。
練習鞏固課本第167頁的練習。
小結(jié):
1、什么叫做一個數(shù)的平方根?
2、正數(shù)、0、負數(shù)的平方根有什么規(guī)律?
3、怎樣求出一個數(shù)的平方根?數(shù)a的平方怎樣表示?
小結(jié)與作業(yè)。
布置作業(yè)教科書第167頁習題10.1第3、4、7、8、11、12題。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
2、本課主要是在算術平方根的基礎上建立平方根的概念,要以等式=a和已有算術。
平方根概念為基礎,并使學生明確平方根與算術平方根之間的聯(lián)系與區(qū)別,明確開平方與平方之間的互逆關系,把握了這些平方根的有關概念,正數(shù)、零、負數(shù)的平方根的規(guī)律也就不難掌握了.
2、有關求算式的值的問題,一定要使學生體會到這個算式所表示的具體意義,這樣才能使學生在本質(zhì)上掌握其求法.
平方根教案篇十四
3.利用計算器求立方根,使學生進一步領會數(shù)學的轉(zhuǎn)化思想;
4.通過利用計算器求值體驗現(xiàn)代科技產(chǎn)品迅速、精確的功能,激發(fā)學習、探索知識的興趣。
二.教學重點與難點。
三.教學方法。
啟發(fā)式。
四.教學手段。
計算器,實物投影儀。
五.教學過程。
練習:求下列各數(shù)的平方根:
(1)13;(2)23.45。
在初一學習了用計算器求一個數(shù)的平方或立方的方法?(由學生回答操作過程,并對比兩者的差別與聯(lián)系)。
對于求立方根和平方根的操作過程基本相同,主要差別是在開方的次數(shù)上,因此要注意其立方根時開方數(shù)是3。
平方根教案篇十五
1、掌握平方根的概念,明確平方根和算術平方根之間的聯(lián)系和區(qū)別;。
2、能用符號正確地表示一個數(shù)的平方根,理解開平方運算和乘方運算之間的互逆關系;。
3、培養(yǎng)學生的探究能力和歸納問題的能力.
教學難點平方根和算術平方根的聯(lián)系與區(qū)別。
知識重點平方根的概念和求數(shù)的平方根。
教學過程(師生活動)設計理念。
思考歸納。
導入概念如果一個數(shù)的平方等于9,這個數(shù)是多少?
學生思考并討論,使學生明白這樣的數(shù)有兩個,它們是3和-3.受前面知識的影響學生可能不易想到-3這個數(shù),這時可提醒學生,這里的這個數(shù)可以是負數(shù).注意中括號的作用.
又如:,則x等于多少呢?
使學生完成課本165頁的填表練習.
給出平方根的概念:如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根.即:如果=a,那么x叫做a的平方根.
求一個數(shù)的平方根的運算,叫做開平方.
例如:3的平方等于9,9的平方根是3,所以平方與開平方互為逆運算.
觀察:課本165頁中的圖10.1-2.
圖10.1-2中的兩個圖描述了平方與開平方互為逆運算的運算過程,揭示了開平方運算的本質(zhì).
讓學生體驗平方和開平方的互逆關系,并根據(jù)這個關系說出1,4,9的平方根.
注意:這階段主要是讓學生建立平方根的概念,先不引入平方根的符號,給出的數(shù)是完全平方數(shù).
例1:(課本165頁的例4)。求下列各數(shù)的平方根。
(1)100(2)(3)0.25。
建議教師要規(guī)范書寫格式。這個思考題是引入平方根概念的切入點,要讓學生有充分的時間進行思考和體驗.
在等式中求出x的值,為填表做準備.
通過填表中的x的值,進一步加深時“兩個互為相反數(shù)的平方等于同一個數(shù)”的印象,為平方根的引入做準備.
教學中可以引導學生通過查閱資料等方式,了解平方根產(chǎn)。
生發(fā)展的過程.(通常稱為平方根.在研究有關n次方根的問題。
時,為使各次方根的說法協(xié)調(diào)起見,常采用二次方根的說法.
3表示+3和一3兩個數(shù).這種寫法學生不太習慣,在以后的教學中宜不斷提到。
通過此例使學生明白平方根可以從平方運算中求得,并能規(guī)范地表述一個數(shù)的平方根.這個例題也為后面探討平方根的特征做好準備.
討論歸納。
深化概念按照平方根的概念,請同學們思考并討論下列問題:
正數(shù)的平方根有什么特點?0的'平方根是多少?負數(shù)有平方根嗎?
建議:可引導學生通過觀察=a中的a和x的取值范圍和取值個數(shù)得出.
根據(jù)上面討論得出的結(jié)果填課本166頁的表.
一個是負數(shù)沒有平方根,即負數(shù)不能進行開平方運算,這種某數(shù)不能進行某種運算的情況在有理數(shù)的加、減、乘、除、乘方五種運算中一般不會遇到(0作除數(shù)的情況除外).教學時,可以通過較多實例說明這兩點,并在本節(jié)以后的教學中繼續(xù)強化這兩點.
引入符號:正數(shù)a的算術平方根可用表示;正數(shù)a的負的平方根可用-表示.例如……。
思考:表示什么意思,這里的x可取什么樣的數(shù)呢?
而對于又該怎樣理解呢?這里的x又可取什么樣的數(shù)呢?通過討論,使學生對有理數(shù)的平方根有一個全面的認識.也是平方根概念的進一步深化.
體驗分類思想,鞏固平方根概念.
加深對符號意義的理解和對平方根概念的靈活應用.
應用例2下列各數(shù)有平方根?如果有,求出它的平方根,如果沒有,說明理由。
-64、0,,
例3:課本第166頁的例5,求下列各式的值。
(1),(2)-,(3)。
(4),
建議:要讓學生明白各式所表示的意義;根據(jù)平方關系和平方根概念的格式書寫解題格式。平方根和算術平方根的概念是本章重點內(nèi)容,兩者既有區(qū)別又有聯(lián)系.區(qū)別在于正數(shù)的平方根有兩個,而它的算術平方根只有一個;聯(lián)系在于正數(shù)的負平方根是它的算術平方根的相反數(shù),根據(jù)它的算術平方根可以立即寫出它的負平方根,因此我們可以利用算術平方根來研究平方根.
思考:-的值是多少?熟練應用平方根的概念,計算有關算式的值,是本課的主要內(nèi)容。
被開方數(shù)不是完全平方數(shù)時,可用計算器求出它的近似值。
練習鞏固課本第167頁的練習。
小結(jié):
1、什么叫做一個數(shù)的平方根?
2、正數(shù)、0、負數(shù)的平方根有什么規(guī)律?
3、怎樣求出一個數(shù)的平方根?數(shù)a的平方怎樣表示?
小結(jié)與作業(yè)。
布置作業(yè)教科書第167頁習題10.1第3、4、7、8、11、12題。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
2、本課主要是在算術平方根的基礎上建立平方根的概念,要以等式=a和已有算術。
平方根概念為基礎,并使學生明確平方根與算術平方根之間的聯(lián)系與區(qū)別,明確開平方與平方之間的互逆關系,把握了這些平方根的有關概念,正數(shù)、零、負數(shù)的平方根的規(guī)律也就不難掌握了.
2、有關求算式的值的問題,一定要使學生體會到這個算式所表示的具體意義,這樣才能使學生在本質(zhì)上掌握其求法.
平方根教案篇十六
通常車險的計算是需要按照一定的費率來進行的,而機動車商業(yè)險的費率系數(shù)又由諸多的費率因子來決定,如是否指定駕駛?cè)恕Ⅰ{駛?cè)四挲g、駕駛?cè)诵詣e、駕駛?cè)笋{齡、行駛區(qū)域、平均年行駛里程、投保年度、交通違法記錄等等。
2
車險計算器是一種方便的車輛保險費用計算工具,它能詳細羅列各項汽車保險金額,車主通過它可以精確地計算出自己投保車險時需要繳納多少錢,同時還可以看出多種不同投保方式下的價格對比,以及不同的險種組合報價。
【本文地址:http://mlvmservice.com/zuowen/15335614.html】