編寫教案需要教師對相關(guān)教材和教學(xué)資源進(jìn)行研究和分析。教案的編寫還需要注意教學(xué)環(huán)境和教學(xué)時(shí)間的合理安排。推薦一些優(yōu)秀的教案分享網(wǎng)站,供您查閱和學(xué)習(xí)。
高中數(shù)學(xué)必修五教案篇一
對重點(diǎn)內(nèi)容應(yīng)重點(diǎn)復(fù)習(xí).首先擬出主要內(nèi)容,然后有目的有針對性地做相關(guān)內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識,不要盲目地做題,要有針對性地選題,回味練習(xí).
高考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識外,還十分重視對數(shù)學(xué)方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強(qiáng)的數(shù)學(xué)方法.同學(xué)們在復(fù)習(xí)時(shí)應(yīng)對每一種方法的實(shí)質(zhì),它所適應(yīng)的題型,包括解題步驟都熟練掌握.其次應(yīng)重視對數(shù)學(xué)思想的理解及運(yùn)用,如函數(shù)思想、數(shù)形結(jié)合思想.
應(yīng)注意實(shí)際問題的解決和探索性試題的研究。
現(xiàn)在各地風(fēng)行素質(zhì)教育,呼吁改革考試命題.增強(qiáng)運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時(shí)學(xué)習(xí)中較少涉及,希望同學(xué)們把近幾年其他省、市高考試題中有關(guān)此內(nèi)容的題目集中研究一下,有備無患.這一階段,重點(diǎn)是提高學(xué)生的綜合解題能力,訓(xùn)練學(xué)生的解題策略,加強(qiáng)解題指導(dǎo),提高應(yīng)試能力.
高中數(shù)學(xué)必修五教案篇二
2.教學(xué)重點(diǎn)。
函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性.。
3.教學(xué)難點(diǎn)。
函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.。
1.教學(xué)有利因素。
2.教學(xué)不利因素。
1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡單函數(shù)單調(diào)性的方法.。
為達(dá)成課堂教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我們主要采取以下形式組織學(xué)習(xí)材料:
(一)創(chuàng)設(shè)情境,引入課題。
問題1:觀察下列函數(shù)圖象,請你說說這些函數(shù)有什么變化趨勢?
設(shè)函數(shù)的定義域?yàn)?,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數(shù)在區(qū)間上是遞增的,區(qū)間稱為函數(shù)的單調(diào)增區(qū)間(學(xué)生類比定義“遞減”,接著推出下圖,讓學(xué)生準(zhǔn)確回答單調(diào)性.)。
(二)引導(dǎo)探索,生成概念。
問題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?
(2)函數(shù)在區(qū)間上有何單調(diào)性?
預(yù)設(shè):學(xué)生會不置可否,或者憑感覺猜測,可追問判定依據(jù).。
問題3:(1)如何用數(shù)學(xué)符號描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?
(2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?
拖動“拖動點(diǎn)”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.。
(3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?
拖動“拖動點(diǎn)”,觀察函數(shù)在區(qū)間上的圖象變化.。
(4)已知,若有。
能保證函數(shù)在區(qū)間上遞增嗎?
設(shè)計(jì)說明:可先請持贊同觀點(diǎn)的同學(xué)說明理由,再請持反對意見的學(xué)生畫出反駁,然后追問:無數(shù)個(gè)也不能保證函數(shù)遞增,那該怎么辦呢?若學(xué)生回答全部取完或任取,追問“總不能一個(gè)一個(gè)驗(yàn)證吧?”
問題4:如何用數(shù)學(xué)語言準(zhǔn)確刻畫函數(shù)在區(qū)間上遞增呢?
問題5:請你試著用數(shù)學(xué)語言定義函數(shù)在區(qū)間上是遞減的.。
(三)學(xué)以致用,理解感悟。
判斷題:你認(rèn)為下列說法是否正確,請說明理由.(舉例或者畫圖)。
(1)設(shè)函數(shù)的定義域?yàn)椋魧θ我?,都有,則在區(qū)間上遞增;
(2)設(shè)函數(shù)的定義域?yàn)閞,若對任意,且,都有,則是遞增的;
(3)反比例函數(shù)的單調(diào)遞減區(qū)間是.。
例題:判斷并證明函數(shù)的單調(diào)性.。
高中數(shù)學(xué)必修五教案篇三
初中新課程中數(shù)學(xué)知識點(diǎn)刪了很多要求,如“立方和、立方差”公式,“韋達(dá)定理”,“十字相乘法分解因式”等。雖然初中新課程對這些知識點(diǎn)不作要求,但是從高中數(shù)學(xué)教學(xué)的實(shí)踐來看,學(xué)生掌握了這些知識點(diǎn)對學(xué)習(xí)新的知識有一定的促進(jìn)作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實(shí)際情況,做適當(dāng)?shù)难a(bǔ)充,同時(shí),初中學(xué)習(xí)的有理數(shù)乘方及運(yùn)算性質(zhì)和二次函數(shù),這些知識也要進(jìn)行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。
2、思維能力和運(yùn)算能力的進(jìn)一步強(qiáng)化。
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實(shí)踐能力很強(qiáng),但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時(shí),由于初中大量使用計(jì)算器,學(xué)生的計(jì)算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強(qiáng)的化簡、變形、推理及運(yùn)算能力有一定的差距,從教學(xué)的實(shí)踐來看,學(xué)生作業(yè)中出現(xiàn)的大量錯(cuò)誤與計(jì)算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實(shí)際情況,從高一開始就要切實(shí)提高學(xué)生的運(yùn)算能力。
3、抓住學(xué)科特點(diǎn),做好順利過渡。
高中數(shù)學(xué)知識量大,理論性、綜合性強(qiáng),同時(shí)高中課時(shí)少,學(xué)生基礎(chǔ)差等,知識的難度和對學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識綜合性較強(qiáng))。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強(qiáng)的閱讀能力、運(yùn)算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數(shù)學(xué)知識點(diǎn)較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實(shí)際情況及時(shí)調(diào)整教學(xué)方法和教學(xué)過程,使學(xué)生能順利進(jìn)入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
高中數(shù)學(xué)必修五教案篇四
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。
(二)規(guī)律方法總結(jié)。
1、集合中元素的互異性是集合概念的重點(diǎn)考查內(nèi)容。一般給出兩個(gè)集合,并告知兩個(gè)集合之間的關(guān)系,求集合中某個(gè)參數(shù)的范圍或值的時(shí)候,要特別驗(yàn)證是否符合元素之間互異性。2、考查集合的運(yùn)算和包含關(guān)系,解題中常用到分類討論思想,分類時(shí)注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運(yùn)算問題是以已知的集合或運(yùn)算為背景,引出新的集合概念或運(yùn)算,仔細(xì)審題,弄清新定義的意義才是關(guān)鍵。
基本初等函數(shù)。
基本初等函數(shù)的內(nèi)容是函數(shù)的基礎(chǔ),也是研究其他較復(fù)雜函數(shù)的轉(zhuǎn)化目標(biāo),掌握基本初等函數(shù)的圖象和性質(zhì)是學(xué)習(xí)函數(shù)知識的必要的一步。與指數(shù)函數(shù)、對數(shù)函數(shù)有關(guān)的試題,大多以考查基本初等函數(shù)的性質(zhì)為依托,結(jié)合運(yùn)算推理來解題。所以這部分內(nèi)容更注重通過函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質(zhì),熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運(yùn)用數(shù)形結(jié)合思想來解題的能力。
(二)規(guī)律方法總結(jié)。
1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識結(jié)合考查綜合應(yīng)用知識解決函數(shù)問題的能力。指數(shù)方程的求解常利用換元法轉(zhuǎn)化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結(jié)合成的函數(shù)的單調(diào)性的判定注意底數(shù)與1的關(guān)系的判定。
2、解對數(shù)方程(或不等式)就是將對數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉(zhuǎn)化必須是等價(jià)的,特別要考慮到對數(shù)函數(shù)定義域。
高中數(shù)學(xué)必修五教案篇五
根據(jù)德國心理學(xué)家艾賓浩斯繪制的遺忘曲線,學(xué)生對知識的遺忘遵從先快后慢的規(guī)律,有效的回憶可以加深對知識的理解,掌握知識的內(nèi)在聯(lián)系,延緩知識的遺忘。教師要采用不同的形式,整理階段的基礎(chǔ)知識,使內(nèi)容條理化、清晰化地呈現(xiàn)在同學(xué)的面前,從而完成由厚到薄的過程,對重難點(diǎn)和關(guān)鍵點(diǎn),進(jìn)行重點(diǎn)的、有針對性的講解。配以適當(dāng)?shù)木毩?xí),提高學(xué)生對基本知識和基本方法的深刻性和準(zhǔn)確性的理解掌握。促進(jìn)學(xué)生科學(xué)合理的知識結(jié)構(gòu)的形成,使知識系統(tǒng)化和網(wǎng)絡(luò)化。
舊知檢測。
要想有效的提高課堂的復(fù)習(xí)效率,就須克服“眼高手低”的毛病。很多同學(xué)上課時(shí)處于一種混沌的狀態(tài),一聽就懂,一做就錯(cuò);一聽就會,一到自己做就不會了。為避免這樣的情況,就必須讓學(xué)生更好地了解自己知識的掌握情況??梢栽O(shè)置幾個(gè)基礎(chǔ)的填空和一個(gè)左右的解答題,通過解答的過程讓學(xué)生“自知自明”。激發(fā)起興趣,有效地提高復(fù)習(xí)的效率。
精選精講。
精心的選擇適量的典型例題,分析解決這些問題應(yīng)該是一堂復(fù)習(xí)課的核心內(nèi)容。解題的目的絕不是僅僅解決這個(gè)問題本身,而是要給出通性通法,揭示解決問題的一般規(guī)律,熟練掌握數(shù)學(xué)思想方法,提高學(xué)生分析問題、解決問題的能力。
高中數(shù)學(xué)必修五教案篇六
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。
本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。
函數(shù)。
函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學(xué)的始終。近幾年高考試題函數(shù)熱點(diǎn)之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學(xué)會對具體問題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識,最終解決問題。實(shí)現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點(diǎn)。考查函數(shù)內(nèi)容的同時(shí),用函數(shù)的思想觀點(diǎn)研究問題,以及數(shù)形結(jié)合思想、分類討論思想的靈活熟練應(yīng)用,也是高考的一個(gè)重點(diǎn)。
規(guī)律方法總結(jié)。
求函數(shù)解析式時(shí),針對條件的特點(diǎn)可選用換元法、待定系數(shù)法、湊項(xiàng)法、列方程組法等進(jìn)行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。
高中數(shù)學(xué)必修五教案篇七
1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點(diǎn)表示有理數(shù);;會求一個(gè)有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。
【情感態(tài)度與價(jià)值觀】感受數(shù)形結(jié)合的.思想方法;
【教學(xué)重點(diǎn)】會說出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題。
(1)(出示投影1)問題:三個(gè)溫度計(jì)所表示的溫度是多少?
學(xué)生回答.。
(2)在一條東西向的馬路上,有一個(gè)汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題)。
(二)得出定義,揭示內(nèi)涵。
與溫度計(jì)類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點(diǎn)。
(2)標(biāo)正方向。
(3)選取單位長度,標(biāo)數(shù)(強(qiáng)調(diào):負(fù)數(shù)從0向左寫起)。
概念:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。
(三)強(qiáng)化概念,深入理解。
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫一個(gè)數(shù)軸。教師在黑板上畫。
(四)動手練習(xí),歸納總結(jié)。
1、在數(shù)軸上的點(diǎn)表示有理數(shù)。
一個(gè)學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。
明確“任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示”
2.指出數(shù)軸上a,b,c,d各點(diǎn)分別表示什么數(shù)。@師愿教育。
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計(jì)回答問題。
(1)在數(shù)軸上表示的兩個(gè)數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
(2)正數(shù)都(大于)0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。
例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。
鞏固所學(xué)知識。
(五)、歸納小結(jié),強(qiáng)化思想。
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素。
2、數(shù)軸上兩個(gè)不同的點(diǎn)所表示的兩個(gè)有理數(shù)大小關(guān)系。
3、所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示。
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.21、2、3。
選作第4題。
高中數(shù)學(xué)必修五教案篇八
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。
教學(xué)重點(diǎn):型的不等式的解法;。
教學(xué)難點(diǎn):利用絕對值的意義分析、解決問題.
教學(xué)過程設(shè)計(jì)。
教師活動。
學(xué)生活動。
設(shè)計(jì)意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負(fù)數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.。
二、新課。
【提問】如何解絕對值方程.。
【質(zhì)疑】的解集有幾部分?為什么也是它的解集?
【練習(xí)】解下列不等式:
(1);
(2)。
【設(shè)問】如果在中的,也就是怎樣解?
【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果中的是,也就是怎樣解?
【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來解.。
或
由得。
由得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式的解集表示為。
畫出數(shù)軸。
思考答案。
不等式的解集為。
或表示為,或。
筆答。
(1)。
(2),或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程()的解法.。
由淺入深,循序漸進(jìn),在型絕對值方程的基礎(chǔ)上引出()型絕對值方程的解法.。
針對解()絕對值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.。
落實(shí)會正確解出與()絕對值不等式的教學(xué)目標(biāo).。
在將看成一個(gè)整體的關(guān)鍵處點(diǎn)撥、啟發(fā),使學(xué)生主動地進(jìn)行練習(xí).。
繼續(xù)強(qiáng)化將看成一個(gè)整體繼續(xù)強(qiáng)化解不等式時(shí)不要犯丟掉這部分解的錯(cuò)誤.。
三、課堂練習(xí)。
解下列不等式:
(1);
(2)。
筆答。
(1);
(2)。
檢查教學(xué)目標(biāo)落實(shí)情況.。
四、小結(jié)。
的解集是;的解集是。
解絕對值不等式注意不要丟掉這部分解集.。
五、作業(yè)。
1.閱讀課本含絕對值不等式解法.。
2.習(xí)題2、3、4。
課堂教學(xué)設(shè)計(jì)說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯(cuò)誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯(cuò)誤,以提高學(xué)生的運(yùn)算能力.
高中數(shù)學(xué)必修五教案篇九
1.把握寫景抒情散文情景交融的特點(diǎn),提高對情景交融意境的鑒賞能力。
2.學(xué)習(xí)作者運(yùn)用語言的技巧:比喻、通感的巧妙運(yùn)用,動詞、疊詞的精心選用。
3.訓(xùn)練整體感知、揣摩語言的能力。
過程與方法。
1.本文語言精美,寫景狀物傳神,應(yīng)加強(qiáng)朗讀訓(xùn)練,讓學(xué)生自然地受到感染,體會文章的韻味。
2.理解關(guān)鍵語句,提高對作者在文中表達(dá)的思想感情的領(lǐng)悟能力。
情感態(tài)度與價(jià)值觀。
1.引導(dǎo)學(xué)生關(guān)注社會,追求理想。
2.培養(yǎng)學(xué)生健康的審美情趣。教學(xué)重點(diǎn)體味作品寫景語言精練、優(yōu)美的特點(diǎn)及其表達(dá)效果。教學(xué)難點(diǎn)品味、領(lǐng)悟課文情景交融,“景語”“情語”渾然一體的寫作特點(diǎn)。
教學(xué)方法誦讀法、感知法、品味法。
教具準(zhǔn)備課文錄音帶、多媒體課件。
教學(xué)時(shí)間安排二個(gè)課時(shí)。
第一課時(shí)。
一、導(dǎo)語設(shè)計(jì)。
李白在《月下獨(dú)酌》里說:“花間一壺酒,獨(dú)酌無相親。舉杯邀明月,對影成三人?!薄谶@里,“月”成了詩人排遣內(nèi)心深處孤獨(dú)寂寞的一種載體。
二、文本解讀。
(一)知識積累。
1、朱自清的生平和創(chuàng)作。朱自清,原名自華,字佩弦,號秋實(shí)。祖籍浙江紹興,1898年生于江蘇東海。1903年隨家定居揚(yáng)州。1916年中學(xué)畢業(yè)后,考入北京大學(xué)預(yù)科班,次年更名“自清”,考入本科哲學(xué)系。畢業(yè)后在江蘇、浙江等地的中學(xué)任教。上大學(xué)時(shí),朱自清開始創(chuàng)作新詩,1923年發(fā)表的長詩《毀滅》,震動了當(dāng)時(shí)的詩壇。1924年出版詩與散文集《蹤跡》,1925年任清華大學(xué)教授,創(chuàng)作轉(zhuǎn)向散文,同時(shí)開始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是詩人、散文家、學(xué)者,又是民主戰(zhàn)士、愛國知識分子。毛澤東稱他“表現(xiàn)了我們民族的英雄氣概”。著作有《朱自清全集》。
3、借助注解和詞典讀懂《采蓮賦》。
(二)信息篩選播放錄音(或教師朗讀)。
1、學(xué)生邊聽邊思考如何劃分層次,并歸納大意。
明確:全文分三部分:
第一部分(1):月夜漫步荷塘的緣由。(點(diǎn)明題旨)。
第二部分(2-6):荷塘月色的恬靜迷人。(主體)。
第三部分(7-10):荷塘月色的美景引動鄉(xiāng)思。(偏重抒情)。
(三)合作探究。
師生共同解析第四段,看作者是怎樣從多角度來描摹荷塘美景的?明確:先寫滿眼茂密的荷葉,次寫多姿多態(tài)的荷花、荷香,最后寫葉子和花的一絲顫動以及流水。層次井然,形象精確?!@是按觀察的角度,視線由近及遠(yuǎn)、由上而下的空間順序來寫的。以上是順序特點(diǎn),細(xì)分析,還可以看出作者的匠心:a.抓靜態(tài)與動態(tài)的結(jié)合,把荷塘寫“活”。而且,作者筆下的景物都是“動”的,“靜”不過是“動”的瞬間表現(xiàn),揚(yáng)靜而情動。
b.抓可見與可想的結(jié)合,寫出了散文的神韻。所謂“可想”,是指由“可見”引起的合理聯(lián)想,把不可見的景物寫得很有風(fēng)采。
(四)能力提升。
學(xué)生自己閱讀第五段,合作討論作者在這里是如何描寫月色的。
明確:作者把荷葉和荷花放在月光下面,一個(gè)“瀉”字,給人一種乳白色而又鮮艷欲滴的實(shí)感;一個(gè)“浮”字又表現(xiàn)出月光下荷葉、荷花那種縹緲輕柔的姿容。文章似乎仍在寫荷葉、荷花,其實(shí)不然,作者是通過寫葉、花的安謐、恬靜,襯托出月色的朦朧柔和。又如文章寫“黑影”和“倩影”,也是寫月色,因?yàn)橛笆窃鹿庹丈湓谖矬w上產(chǎn)生的。樹影明暗掩映,錯(cuò)落有致,反襯月光輕盈蕩漾。月色本是難以描摹的',所以作者透過不同的景物,從不同的角度去寫月色,使難狀之景如在眼前。
(五)分析鑒賞。
1、第五段“酣眠”“小睡”各指什么?有無深層含義?
明確:“酣眠”比喻朗照,“小睡”比喻被一層淡淡的云遮住的月光。至于它的深層含義應(yīng)該聯(lián)系作者的心態(tài)來看,他不希望過于激烈的行為,他喜歡一種平和的心態(tài),正如我們前面分析的那樣,他做不到投筆從戎,他要尋找安寧平和的生活。對景物的喜好折射出作者的心態(tài)。
2、課文第五段,寫月光用“瀉”不用“照”“鋪”,其好處是什么?(解答這個(gè)問題,不妨請學(xué)生把“照”和“鋪”字代入句中讀一遍,學(xué)生就知道了。
明確:“瀉”是承上面比喻句“如流水一般”而來的,“瀉”字有向下傾的勢態(tài)。“照”字和“鋪”字就沒有這個(gè)效果。
3、作者為什么會由光和影聯(lián)想到名曲?
明確:這是使用通感的修辭手法,光與影是視覺形象,作者卻用聽覺形象來比喻,這就是通感的一種,其相似點(diǎn)就是和諧。第四段寫荷花的縷縷清香,微風(fēng)傳送,像遠(yuǎn)方飄來歌聲一樣動人心懷,這幽雅淡遠(yuǎn)的感受也只有在月夜獨(dú)處時(shí)才會有,這也是通感,把嗅覺形象轉(zhuǎn)化為聽覺形象,它們之間的相似點(diǎn)就是似有似無、時(shí)斷時(shí)續(xù)、捉摸不定。
三、課堂小結(jié)。
所謂“意境”,指的是外界的人事景物(客觀)與人的思想感情(主觀)相融合而形成的一種天人合一、情景交融的境界。這種天人合一、情景交融越是天衣無縫、水乳交融,散文就越具有美感。《荷塘月色》做到了這一點(diǎn),所以它具有一種意境美。
四、作業(yè)設(shè)計(jì)。
背誦第四、五、六段。
第二課時(shí)。
一、導(dǎo)語設(shè)計(jì)。
二、文本解讀。
(一)合作探究指導(dǎo)學(xué)生理解“通感”的特點(diǎn)及其作用。明確:通感:就是人的各種感覺之間的交流、溝通、轉(zhuǎn)移。錢鐘書先生說過,“在日常經(jīng)驗(yàn)里,視覺、聽覺、觸覺、嗅覺、味覺往往可以彼此打通或交通,眼、耳、舌、鼻、身,各個(gè)官能的領(lǐng)域可以不分界限。顏色似乎會有溫度,聲音似乎會有形象,冷暖似乎會有重量,氣味似乎會有鋒芒……”(《通感》。)例如:“微風(fēng)過處,送來縷縷清香,仿佛遠(yuǎn)處高樓上渺茫的歌聲似的?!?/p>
a.本體——花香(嗅覺)喻體——渺茫的歌聲(聽覺)b.作用:把花香的特點(diǎn)寫清了,生動形象。
c.相似點(diǎn):立于微風(fēng)中嗅馨香(時(shí)有時(shí)無)——聽遠(yuǎn)處高樓傳來的歌聲(時(shí)斷時(shí)續(xù))再如:“但光與影有著和諧的旋律,如梵婀玲上奏著的名曲。”
(二)能力提升。
1、文章抒情的語句主要有哪些?
明確:第一段:這幾天心里頗不寧靜。
第二段:沒有月光的晚上,這路上陰森森的,有些怕人。今晚卻很好,雖然月光也還是淡淡的。
第三段:我也像超出了平常的自己,到了另一世界里。我愛熱鬧,也愛冷靜;愛群居,也愛獨(dú)處……便覺是個(gè)自由的人?!仪沂苡眠@無邊的荷香月色好了。
第六段:但熱鬧是它們的,我什么也沒有。
第八段:這真是有趣的事,可惜我們現(xiàn)在早已無福消受了。
第十段:這令我到底惦著江南了。
2、作者的思想感情在文中是怎樣變化的?
明確:因?yàn)檫@幾天心里頗不寧靜,忽然想起日日走過的荷塘,在滿月的光里,總該另有一番樣子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚卻很好,我可以享受這無邊的荷香月色。荷塘月色的確很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦朧和諧,令人心醉。荷塘四周非常幽靜,只有樹上的蟬聲和水里的蛙聲最熱鬧,而我什么也沒有。忽然又想起采蓮的事情來了,那真是有趣的事,可惜我們現(xiàn)在早已無福消受了。采蓮令我惦著江南了,這樣想著回到了家里。有人把這篇文章所表現(xiàn)的思想感情概括為“淡淡的喜悅,淡淡的哀愁”,是很貼切的,但作者的感情底色是“不寧靜”。
(三)分析鑒賞。
1、第六段寫“熱鬧是它們的,我什么也沒有”,作者為什么會如此傷感?
明確:作者想尋找美景,使自己寧靜,平息自己矛盾的心情而不得,當(dāng)然傷感。
2、第七段采蓮與文章主體有什么關(guān)系?為什么會想起采蓮的事情?
明確:以采蓮的熱鬧襯托自己的孤寂,且荷蓮?fù)?,作者又是揚(yáng)州人,對江南習(xí)俗很了解。
明確:一方面有照應(yīng)文章開頭的作用,但主要目的還是以靜寫動,以靜來反襯自己心里的極不寧靜。心里的不寧靜,是社會現(xiàn)實(shí)的劇烈動蕩在作者心中引起的波瀾。全篇充滿著動與靜的對立統(tǒng)一:社會的動蕩與荷塘一隅的寂靜,內(nèi)心的動蕩與內(nèi)心的寧靜形成對立統(tǒng)一,文章開頭心里不寧靜,在月夜荷塘幽美的景色的感染下趨于心靜,走出荷塘又回到不寧靜的現(xiàn)實(shí)中來,也形成對立、轉(zhuǎn)化。
三、課堂小結(jié)。
這篇作品獲得人們特別贊賞的原因,就在于它寫景特別工細(xì)。朱自清在表現(xiàn)月色下的荷塘和荷塘上的月色這兩個(gè)組成部分的時(shí)候,還進(jìn)一步作更精細(xì)的分解剖析,把這兩個(gè)部分再分解剖析成許多更小的部分,然后逐一描寫并且從景物觀賞者的視覺、嗅覺、聽覺,以及景物的靜態(tài)、動態(tài)等角度,寫出它們的種種性狀,從而把景物表現(xiàn)得格外細(xì)膩。
四、作業(yè)設(shè)計(jì)。
研究性學(xué)習(xí)參考論題。請你就以下論題中的一個(gè)或另擬論題,從網(wǎng)絡(luò)上尋找有關(guān)資料,寫出你的研究結(jié)果。
1、走近朱自清。
2、朱自清為什么“不寧靜”?
3、談《荷塘月色》的寫景藝術(shù)。
4、談《荷塘月色》的感情線索。
高中數(shù)學(xué)必修五教案篇十
本節(jié)課力的合成,是在學(xué)生了解力的基本性質(zhì)和常見幾種力的基礎(chǔ)上,通過等效替代思想,研究多個(gè)力的合成方法,是對前幾節(jié)內(nèi)容的深化。
本節(jié)重點(diǎn)介紹力的合成法則——平行四邊形定則,但實(shí)際這是所有矢量運(yùn)算的共同工具,為學(xué)習(xí)其他矢量的運(yùn)算奠定了基礎(chǔ)。
更重要的是,力的合成是解決力學(xué)問題的基礎(chǔ),對今后牛頓運(yùn)動定律、平衡問題、動量與能量問題的理解和應(yīng)用都會產(chǎn)生重要影響。
因此,這節(jié)課承前啟后,在整個(gè)高中物理學(xué)習(xí)中占據(jù)著非常重要的地位。
二、教學(xué)目標(biāo)定位。
為了讓學(xué)生充分進(jìn)行實(shí)驗(yàn)探究,體驗(yàn)獲取知識的過程,本節(jié)內(nèi)容分兩課時(shí)來完成,今天我說課的內(nèi)容為本節(jié)內(nèi)容的第一課時(shí)。根據(jù)上述教材分析,考慮到學(xué)生的實(shí)際情況,在本節(jié)課的教學(xué)過程中,我制定了如下教學(xué)目標(biāo):。
一、知識與技能。
理解合力、分力、力的合成的概念理解力的合成本質(zhì)上是從等效的角度進(jìn)行力的替代。
探究求合力的方法——力的平行四邊形定則,會用平行四邊形定則求合力。
二、過程與方法。
通過學(xué)習(xí)合力和分力的概念,了解物理學(xué)常用的方法——等效替代法。
通過實(shí)驗(yàn)探究方案的設(shè)計(jì)與實(shí)施,體驗(yàn)科學(xué)探究的過程。
三、情感態(tài)度與價(jià)值觀。
培養(yǎng)學(xué)生的合作精神,激發(fā)學(xué)生學(xué)習(xí)興趣,形成良好的學(xué)習(xí)方法和習(xí)慣。
培養(yǎng)認(rèn)真細(xì)致、實(shí)事求是的實(shí)驗(yàn)態(tài)度。
根據(jù)以上分析確定本節(jié)課的重點(diǎn)與難點(diǎn)如下:
一、重點(diǎn)。
合力和分力的概念以及它們的關(guān)系。
實(shí)驗(yàn)探究力的合成所遵循的法則。
二、難點(diǎn)。
平行四邊形定則的理解和運(yùn)用。
三、重、難點(diǎn)突破方法——教法簡介。
本堂課的重、難點(diǎn)為實(shí)驗(yàn)探究力的合成所遵循的法則——平行四邊形定則,為了實(shí)現(xiàn)重難點(diǎn)的突破,讓學(xué)生真正理解平行四邊形定則,就要讓學(xué)生親自體驗(yàn)規(guī)律獲得的過程。
因此,本堂課在學(xué)法上采用學(xué)生自主探究的實(shí)驗(yàn)歸納法——通過重現(xiàn)獲取知識和方法的思維過程,讓學(xué)生親自去體驗(yàn)、探究、歸納總結(jié)。體現(xiàn)學(xué)生主體性。
實(shí)驗(yàn)歸納法的步驟如下。這樣設(shè)計(jì)讓學(xué)生不僅能知其然,更能知其所以然,這也是本堂課突破重點(diǎn)和難點(diǎn)的重要手段。
本堂課在教法上采用啟發(fā)式教學(xué)——通過設(shè)置問題,引導(dǎo)啟發(fā)學(xué)生,激發(fā)學(xué)生思維。體現(xiàn)教師主導(dǎo)作用。
四、教學(xué)過程設(shè)計(jì)。
采用六環(huán)節(jié)教學(xué)法,教學(xué)過程共有六個(gè)步驟。
教學(xué)過程第一環(huán)節(jié)、創(chuàng)設(shè)情景導(dǎo)入新課:
第二環(huán)節(jié)、新課教學(xué):
展示合力與分力以及力的合成的概念,強(qiáng)調(diào)等效替代法。舉例說明等效替代法是一種重要的物理方法。
第三環(huán)節(jié)、合作探究:
首先,教師展示實(shí)驗(yàn)儀器,讓學(xué)生思考如何設(shè)計(jì)實(shí)驗(yàn),,如何進(jìn)行實(shí)驗(yàn)?zāi)?學(xué)生面對器材可能會覺得無從下手。再次設(shè)置問題引導(dǎo)學(xué)生思維,讓學(xué)生面對儀器分組討論以下四個(gè)問題。
問題1要用動畫輔助說明。在問題2中,教師要強(qiáng)調(diào)結(jié)點(diǎn)的問題,用動畫說明。問題3中,直觀簡潔的描述力必須用力的圖示,用圖片說明。問題4讓學(xué)生注意測力計(jì)的使用,減小實(shí)驗(yàn)誤差。通過對這四個(gè)問題的討論,再結(jié)合多媒體動畫的展示,使學(xué)生對探究的步驟清晰明了。
然后,學(xué)生分組實(shí)驗(yàn),合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實(shí)驗(yàn)完成后請學(xué)生展示實(shí)驗(yàn)結(jié)果,應(yīng)該立即可得出結(jié)論一:比較分力與合力的大小,可得互成角度的兩個(gè)力的合成,不能簡單地利用代數(shù)方法相加減.
那合力與分力到底滿足什么關(guān)系呢?
此時(shí)要引導(dǎo)學(xué)生思考:既然從數(shù)字上找不到關(guān)系,哪可不可以從幾何上找找關(guān)系呢?學(xué)生會立即猜想出o、a、c、b像是一個(gè)平行四邊形的四個(gè)頂點(diǎn),ob可能是這個(gè)平行四邊形的對角線.哪么猜想是否正確呢?親自實(shí)踐才有發(fā)言權(quán),學(xué)生動手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對角線與ob是否重合。
學(xué)生作圖后發(fā)現(xiàn)對角線與合力很接近。教師說明實(shí)驗(yàn)的誤差是不可避免的,科學(xué)家經(jīng)過很多次的、精細(xì)的實(shí)驗(yàn),最后確認(rèn)對角線的長度、方向,跟合力的大小、方向一致,說明對角線就表示f1和f2的合力.由此得到結(jié)論二:力的合成法則——平行四邊形定則。
進(jìn)入。
第四環(huán)節(jié):歸納總結(jié)。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學(xué)必修五教案篇十一
要學(xué)好數(shù)學(xué),最關(guān)鍵的是要有一個(gè)好的基礎(chǔ)。只有打牢數(shù)學(xué)基礎(chǔ),才能夠把高中數(shù)學(xué)好,同樣只有打好基礎(chǔ),才能夠數(shù)學(xué)取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實(shí)。
想學(xué)好數(shù)學(xué),對數(shù)學(xué)感興趣。
其實(shí)學(xué)好數(shù)學(xué)最好的辦法就是發(fā)自內(nèi)心由衷的想要學(xué)習(xí),渴望學(xué)習(xí),才能體會到從學(xué)習(xí)中所收獲的樂趣。自己的成就感提升,對于學(xué)習(xí)數(shù)學(xué)的積極性也就提高了,覺得數(shù)學(xué)并沒有那么難,就愿意去多接觸了。
多做題反復(fù)做,有題感。
其實(shí)學(xué)好數(shù)學(xué)辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強(qiáng)學(xué)習(xí),還有就是同樣做數(shù)學(xué)題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
高中數(shù)學(xué)必修五教案篇十二
一)、培養(yǎng)良好的學(xué)習(xí)興趣。
1、課前預(yù)習(xí),對所學(xué)知識產(chǎn)生疑問,產(chǎn)生好奇心。
2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點(diǎn)解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時(shí)回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價(jià),變?yōu)楸薏邔W(xué)習(xí)的動力。
3、思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。
5、把概念回歸自然。所有學(xué)科都是從實(shí)際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實(shí)生活,如角的概念、直角坐標(biāo)系的產(chǎn)生、極坐標(biāo)系的產(chǎn)生都是從實(shí)際生活中抽象出來的。只有回歸現(xiàn)實(shí)才能對概念的理解切實(shí)可靠,在應(yīng)用概念判斷、推理時(shí)會準(zhǔn)確。
二)、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。
習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣還包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。
三)、有意識培養(yǎng)自己的各方面能力。
數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計(jì)算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時(shí)學(xué)習(xí)中要注意開發(fā)不同的學(xué)習(xí)場所,參與一切有益的學(xué)習(xí)實(shí)踐活動,如數(shù)學(xué)第二課堂、數(shù)學(xué)競賽、智力競賽等活動。平時(shí)注意觀察,比如,空間想象能力是通過實(shí)例凈化思維,把空間中的實(shí)體高度抽象在大腦中,并在大腦中進(jìn)行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設(shè)計(jì)“智力課”和“智力問題”比如對習(xí)題的解答時(shí)的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達(dá)到自己各方面能力的全面發(fā)展。
高中數(shù)學(xué)必修五教案篇十三
一)、課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)。
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點(diǎn)、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
三)、調(diào)整心態(tài),正確對待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高中數(shù)學(xué)必修五教案篇十四
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計(jì)算有關(guān)的生活實(shí)際問題。
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個(gè)三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。
教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認(rèn)識,同時(shí)使新知識建立在已有知識的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。
《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個(gè)思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實(shí)際問題中去,對所學(xué)數(shù)學(xué)知識的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時(shí)卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實(shí)際情況,本章重視從實(shí)際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實(shí)際問題。
1.1正弦定理和余弦定理(約3課時(shí))
1.2應(yīng)用舉例(約4課時(shí))
1.3實(shí)習(xí)作業(yè)(約1課時(shí))
1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測量問題的過程中,一個(gè)問題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對于不同的方法進(jìn)行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。
2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實(shí)際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達(dá)實(shí)習(xí)過程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實(shí)踐能力。教師要注意對于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對于實(shí)際測量問題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測量中出現(xiàn)的一些問題。
【本文地址:http://mlvmservice.com/zuowen/15213527.html】