數(shù)學教案一元二次方程的應用大全(16篇)

格式:DOC 上傳日期:2023-11-26 07:54:03
數(shù)學教案一元二次方程的應用大全(16篇)
時間:2023-11-26 07:54:03     小編:雁落霞

編寫教案可以幫助教師對教材進行全面深入的分析和研究。要編寫一份較為完美的教案,首先需要對教學目標和要求進行明確和準確的把握。這些教案的編寫思路獨特,注重培養(yǎng)學生的創(chuàng)新思維和實踐能力。

數(shù)學教案一元二次方程的應用篇一

2.知道的一般形式,會把化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學重點和難點:

重點:的概念和它的一般形式。

難點:對的一般形式的正確理解及其各項系數(shù)的確定。

教學建議:

1.教材分析:

1)知識結構:本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。

1.了解整式方程和的概念;

2.知道的一般形式,會把化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學難點和難點:。

重點:。

1.的有關概念。

2.會把化成一般形式。

難點:的含義.

第12頁。

數(shù)學教案一元二次方程的應用篇二

(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

(2)會用因式分解法解一元二次方程

【教學重點】一元二次方程的概念、一元二次方程的一般形式

【教學難點】因式分解法解一元二次方程

【教學過程】

(一)創(chuàng)設情景,引入新課

由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)

2:一元二次方程的一般形式(形如ax+bx+c=0)

3:講解例子

4:利用因式分解法解一元二次方程

5:講解例子

6:一般步驟

(三)小結

(四)布置作業(yè)

數(shù)學教案一元二次方程的應用篇三

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學重點和難點:

難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

教學建議:

1.教材分析:

1)知識結構:本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析。

數(shù)學教案一元二次方程的應用篇四

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學重點和難點:

難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

教學建議:

1.教材分析:

1)知識結構:本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析。

是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結果。

教學目的。

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學難點和難點:。

重點:。

數(shù)學教案一元二次方程的應用篇五

是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結果。

教學目的。

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學難點和難點:。

重點:。

數(shù)學教案一元二次方程的應用篇六

(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

【教學過程】。

(一)創(chuàng)設情景,引入新課。

由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。

任一個一元二次方程都可以轉化成一般形式,注意二次項系數(shù)不為零。

3:講解例子。

5:講解例子。

6:一般步驟。

(三)小結。

(四)布置作業(yè)。

數(shù)學教案一元二次方程的應用篇七

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學重點和難點:

教學建議:

1.教材分析:

1)知識結構:本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析。

是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結果。

將本文的word文檔下載到電腦,方便收藏和打印。

數(shù)學教案一元二次方程的應用篇八

一元二次方程的應用是在學習了前面的一元二次方程的解法的基礎上,結合實際問題,討論了如何分析數(shù)量關系,利用相等關系來列方程,以及如何解答。

列方程解決實際問題,最重要的是審題,審題是列方程的基礎,而列方程是解題的關鍵,只有在透徹理解題意的基礎上,才能恰當?shù)卦O出未知數(shù),準確找出已知量與未知量之間的等量關系,正確地列出方程。

在本章教學中我注意分散教學難點,比如說,在學習增長率問題時,我先設計了這樣一組練習:一個車間二月份生產零件500個,三月份比二月份增產10%,三月份生產xx個零件,如果四月份想再增產10%,四月份生產零件xx個。如果增產的百分率是x,那三月份和四月份各能生產零件多少個?通過分散教學難點,引導學生理解題意,從而達到滿意的教學效果。

在本章教學中我還注意對學生進行學法的指導。比如說,在做習題7.12第2題時,有的同學想象不出圖形,就應引導他們畫出示意圖;在比如學習最后一個例題時,面對那么多的量,并且是運動中的量,許多學生無從下手,此時就要引導學生把量在圖形中先標示出來,在慢慢分析題中的數(shù)量關系。在分析問題時,要強調當設完未知數(shù),那它就是已知數(shù),參與量的標示。

總之,在教學中通過學生的自主探究、小組間的合作交流、教師的及時點撥,進一步提高學生分析問題、解決問題的能力。

將本文的word文檔下載到電腦,方便收藏和打印。

數(shù)學教案一元二次方程的應用篇九

(一)創(chuàng)設情景,引入新課。

由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。

練習。

2:一元二次方程的一般形式(形如ax+bx+c=0)。

任一個一元二次方程都可以轉化成一般形式,注意二次項系數(shù)不為零。

3:講解例子。

5:講解例子。

6:一般步驟。

練習。

(三)小結。

(四)布置作業(yè)。

數(shù)學教案一元二次方程的應用篇十

第二步:將左端的二次三項式分解為兩個一次因式的積;。

第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.

解法二:配方法。

x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。

即(x-2)^2=1。

于是x=3或x=1。

一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。

比如x^2+x-1=0。

我們可能分解不出它的因式來,不過我們可以采用配方法。

x^2+x-1=(x+1/2)^2-5/4=0。

于是得到x=(根號5-1)/2或x=(-根號5-1)/2。

小練習。

1.分解因式:

(4)(x+1)2-16=________。

2.方程(2x+1)(x-5)=0的解是_________。

3.方程2x(x-2)=3(x-2)的解是___________。

5.已知y=x2+x-6,當x=________時,y的值為0;當x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.

數(shù)學教案一元二次方程的應用篇十一

九年級的學生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學習了一元一次方程及相關概念,學習了整式、分式和二次根式,從知識結構上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎。這個階段的學生自主探究和合作交流的能力很強,并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強烈的求知欲,當遇到新的問題時,會自然的產生進一步探究的欲望。而我所教(11)班是年級中一個普通班,學生數(shù)學底子薄,基礎差,學生由于學習困難,基礎差,沒有自信,也就對數(shù)學的學習興趣越來越弱,有人甚至要放棄對數(shù)學的學習,作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學基本概念、基本運算方法悄然走進學生的生活、走進他們對知識的運用中去。

教學目標。

一、知識與技能:

1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。

2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項與系數(shù);。

3.通過本節(jié)課的學習,培養(yǎng)學生觀察、比較、分析、探究和歸納的能力。

二、過程與方法。

三、情感態(tài)度與價值觀。

2.通過本節(jié)知識的學習,使學生認識到知識的產生、變化和發(fā)展的過程。

教學重點和難點。

難點:1.由實際問題向數(shù)學問題的轉化過程。2.正確識別一般式中的“項”及“系數(shù)”。

數(shù)學教案一元二次方程的應用篇十二

3、解決一些概念性的題目、

4、態(tài)度、情感、價值觀。

4、通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情、

一、復習引入。

學生活動:列方程、

問題(1)《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

整理、化簡,得:__________、

問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點、

整理,得:________、

二、探索新知。

學生活動:請口答下面問題、

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的'多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

解:去括號,得:

移項,得:4x2-26x+22=0。

其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22、

解:去括號,得:

x2+2x+1+x2-4=1。

移項,合并得:2x2+2x-4=0。

其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4、

三、鞏固練習。

教材p32練習1、2。

四、應用拓展。

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、

證明:2-8+17=(-4)2+1。

∵(-4)2≥0。

∴(-4)2+10,即(-4)2+1≠0。

五、歸納小結(學生總結,老師點評)。

本節(jié)課要掌握:

六、布置作業(yè)。

數(shù)學教案一元二次方程的應用篇十三

2.通過自學探究掌握裁邊分割問題。

(閱讀課本p47頁,思考下列問題)。

1.閱讀探究3并進行填空;

2.完成p48的思考并掌握裁邊分割問題的特點;

設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:

由中下層學生口答書中填空,老師再給予補充。

思考:如果換一種設法,是否可以更簡單?

設正中央的長方形長為9acm,寬為7acm,依題意得。

9a·7a=(可讓上層學生在自學時,先上來板演)。

效果檢測時,由同座的同學給予點評與糾正。

9.如圖,要設計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應怎樣設計彩條的寬帶?(討論用多種方法列方程比較)。

注意點:要善于利用圖形的平移把問題簡單化!

(只要求設元、列方程)。

數(shù)學教案一元二次方程的應用篇十四

一元二次方程是一種數(shù)學建模的方法,它有著廣泛的實際背景,可以作為許多實際問題的數(shù)學模型。它體現(xiàn)了數(shù)學的轉化思想,學好一元二次方程是學好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學的奠基工程。是本書的重點內容,為后續(xù)學習打下良好的基礎。

學情分析。

1、經(jīng)過兩年的合作,我們班的學生已比較配合我上課,同時初三學生觀察、類比、概括、歸納能力也都比較強,不過對應用題的分析他們還是覺得很頭疼,在今后應用題的教學中需進一步加強。

2、一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎之上學習的,一元二次方程是一次方程向二次方程的轉化,是低次方程轉向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。

教學目標。

一、知識目標。

1、在分析、揭示實際問題的數(shù)量關系并把實際問題轉化為數(shù)學模型(一元二次方程)的過程中,使學生感受方程是刻畫現(xiàn)實世界數(shù)量關系的工具,,增加對一元二次方程的感性認識.

3、掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.

二、能力目標。

1、通過一元二次方程的引入,培養(yǎng)學生建模思想,歸納、分析問題及解決問題的能力.

2、由知識來源于實際,樹立轉化的思想,由設未知數(shù)、列方程向學生滲透方程的思想,進一步提高學生分析問題、解決問題的能力.

四、情感目標。

1、培養(yǎng)學生主動探究知識、自主學習和合作交流的意識.

2、激發(fā)學生學數(shù)學的興趣,體會學數(shù)學的快樂,培養(yǎng)用數(shù)學的意識。

教學重點和難點。

難點:1、從實際問題中抽象出一元二次方程。2、正確識別一般式中的“項”及“系數(shù)”

數(shù)學教案一元二次方程的應用篇十五

1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。

2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。

3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結合起來,形成實事求是的態(tài)度以及進行質疑和獨立思考的習慣。

二、教學重難點。

重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。

三、教學過程。

(一)導入新課。

生:老師,這是雷鋒叔叔。

生:是的老師。

生:想。

師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。

(二)新課教學。

師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。

(下去巡視)。

(三)小結作業(yè)。

師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。

四、板書設計。

五、教學反思。

將本文的word文檔下載到電腦,方便收藏和打印。

數(shù)學教案一元二次方程的應用篇十六

1、教材所處的地位:此前學生已經(jīng)學習了應用一元一次方程與二元一次方程組來解決實際問題。本節(jié)仍是進一步討論如何建立和利用一元二次方程模型來解決實際問題,只是在問題中數(shù)量關系的復雜程度上又有了新的發(fā)展。

2、教學目標要求:

(2)能根據(jù)具體問題的實際意義,檢驗結果是否合理;

(4)通過用一元二次方程解決身邊的問題,體會數(shù)學知識應用的價值,提高學生學習數(shù)學的興趣,了解數(shù)學對促進社會進步和發(fā)展人類理性精神的作用。

3、教學重點和難點:

重點:列一元二次方程解與面積有關問題的應用題。

難點:發(fā)現(xiàn)問題中的等量關系。

1、本節(jié)課的設計中除了探究3教師參與多一些外,其余時間都堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,教師只注重點、引、激、評,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生們大膽猜想,小心求證的科學研究的思想。

2、本節(jié)內容學習的關鍵所在,是如何尋求、抓準問題中的數(shù)量關系,從而準確列出方程來解答。因此課堂上從審題,找到等量關系,列方程等一系列活動都由生生交流,兵教兵從而達到發(fā)展學生思維能力和自學能力的目的,發(fā)掘學生的創(chuàng)新精神。

本節(jié)課是新授課,根據(jù)學生的知識結構,整個課堂教學流程大致可分為:

活動1復習回顧解決課前參與。

活動2封面設計問題的探究。

活動3草坪規(guī)劃問題的延伸。

活動4課堂回眸。

這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。

活動1復習回顧解決課前參與。

由學生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學習內容——面積問題。

活動2封面設計問題的探究。

通過學生自己獨立審題,找尋等量關系,教師引導學生對“正中央矩形與封面長寬比例相同”題意的理解,使學生明白中央矩形長寬比為9:7,從而進一步突破難點:上下邊襯與左右邊襯比也為9:7,為學生設未知數(shù)提供幫助。之后由學生分組完成方程的列法,以及取法。講解中注重簡便設法及解法的指導與評價。

活動3草坪規(guī)劃問題的延伸。

放手給學生處理,以學生合作完成為主。突出利用平移變換為主的解決方式。多由學生分析不同的處理方法。

活動4課堂回眸。

本課小結從內容、應用、數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識是有很大的促進的。方法以學生暢談收獲為主。

【本文地址:http://mlvmservice.com/zuowen/15195434.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔