數(shù)學教案一元二次方程的應用(專業(yè)23篇)

格式:DOC 上傳日期:2023-11-26 05:31:15
數(shù)學教案一元二次方程的應用(專業(yè)23篇)
時間:2023-11-26 05:31:15     小編:FS文字使者

教案是教師和學生之間的一種合作,它可以促進教學的互動和交流。教案的評價不僅僅是對教師教學效果的評價,更是對教學過程和教材的評價,為教學改進提供有力支持。以下是小編為大家收集的教案范文,僅供參考,希望對大家編寫教案有所幫助。

數(shù)學教案一元二次方程的應用篇一

一元二次方程的應用是在學習了前面的一元二次方程的解法的基礎上,結(jié)合實際問題,討論了如何分析數(shù)量關系,利用相等關系來列方程,以及如何解答。

列方程解決實際問題,最重要的是審題,審題是列方程的基礎,而列方程是解題的關鍵,只有在透徹理解題意的基礎上,才能恰當?shù)卦O出未知數(shù),準確找出已知量與未知量之間的等量關系,正確地列出方程。

在本章教學中我注意分散教學難點,比如說,在學習增長率問題時,我先設計了這樣一組練習:一個車間二月份生產(chǎn)零件500個,三月份比二月份增產(chǎn)10%,三月份生產(chǎn)xx個零件,如果四月份想再增產(chǎn)10%,四月份生產(chǎn)零件xx個。如果增產(chǎn)的百分率是x,那三月份和四月份各能生產(chǎn)零件多少個?通過分散教學難點,引導學生理解題意,從而達到滿意的教學效果。

在本章教學中我還注意對學生進行學法的指導。比如說,在做習題7.12第2題時,有的同學想象不出圖形,就應引導他們畫出示意圖;在比如學習最后一個例題時,面對那么多的量,并且是運動中的量,許多學生無從下手,此時就要引導學生把量在圖形中先標示出來,在慢慢分析題中的數(shù)量關系。在分析問題時,要強調(diào)當設完未知數(shù),那它就是已知數(shù),參與量的標示。

總之,在教學中通過學生的自主探究、小組間的合作交流、教師的及時點撥,進一步提高學生分析問題、解決問題的能力。

將本文的word文檔下載到電腦,方便收藏和打印。

數(shù)學教案一元二次方程的應用篇二

2.知道的一般形式,會把化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學重點和難點:

重點:的概念和它的一般形式。

難點:對的一般形式的正確理解及其各項系數(shù)的確定。

教學建議:

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。

1.了解整式方程和的概念;

2.知道的一般形式,會把化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學難點和難點:。

重點:。

1.的有關概念。

2.會把化成一般形式。

難點:的含義.

第12頁。

數(shù)學教案一元二次方程的應用篇三

學習目標:

2、進一步培養(yǎng)學生分析問題、解決問題的能力。

學習重點:

學習難點:

如何分析題意,找出等量關系,列方程。

學習過程:

一、復習提問:

二、探索新知。

1、情境導入。

2、合作探究、師生互動。

教師引導學生運用方程解決問題:

三、例題學習。

說明:題目中求平均每月增長的百分率,直接設增長的百分率為x,好處在于計算簡便且直接得出所求。

(小組合作交流教師點撥)。

時間基數(shù)降價降價后價錢。

第一次600600x600(1―x)。

第二次600(1―x)600(1―x)x600(1―x)2。

(由學生寫出解答過程)。

四、鞏固練習。

五、課堂總結(jié):

1、善于將實際問題轉(zhuǎn)化為數(shù)學問題,嚴格審題,弄清各數(shù)據(jù)間相互關系,正確列出方程。

2、注意解方程中的巧算和方程兩個根的取舍問題。

六、反饋練習:

a、x+(1+x)x=20%b、(1+x)2=20%。

c、(1+x)2=1、2d、(1+x%)2=1+20%。

2、某工廠計劃兩年內(nèi)降低成本36%,則平均每年降低成本的百分率是()。

數(shù)學教案一元二次方程的應用篇四

新課程要求培養(yǎng)學生應用數(shù)學的意識與能力,作為數(shù)學教師,我們要充分利用已有的生活經(jīng)驗,把所學的數(shù)學知識用到現(xiàn)實中去,體會數(shù)學在現(xiàn)實中應用價值。

本章節(jié)的應用基本上是以學生熟悉的'現(xiàn)實生活為問題的背景,讓學生從具體的問題情境中抽象出數(shù)量關系,歸納出變化規(guī)律,并能用數(shù)學符號表示,最終解決實際問題。這類注重聯(lián)系實際考查學生數(shù)學應用能力的問題,體現(xiàn)時代性,并且結(jié)合社會熱點、焦點問題,引導學生關注國家、人類和世界的命運。既有強烈的德育功能,又可以讓學生從數(shù)學的角度分析社會現(xiàn)象,體會數(shù)學在現(xiàn)實生活中的作用。

對教學過程進行反思,既有成功的一面,又有不足之處。需改進的方面有:

1、由于怕完不成任務,給學生獨立思考時間安排有些不合理,這樣容易讓思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問。例如p46有多種解法,課后一些學生與老師交流,但課上沒有得到充分的展示。

2、只考慮捕捉學生的思維亮點,一生列錯了方程,老師沒有給予及時糾正。導致使一些同學陷入誤區(qū)。3、有些問題講的過于快,理解較慢的同學跟不上。

數(shù)學教案一元二次方程的應用篇五

是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結(jié)果。

教學目的。

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學難點和難點:。

重點:。

數(shù)學教案一元二次方程的應用篇六

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學重點和難點:

難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

教學建議:

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析。

是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結(jié)果。

教學目的。

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學難點和難點:。

重點:。

數(shù)學教案一元二次方程的應用篇七

在日常生活中,許多問題都可以通過建立一元二次方程這個模型進行求解,然后回到實踐問題中進行解釋和檢驗,從而體會數(shù)學建模的思想方法,解決這類問題的關鍵是弄清實際問題中所包含的數(shù)量關系。

本節(jié)內(nèi)容教材提供了與生活密切相關,且有一定思考和探究性的問題,所以在教學中我讓學生綜合已有的知識,經(jīng)過自主探索和合作交流嘗試解決,提高學生的思維品質(zhì)和進行探究學習的能力。主要有以下幾個成功之處:

1、讓學生自主交流方法,充分展示學生不同層次的思維,互相學習,互相促進,從而創(chuàng)建平等、輕松的學習氛圍。

在出示了例7后,我提示學生解決此類問題可以自己畫出草圖,分析題目中的等量關系,學生根據(jù)題意很快可以畫出圖形,然后,我讓他們找出題目中可以寫等量關系的條件,根據(jù)條件寫出文字的等量關系。在這個環(huán)節(jié)有的學生遇到了困難,于是,我就讓他們互相討論,通過討論,大部分學生可以寫出等量關系,我再讓會的學生說出理由。在這個教學過程中,學生互相學習,互相促進,輕松地學會了知識。

2、讓學生自主歸納,總結(jié)方法,尊重學生的個性選擇,學生的集體智慧更符合學生自己的口味,比教師說教更易于被學生接受。

例7的解答還有一種更簡單的方法,我讓學生觀察圖形,在圖形上做文章,還是讓他們自主探索,討論,很快有一部分學生想到了把圖形中的道路平移到一邊的方法,這樣就把種植面積集中起來,方程就好列了。這時,我就讓學生上來講述方法。學生用自己的語言講述,這樣其他人接受起來更快一些。并且,學生還總結(jié)此類問題的解決方法――將圖形平移,在以下練習的幾道題中都能得心應手的解答了。由此可見,通過自己思考學到的知識能夠靈活應用,且掌握的好。

在這節(jié)課的教學中也存在一些不足之處,教材中在例題之前設計了一個應用,在解決這個問題上耽誤了時間,延誤了下面的教學,導致設計的練習題沒有做完,所以在下次教學時,這個應用問題只讓學生列出方程即可,不必在解答上花費時間。另外,練習設計過于單一,只涉及到了例題這種類型的練習,變式練習題少,所以,在下次教學時,要設計兩道不同題型的題目。

由這節(jié)課的教學我領悟到,數(shù)學學習是學生自己建構(gòu)數(shù)學知識的活動,學生應該主動探索知識的建構(gòu)者,而不是模仿者,教學應促進學生主體的主動建構(gòu),離開了學生積極主動的學習,教師講得再好,也會經(jīng)常出現(xiàn)“教師講完了,學生仍不會”的現(xiàn)象。所以,在以后的教學中,我要更有意識的多給學生自主探索、合作交流的機會,更加激發(fā)學生的學習積極性,使學生在他們的最近發(fā)展區(qū)發(fā)展。

數(shù)學教案一元二次方程的應用篇八

(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

【教學過程】。

(一)創(chuàng)設情景,引入新課。

由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。

任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零。

3:講解例子。

5:講解例子。

6:一般步驟。

(三)小結(jié)。

(四)布置作業(yè)。

數(shù)學教案一元二次方程的應用篇九

(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

(2)會用因式分解法解一元二次方程

【教學重點】一元二次方程的概念、一元二次方程的一般形式

【教學難點】因式分解法解一元二次方程

【教學過程】

(一)創(chuàng)設情景,引入新課

由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)

2:一元二次方程的一般形式(形如ax+bx+c=0)

3:講解例子

4:利用因式分解法解一元二次方程

5:講解例子

6:一般步驟

(三)小結(jié)

(四)布置作業(yè)

數(shù)學教案一元二次方程的應用篇十

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。

教學重點和難點:

難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

教學建議:

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析。

數(shù)學教案一元二次方程的應用篇十一

據(jù)題意,得。

整理后,得。

解這個方程,得。

由得,由得,

答:這兩個奇數(shù)是17,19或者-19,-17。

解法(二)設較小的奇數(shù)為,則較大的奇數(shù)為。

據(jù)題意,得。

整理后,得。

解這個方程,得。

當時,

當時,。

答:兩個奇數(shù)分別為17,19;或者-19,-17。

第12頁。

數(shù)學教案一元二次方程的應用篇十二

(一)創(chuàng)設情景,引入新課。

由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。

練習。

2:一元二次方程的一般形式(形如ax+bx+c=0)。

任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零。

3:講解例子。

5:講解例子。

6:一般步驟。

練習。

(三)小結(jié)。

(四)布置作業(yè)。

數(shù)學教案一元二次方程的應用篇十三

1、教材所處的地位:此前學生已經(jīng)學習了應用一元一次方程與二元一次方程組來解決實際問題。本節(jié)仍是進一步討論如何建立和利用一元二次方程模型來解決實際問題,只是在問題中數(shù)量關系的復雜程度上又有了新的發(fā)展。

2、教學目標要求:

(2)能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理;

(4)通過用一元二次方程解決身邊的問題,體會數(shù)學知識應用的價值,提高學生學習數(shù)學的興趣,了解數(shù)學對促進社會進步和發(fā)展人類理性精神的作用。

3、教學重點和難點:

重點:列一元二次方程解與面積有關問題的應用題。

難點:發(fā)現(xiàn)問題中的等量關系。

1、本節(jié)課的設計中除了探究3教師參與多一些外,其余時間都堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,教師只注重點、引、激、評,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生們大膽猜想,小心求證的科學研究的思想。

2、本節(jié)內(nèi)容學習的關鍵所在,是如何尋求、抓準問題中的數(shù)量關系,從而準確列出方程來解答。因此課堂上從審題,找到等量關系,列方程等一系列活動都由生生交流,兵教兵從而達到發(fā)展學生思維能力和自學能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

本節(jié)課是新授課,根據(jù)學生的知識結(jié)構(gòu),整個課堂教學流程大致可分為:

活動1復習回顧解決課前參與。

活動2封面設計問題的探究。

活動3草坪規(guī)劃問題的延伸。

活動4課堂回眸。

這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。

活動1復習回顧解決課前參與。

由學生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學習內(nèi)容——面積問題。

活動2封面設計問題的探究。

通過學生自己獨立審題,找尋等量關系,教師引導學生對“正中央矩形與封面長寬比例相同”題意的理解,使學生明白中央矩形長寬比為9:7,從而進一步突破難點:上下邊襯與左右邊襯比也為9:7,為學生設未知數(shù)提供幫助。之后由學生分組完成方程的列法,以及取法。講解中注重簡便設法及解法的指導與評價。

活動3草坪規(guī)劃問題的延伸。

放手給學生處理,以學生合作完成為主。突出利用平移變換為主的解決方式。多由學生分析不同的處理方法。

活動4課堂回眸。

本課小結(jié)從內(nèi)容、應用、數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學生學知識,用知識是有很大的促進的。方法以學生暢談收獲為主。

數(shù)學教案一元二次方程的應用篇十四

一元二次方程是一種數(shù)學建模的方法,它有著廣泛的實際背景,可以作為許多實際問題的數(shù)學模型。它體現(xiàn)了數(shù)學的轉(zhuǎn)化思想,學好一元二次方程是學好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學的奠基工程。是本書的重點內(nèi)容,為后續(xù)學習打下良好的基礎。

學情分析。

1、經(jīng)過兩年的合作,我們班的學生已比較配合我上課,同時初三學生觀察、類比、概括、歸納能力也都比較強,不過對應用題的分析他們還是覺得很頭疼,在今后應用題的教學中需進一步加強。

2、一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎之上學習的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。

教學目標。

一、知識目標。

1、在分析、揭示實際問題的數(shù)量關系并把實際問題轉(zhuǎn)化為數(shù)學模型(一元二次方程)的過程中,使學生感受方程是刻畫現(xiàn)實世界數(shù)量關系的工具,,增加對一元二次方程的感性認識.

3、掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.

二、能力目標。

1、通過一元二次方程的引入,培養(yǎng)學生建模思想,歸納、分析問題及解決問題的能力.

2、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設未知數(shù)、列方程向?qū)W生滲透方程的思想,進一步提高學生分析問題、解決問題的能力.

四、情感目標。

1、培養(yǎng)學生主動探究知識、自主學習和合作交流的意識.

2、激發(fā)學生學數(shù)學的興趣,體會學數(shù)學的快樂,培養(yǎng)用數(shù)學的意識。

教學重點和難點。

難點:1、從實際問題中抽象出一元二次方程。2、正確識別一般式中的“項”及“系數(shù)”

數(shù)學教案一元二次方程的應用篇十五

理解并掌握一元二次方程求根公式的推導過程,能正確、熟練地運用公式法解一元二次方程。

【過程與方法】。

經(jīng)歷探究求根公式的過程,發(fā)展合情推理能力,提高運算能力并養(yǎng)成良好的運算習慣。

【情感、態(tài)度與價值觀】。

通過公式法解一元二次方程,感受解法的多樣性,在學習活動中獲取成功的體驗。

【教學重點】。

【教學難點】。

(一)引入新課。

配方,得。

(四)小結(jié)作業(yè)。

作業(yè):課后練習題,試著用多種方法解答。

數(shù)學教案一元二次方程的應用篇十六

第二步:將左端的二次三項式分解為兩個一次因式的積;。

第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.

解法二:配方法。

x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。

即(x-2)^2=1。

于是x=3或x=1。

一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。

比如x^2+x-1=0。

我們可能分解不出它的因式來,不過我們可以采用配方法。

x^2+x-1=(x+1/2)^2-5/4=0。

于是得到x=(根號5-1)/2或x=(-根號5-1)/2。

小練習。

1.分解因式:

(4)(x+1)2-16=________。

2.方程(2x+1)(x-5)=0的解是_________。

3.方程2x(x-2)=3(x-2)的解是___________。

5.已知y=x2+x-6,當x=________時,y的值為0;當x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.

數(shù)學教案一元二次方程的應用篇十七

3、解決一些概念性的題目、

4、態(tài)度、情感、價值觀。

4、通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情、

一、復習引入。

學生活動:列方程、

問題(1)《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

整理、化簡,得:__________、

問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點、

整理,得:________、

二、探索新知。

學生活動:請口答下面問題、

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的'多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

解:去括號,得:

移項,得:4x2-26x+22=0。

其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22、

解:去括號,得:

x2+2x+1+x2-4=1。

移項,合并得:2x2+2x-4=0。

其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4、

三、鞏固練習。

教材p32練習1、2。

四、應用拓展。

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、

證明:2-8+17=(-4)2+1。

∵(-4)2≥0。

∴(-4)2+10,即(-4)2+1≠0。

五、歸納小結(jié)(學生總結(jié),老師點評)。

本節(jié)課要掌握:

六、布置作業(yè)。

數(shù)學教案一元二次方程的應用篇十八

今天,在教務處的組織下,我參加了柏老師的九年級數(shù)學課——《用因式分解法解一元二次方程》的公開課活動。

這節(jié)課,柏老師運用了“先學后導,分層推進”的教學模式開展教學活動。教學設計科學、嚴謹、合理。能對教材內(nèi)容進行取舍,不照本宣科。習題設計典型,有梯度。整個教學過程環(huán)環(huán)相扣,層層推進,最終教學效果理想。但是我個人認為在具體細節(jié)上還有有待改進的地方:。

1、知識性錯誤。因式分解是指把一個多項式分解成幾個整式相乘的形式。柏老師說成了分解成單項式相乘的形式。整式既包含單項式也有多項式。

2、整個教學過程中,還是沒有把學習的主動權交給學生,牽著學生走。不讓學生大膽的進行自主嘗試。其實,我們從后面的課堂檢測環(huán)節(jié)中可以看出學生的自主學習能力是非常強的。那幾個比較難的解方程學生都能用最簡單的方法求解。

3、從新課前的復習環(huán)節(jié)可以看出學生對已經(jīng)學過的概念記憶不清楚,對每節(jié)課所學的知識點不清。我們每節(jié)課的教學環(huán)節(jié)里基本都有“學習目標”出示和“歸納小結(jié)”的環(huán)節(jié)。這兩個環(huán)節(jié)看似不起眼,但細細推敲來,它們的作用就是讓學生清楚到底學什么和學到了什么,這兩個環(huán)節(jié)教學到位了,學生對所學知識也就是茶壺里煮餃子——心中有數(shù)了。

4、在“后導”環(huán)節(jié)要注重發(fā)揮學生的.自主、合作學習能力。因為學生在先學環(huán)節(jié)已經(jīng)掌握的一定的知識和能力,這時候教師適時的放手,讓學生通過自主學習,掌握知識,從而才能水到渠成的對知識進行歸納總結(jié)。就不會像本節(jié)課在歸納小結(jié)時這么牽強。

5、教師對教材鉆研不透徹。后面的六個解方程練習題是本節(jié)課的課后練習題,必然是都可以因式分解法來求解的。但是老師在個別輔導時強調(diào)用其他解法。

數(shù)學教案一元二次方程的應用篇十九

2.通過自學探究掌握裁邊分割問題。

(閱讀課本p47頁,思考下列問題)。

1.閱讀探究3并進行填空;

2.完成p48的思考并掌握裁邊分割問題的特點;

設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:

由中下層學生口答書中填空,老師再給予補充。

思考:如果換一種設法,是否可以更簡單?

設正中央的長方形長為9acm,寬為7acm,依題意得。

9a·7a=(可讓上層學生在自學時,先上來板演)。

效果檢測時,由同座的同學給予點評與糾正。

9.如圖,要設計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應怎樣設計彩條的寬帶?(討論用多種方法列方程比較)。

注意點:要善于利用圖形的平移把問題簡單化!

(只要求設元、列方程)。

數(shù)學教案一元二次方程的應用篇二十

了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.

1.通過設置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.

2.一元二次方程的一般形式及其有關概念.

3.解決一些概念性的題目.

4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.

重難點關鍵。

1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.

2.難點關鍵:通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念.

教學過程。

一、復習引入。

學生活動:列方程.

如果假設門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.

整理、化簡,得:__________.

問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點.

如果假設ab=1,ac=x,那么bc=________,根據(jù)題意,得:________.

整理得:_________.

如果假設剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.

整理,得:________.

老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理.

二、探索新知。

學生活動:請口答下面問題.

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.

因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的.最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個關于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.

一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.

例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.

解:去括號,得:

移項,得:4x2-26x+22=0。

其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.

例2.(學生活動:請二至三位同學上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.

分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

解:去括號,得:

x2+2x+1+x2-4=1。

移項,合并得:2x2+2x-4=0。

其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.

三、鞏固練習。

教材p32練習1、2。

四、應用拓展。

例3.求證:關于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.

分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.

證明:m2-8m+17=(m-4)2+1。

∵(m-4)20。

(m-4)2+10,即(m-4)2+10。

不論m取何值,該方程都是一元二次方程.

五、歸納小結(jié)(學生總結(jié),老師點評)。

本節(jié)課要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.

六、布置作業(yè)。

數(shù)學教案一元二次方程的應用篇二十一

第二步:將左端的二次三項式分解為兩個一次因式的積;。

第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.

解法二:配方法。

x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。

即(x-2)^2=1。

于是x=3或x=1。

一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。

比如x^2+x-1=0。

我們可能分解不出它的因式來,不過我們可以采用配方法。

x^2+x-1=(x+1/2)^2-5/4=0。

于是得到x=(根號5-1)/2或x=(-根號5-1)/2。

小練習。

1.分解因式:

(4)(x+1)2-16=________。

2.方程(2x+1)(x-5)=0的解是_________。

3.方程2x(x-2)=3(x-2)的解是___________。

5.已知y=x2+x-6,當x=________時,y的值為0;當x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.

數(shù)學教案一元二次方程的應用篇二十二

九年級的學生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學習了一元一次方程及相關概念,學習了整式、分式和二次根式,從知識結(jié)構(gòu)上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎。這個階段的學生自主探究和合作交流的能力很強,并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強烈的求知欲,當遇到新的問題時,會自然的產(chǎn)生進一步探究的欲望。而我所教(11)班是年級中一個普通班,學生數(shù)學底子薄,基礎差,學生由于學習困難,基礎差,沒有自信,也就對數(shù)學的學習興趣越來越弱,有人甚至要放棄對數(shù)學的學習,作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學基本概念、基本運算方法悄然走進學生的生活、走進他們對知識的運用中去。

教學目標。

一、知識與技能:

1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。

2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項與系數(shù);。

3.通過本節(jié)課的學習,培養(yǎng)學生觀察、比較、分析、探究和歸納的能力。

二、過程與方法。

三、情感態(tài)度與價值觀。

2.通過本節(jié)知識的學習,使學生認識到知識的產(chǎn)生、變化和發(fā)展的過程。

教學重點和難點。

難點:1.由實際問題向數(shù)學問題的轉(zhuǎn)化過程。2.正確識別一般式中的“項”及“系數(shù)”。

數(shù)學教案一元二次方程的應用篇二十三

1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。

2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。

3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習慣。

二、教學重難點。

重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。

三、教學過程。

(一)導入新課。

生:老師,這是雷鋒叔叔。

生:是的老師。

生:想。

師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。

(二)新課教學。

師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。

(下去巡視)。

(三)小結(jié)作業(yè)。

師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。

四、板書設計。

五、教學反思。

將本文的word文檔下載到電腦,方便收藏和打印。

【本文地址:http://mlvmservice.com/zuowen/15157978.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔