解一元一次方程的教案設(shè)計(jì)大全(15篇)

格式:DOC 上傳日期:2023-11-25 11:15:19
解一元一次方程的教案設(shè)計(jì)大全(15篇)
時(shí)間:2023-11-25 11:15:19     小編:XY字客

教案有助于教師對(duì)教學(xué)內(nèi)容、教學(xué)方法和教學(xué)資源進(jìn)行系統(tǒng)規(guī)劃和管理。教案的編寫需要與同事進(jìn)行交流和分享經(jīng)驗(yàn)。這些教案以清晰的教學(xué)目標(biāo)、具體的教學(xué)內(nèi)容和細(xì)致的教學(xué)步驟為特點(diǎn),可供教師參考。

解一元一次方程的教案設(shè)計(jì)篇一

3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.

教學(xué)重點(diǎn)和難點(diǎn)。

課堂教學(xué)過程設(shè)計(jì)。

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題。

為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題.

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。

解法1:(4+2)÷(3-1)=3.

答:某數(shù)為3.

(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。

解法2:設(shè)某數(shù)為x,則有3x-2=x+4.

解之,得x=3.

答:某數(shù)為3.

縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一.

我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系.因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程.

本節(jié)課,我們就通過實(shí)例來說明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運(yùn)出重量=剩余重量)。

上述分析過程可列表如下:

解:設(shè)原來有x千克面粉,那么運(yùn)出了15%x千克,由題意,得。

x-15%x=42500,

所以x=50000.

答:原來有50000千克面粉.

(還有,原來重量=運(yùn)出重量+剩余重量;原來重量-剩余重量=運(yùn)出重量)。

教師應(yīng)指出:

(2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿.

依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:

(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);。

(4)求出所列方程的解;。

(5)檢驗(yàn)后明確地、完整地寫出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義.

解一元一次方程的教案設(shè)計(jì)篇二

去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1。

4、鞏固練習(xí)。

(1)解方程(2)當(dāng)y為何值時(shí),2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)。

(鞏固練習(xí),抽兩個(gè)同學(xué)上黑板去完成,其余的同學(xué)在演草紙上完成,待同學(xué)們完成后給予點(diǎn)評(píng)。)。

5、小結(jié):和同學(xué)們一起回顧我們這節(jié)課學(xué)習(xí)了什么?

解一元一次方程的教案設(shè)計(jì)篇三

活動(dòng)3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程應(yīng)注意的事項(xiàng);歸納一元一次方程解法的一般步驟·活動(dòng)4小結(jié)總結(jié)本節(jié)收獲活動(dòng)1、創(chuàng)設(shè)問題情境:引言:這件珍貴的文物是紙莎草文書,是古代埃及人用象形文字寫在一種特殊的草上的著作,至今已有3700多年的歷史了·在文書中記載了許多有關(guān)數(shù)學(xué)的問題·問題一個(gè)數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。(1)能不能用方程解決這個(gè)問題?(2)能嘗試解這個(gè)方程嗎?(3)不同的解法有什么各自的特點(diǎn)?設(shè)計(jì)意圖:1、利用列方程、解方程解決實(shí)際問題,再一次讓學(xué)生感受方程的優(yōu)越性,提高學(xué)生主動(dòng)使用方程的意識(shí)·2、經(jīng)過對(duì)同一方程不同解法到去分母能夠使解方程的過程更加便捷,明白為什么要去分母,這是"去分母"這一步驟的必要性;同時(shí),讓學(xué)生認(rèn)同"去分母"是科學(xué)的、可行的,明確為什么能去分母·這樣,學(xué)生就會(huì)自覺參與探索去分母的一般做法的活動(dòng),從而發(fā)現(xiàn)"方程兩邊同時(shí)乘以所有分母的最小公倍數(shù)"這一方法·也首次由學(xué)生自行突破了難點(diǎn)。3、通過交流,讓學(xué)生用自己的語言清楚地表達(dá)解決問題的過程,提高學(xué)生的語言表達(dá)能力·活動(dòng)2下面方程可以怎樣求解?觀察方程,回答教師提出的問題并對(duì)學(xué)生的回答進(jìn)行總結(jié):先去分母·怎樣去分母?解去掉分母后的這個(gè)方程歸納總結(jié)去分母的方法:在方程兩邊同時(shí)乘以所有分母的最小公倍數(shù);依據(jù)是等式的性質(zhì)2,即"等式兩邊同時(shí)乘同一個(gè)數(shù),結(jié)果仍相等·"呈現(xiàn)不同學(xué)生的解題過程,選取學(xué)生在去分母過程中出現(xiàn)的典型錯(cuò)誤,引導(dǎo)全體學(xué)生共同分析錯(cuò)誤的原因,發(fā)現(xiàn)去分母的易錯(cuò)點(diǎn)·鞏固了學(xué)生對(duì)解方程的透徹理解。這樣做的目的不僅培養(yǎng)了學(xué)生的學(xué)習(xí)自主性和團(tuán)體協(xié)作精神,還對(duì)與重、難點(diǎn)知識(shí)的突破起到了一定的促進(jìn)作用。通過對(duì)錯(cuò)例的辨析,加深學(xué)生對(duì)"去分母"的認(rèn)識(shí),避免解方程時(shí)出現(xiàn)類似錯(cuò)誤·去掉分母后,方程即轉(zhuǎn)化為熟悉的形式,新舊知識(shí)自然銜接,使學(xué)生體會(huì)到,只要把新問題想辦法合理轉(zhuǎn)化為熟悉的知識(shí),問題就能得以解決通過在解方程過程中"去分母"這一步驟體會(huì)轉(zhuǎn)化思想·活動(dòng)3解方程設(shè)計(jì)意圖:用實(shí)踐來加深對(duì)"去分母"的方法解一元一次方程的認(rèn)識(shí)·結(jié)合本題思考,能總結(jié)解這種方程的一般操作過程嗎?鞏固所學(xué)的一元一次方程的解法,同時(shí)說明解方程的步驟是程序化的,但不能生搬硬套,每個(gè)步驟要不要使用、何時(shí)使用都應(yīng)視方程的特征而定·了解對(duì)方程的每一次變形都是為了將方程最終化歸為的形式·解題時(shí)應(yīng)根據(jù)題目特點(diǎn),合理選擇解題步驟·小結(jié)活動(dòng)4總結(jié)(1)學(xué)生能否總結(jié)本節(jié)的知識(shí),是否理解去分母的作用、依據(jù),是否掌握去分母的具體做法;(2)學(xué)生是否掌握了一元一次方程解法的一般步驟;(3)學(xué)生是否能準(zhǔn)確表達(dá)自己的觀點(diǎn)·最后復(fù)習(xí)、鞏固本節(jié)的知識(shí),學(xué)會(huì)總結(jié)反思·四。評(píng)價(jià)分析數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同參與發(fā)展的過程。本節(jié)課的評(píng)價(jià)要讓學(xué)生體會(huì)到參與學(xué)習(xí)、與人合作的重要性,獲得成績(jī)的喜悅,從而激發(fā)性的學(xué)習(xí)動(dòng)力。在這節(jié)的數(shù)學(xué)課,如要獲得最直接、真實(shí)的反饋,就要盡量讓學(xué)生多說、多思考,對(duì)于學(xué)生提出的問題和解決問題的方法,教師都要給予鼓勵(lì)和引導(dǎo),并隨時(shí)觀察解決,評(píng)價(jià)應(yīng)充分考慮到每個(gè)學(xué)生的差異,這節(jié)課通過現(xiàn)代化的技術(shù)的運(yùn)用,節(jié)省出盡可能多的時(shí)間,提出挑戰(zhàn)性的問題,讓學(xué)生通過開放式的數(shù)學(xué)討論提高學(xué)生學(xué)習(xí)的興趣,在交流中獲益。通過隨堂練習(xí)和作業(yè)來激勵(lì)其學(xué)習(xí)。同時(shí)做練習(xí)時(shí),將評(píng)價(jià)及時(shí)反饋給學(xué)生,樹立學(xué)習(xí)數(shù)學(xué)的自信心,促進(jìn)學(xué)生的進(jìn)一步發(fā)展。并在課后作成長(zhǎng)記錄,使學(xué)生比較全面了解自己的學(xué)習(xí)過程,特別感受自己的不斷成長(zhǎng)和進(jìn)步,為下一步教學(xué)提供重要依據(jù)。

解一元一次方程的教案設(shè)計(jì)篇四

教學(xué)設(shè)計(jì)思想:

本節(jié)知識(shí)是探究如何用一元一次方程解決實(shí)際問題。在前面我們結(jié)合實(shí)際問題,討論了如何分析數(shù)量關(guān)系、利用相等關(guān)系列方程以及如何解方程,在此基礎(chǔ)上我們才可以進(jìn)一步探究用一元一次方程解決實(shí)際問題。在課堂中教師出示例題,啟發(fā)學(xué)生思考,師生共同探討,學(xué)生找等量關(guān)系,列出方程,教師出示鞏固性練習(xí),學(xué)生解答,達(dá)到鞏固所學(xué)知識(shí)的目的。

教學(xué)目標(biāo):

1.知識(shí)與技能。

利用相等關(guān)系建立數(shù)學(xué)模型列方程;。

2.過程與方法。

會(huì)用方程解決簡(jiǎn)單的實(shí)際問題,認(rèn)識(shí)到建立方程模型的重要性;。

在建立方程解決實(shí)際問題時(shí),我們體會(huì)到設(shè)未知數(shù)的意義。

3.情感、態(tài)度與價(jià)值觀。

體會(huì)數(shù)學(xué)建模與實(shí)際的相互密切聯(lián)系,加強(qiáng)數(shù)學(xué)建模思想。

教學(xué)重點(diǎn):解決相關(guān)問題時(shí),利用相等關(guān)系列方程。

教學(xué)難點(diǎn):解決相關(guān)問題時(shí),利用相等關(guān)系列方程。

重難點(diǎn)突破:關(guān)鍵是弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,特別是找出可以作為列方程依據(jù)的主要相等關(guān)系。

教學(xué)方法:采用直觀分析法、引導(dǎo)發(fā)現(xiàn)法及嘗試指導(dǎo)法充分發(fā)揮學(xué)生的主體作用,使學(xué)生在輕松愉快的氣氛中掌握知識(shí)。

課時(shí)安排:1課時(shí)。

教具準(zhǔn)備:投影儀。

教學(xué)過程:

一、創(chuàng)設(shè)情境。

師:通過前幾節(jié)課的學(xué)習(xí),同學(xué)們回憶一下,列方程解應(yīng)用題的第一步是什么?

生:分析題意,設(shè)未知數(shù)。

師:很好。我們以前學(xué)的應(yīng)用題大多是求一個(gè)未知量,因而設(shè)一個(gè)未知數(shù)我們今天要學(xué)的內(nèi)容需要求兩個(gè)未知量,這又如何解決呢?通過今天的學(xué)習(xí),這些問題將得到很好的答案。

[教法說法]:此節(jié)內(nèi)容與前邊內(nèi)容聯(lián)系不大,所以開門見山直接提出問題,同時(shí)也引起學(xué)生的注意和好奇,使學(xué)生帶著問題進(jìn)入今天的學(xué)習(xí),激發(fā)了學(xué)生的求知欲。

解一元一次方程的教案設(shè)計(jì)篇五

基礎(chǔ)知識(shí):掌握一元一次方程得解法,了解銷售中的數(shù)量關(guān)系。

基本技能:能夠分析實(shí)際問題中的數(shù)量關(guān)系,找相等關(guān)系,列出一元一次方程。

基本思想。

方法:通過將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,培養(yǎng)學(xué)生的建模思想;。

基本活動(dòng)經(jīng)驗(yàn)體會(huì)解決實(shí)際問題的一般步驟及盈虧中的關(guān)系。

教學(xué)重點(diǎn)。

教學(xué)難點(diǎn)。

找出已知量與未知量之間的關(guān)系及相等關(guān)系。

教具資料準(zhǔn)備。

教師準(zhǔn)備:課件。

學(xué)生準(zhǔn)備:書、本。

教學(xué)過程。

一、創(chuàng)設(shè)情景引入新課。

觀察圖片引課(見大屏幕)。

二、探究。

探究銷售中的盈虧問題:。

1、商品原價(jià)200元,九折出售,賣價(jià)是元.

2、商品進(jìn)價(jià)是30元,售價(jià)是50元,則利潤。

是元.

2、某商品原來每件零售價(jià)是a元,現(xiàn)在每件降價(jià)10%,降價(jià)后每件零售價(jià)是元.

3、某種品牌的`彩電降價(jià)20%以后,每臺(tái)售價(jià)為a元,則該品牌彩電每臺(tái)原價(jià)應(yīng)為元.

4、某商品按定價(jià)的八折出售,售價(jià)是14.8元,則原定售價(jià)是.

(學(xué)生總結(jié)公式)。

熟悉各個(gè)量之間的聯(lián)系有助于熟悉利潤、利潤率售價(jià)進(jìn)價(jià)之間聯(lián)系。

三、探究一。

分析:售價(jià)=進(jìn)價(jià)+利潤。

售價(jià)=(1+利潤率)進(jìn)價(jià)。

虧?

(2)某文具店有兩個(gè)進(jìn)價(jià)不同的計(jì)算器都賣64元,

其中一個(gè)盈利60%,另一個(gè)虧本20%.這次交易中的盈虧情況?

(3)某商場(chǎng)把進(jìn)價(jià)為1980元的商品按標(biāo)價(jià)的八折出售,仍。

獲利10%,則該商品的標(biāo)價(jià)為元.

注:標(biāo)價(jià)n/10=進(jìn)(1+率)。

(4)2、我國政府為解決老百姓看病難的問題,決定下調(diào)藥品的。

價(jià)格,某種藥品在漲價(jià)30%后,降價(jià)70%至a元,

則這種藥品在20漲價(jià)前價(jià)格為元.

四、小結(jié)。

通過本節(jié)課的學(xué)習(xí)你有哪些收獲?你還有哪些疑惑?

虧損還是盈利對(duì)比售價(jià)與進(jìn)價(jià)的關(guān)系才能加以判斷。

小組研究解決提出質(zhì)疑。

優(yōu)生展示講解質(zhì)疑。

五、作業(yè)布置:

板書設(shè)計(jì)。

相關(guān)的關(guān)系式:例題。

課后反思售價(jià)、進(jìn)價(jià)、利潤、利潤率、標(biāo)價(jià)、折扣數(shù)這幾個(gè)量之間的關(guān)系一定清楚,之后才能靈活運(yùn)用,通過變式練習(xí)加強(qiáng)記憶提高能力。

解一元一次方程的教案設(shè)計(jì)篇六

3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣。

和難點(diǎn)。

課堂設(shè)計(jì)。

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題。

為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題。

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。

解法1:(4+2)÷(3-1)=3.

答:某數(shù)為3.

(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。

解法2:設(shè)某數(shù)為x,則有3x-2=x+4.

解之,得x=3.

答:某數(shù)為3.

縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們運(yùn)用一元一次方程解應(yīng)用題的目的之一。

我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系。因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程。

本節(jié)課,我們就通過實(shí)例來說明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。

二、師生共同分析、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟。

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運(yùn)出重量=剩余重量)。

上述分析過程可列表如下:

x-15%x=42500,

所以x=50000.

答:原來有50000千克面粉。

(還有,原來重量=運(yùn)出重量+剩余重量;原來重量-剩余重量=運(yùn)出重量)。

(2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿。

依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:

(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系。(這是關(guān)鍵一步);

(4)求出所列方程的解;

(5)檢驗(yàn)后明確地、完整地寫出答案。這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義。

(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥。解答過程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤。并嚴(yán)格規(guī)范書寫格式)。

解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得。

3x+9=5x-(5-4),

解這個(gè)方程:2x=10,

所以x=5.

其蘋果數(shù)為3×5+9=24.

答:第一小組有5名同學(xué),共摘蘋果24個(gè)。

學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程。

(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)。

三、課堂練習(xí)。

2.我國城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款達(dá)到3802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元。求1978年末的儲(chǔ)蓄存款。

3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。

四、師生共同小結(jié)。

首先,讓學(xué)生回答如下問題:

1.本節(jié)課了哪些內(nèi)容?

3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?

依據(jù)學(xué)生的回答情況,教師總結(jié)如下:

(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶。

五、作業(yè)。

1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?

2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?

解一元一次方程的教案設(shè)計(jì)篇七

1、經(jīng)歷由實(shí)際問題抽象為方程模型的過程,進(jìn)一步體會(huì)模型化的思想。

2、通過探究實(shí)際問題與一元一次方程的關(guān)系,感受數(shù)學(xué)的應(yīng)用價(jià)值,提高分析問題,解決問題的能力。

(師生活動(dòng))設(shè)計(jì)理念。

創(chuàng)設(shè)情境提出問題。

信息社會(huì),人們溝通交流方式多樣化,移動(dòng)電話已很普及,選擇經(jīng)濟(jì)實(shí)惠的收費(fèi)方式很有理實(shí)意義。

出示教科書80頁的例2;觀察下列兩種移動(dòng)電話計(jì)費(fèi)方式表:

全球通神州行。

月租費(fèi)50元/月0。

本地通話費(fèi)0.40元/分0.60元/分。

1、你能從中表中獲得哪些信息,試用自己的話說說。

2、猜一猜,使用哪一種計(jì)費(fèi)方式合算?

3、一個(gè)月內(nèi)在本地通話200分和300分,按兩種計(jì)費(fèi)方式各需交費(fèi)多少元?

4、對(duì)于某個(gè)本地通通話時(shí)間,會(huì)出現(xiàn)兩種計(jì)費(fèi)方式的收費(fèi)一樣的情況嗎?本例是一道與生活相關(guān)的移動(dòng)電話收費(fèi)的問題,讓學(xué)生討論選擇經(jīng)濟(jì)實(shí)惠的收費(fèi)方式很有現(xiàn)實(shí)意義。

理解問題是本身是列方程的基礎(chǔ),本例是通過表格形式給出已知數(shù)據(jù)的,通過設(shè)計(jì)問題1、2、3讓學(xué)生展開討論,幫助理解,培養(yǎng)學(xué)生的讀題能力和收集信息的能力。

解決問題學(xué)生充分交流討論、整理歸納。

解:1、用全球通每月收月租費(fèi)50元,此外根據(jù)累計(jì)通話時(shí)間按0.40元/分加收通話費(fèi);用神州行不收月租費(fèi),根據(jù)累計(jì)通話時(shí)間按0.60元/分收通話費(fèi)。

2、不一定,具體由當(dāng)月累計(jì)通話時(shí)間決定。

3、全球通神州行。

200分130元120元。

300分170元180元。

0.6t=50+0.4t。

移項(xiàng)得0.6t-0.4t=50。

合并,得0.2t=50。

系數(shù)化為1,得t=250。

以表格的形式呈現(xiàn)數(shù)據(jù),簡(jiǎn)單明了,易于比較。

通過探究實(shí)際問題與一元一次方程的關(guān)系,提高分析問題,解決問題的能力。

學(xué)生練習(xí),教師巡視,指導(dǎo),討論解是否合理。

知識(shí)梳理小組討論,試用框圖概括用一元一次方程分析和解決實(shí)際問題的基本過程。

學(xué)生思考、討論、整理。

實(shí)際問題題。

列方程。

實(shí)際問題的答案。

數(shù)學(xué)問題的解。

這是第一次比較完整地用框圖反映實(shí)際問題與一元一次方程的關(guān)系。

讓學(xué)生結(jié)合自己的解題過程概括整理,幫助理解,培養(yǎng)模型化的思想和應(yīng)用數(shù)學(xué)于現(xiàn)實(shí)生活的意識(shí)。

小結(jié)與作業(yè)。

布置作業(yè)。

1、必做題:教科書82頁習(xí)題2.2第2題。

2、一個(gè)兩位數(shù),個(gè)位數(shù)字是十位數(shù)字的3倍,如果把個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào),那么得到的新數(shù)比原數(shù)大54,求原來的兩位數(shù)。

本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。

課程改革的目的之一是促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,加強(qiáng)學(xué)習(xí)的主動(dòng)性和探究性,本章內(nèi)容涉及大量的實(shí)際問題,豐富多彩的問題情境和解決實(shí)際問題的快樂更容易激起學(xué)生對(duì)數(shù)學(xué)的興趣,在本節(jié)中,引導(dǎo)學(xué)生從身邊的移動(dòng)電話收費(fèi),旅游費(fèi)用等問題展開探究,使學(xué)生在現(xiàn)實(shí)、富有挑戰(zhàn)性的問題情境中經(jīng)歷多角度認(rèn)識(shí)問題,多種策略思考問題,嘗試解釋答案的合性的活動(dòng),培養(yǎng)探索精神和創(chuàng)新意識(shí)。

在前面幾節(jié)學(xué)習(xí)中,已經(jīng)對(duì)利用一元一次方程解決問題的基本過程進(jìn)行多次滲透,逐步細(xì)化,本節(jié)要求學(xué)生用框圖概括,使學(xué)生對(duì)應(yīng)用一元一次方程解決實(shí)際問題有較理性的認(rèn)識(shí),進(jìn)一步體會(huì)模型化的思想。

解一元一次方程的教案設(shè)計(jì)篇八

2、理解方程的解的概念,會(huì)判斷一個(gè)數(shù)值是否是已知方程的解。

環(huán)節(jié)一自主學(xué)習(xí)——對(duì)于疑惑的問題盡量小組互助解決。

課前至少閱讀課本兩遍,完成例題與習(xí)題,熟知本節(jié)課學(xué)習(xí)目標(biāo)與重點(diǎn)難點(diǎn)。

環(huán)節(jié)二生生互動(dòng)——課堂5分鐘練習(xí)并與小組成員相互交流心得。

a。b。c。d。

2、方程的概念:含有的等式叫做方程。

a。b。c。d。

4、一元一次方程的概念:只含有個(gè)未知數(shù),并且未知數(shù)的次數(shù)都是,這樣的整式方程叫做一元一次方程。

5、根據(jù)下面所給的條件,能列出方程的是()。

a與的'差的b甲數(shù)的2倍與乙數(shù)的的和。

c一個(gè)數(shù)的是6d與的差的。

6、由第5題可知,問題中必須含有才能列出方程,這正是列方程的關(guān)鍵!

a。b。c。d。

8、解方程與方程的解的概念:解方程就是求出使方程中等號(hào)的值,而這個(gè)值就是。

環(huán)節(jié)三師生互動(dòng)——你惑我釋,合作交流,知識(shí)提升。

解一元一次方程的教案設(shè)計(jì)篇九

(一)教材的地位和作用。

(二)教材的重難點(diǎn)。

二、教學(xué)目標(biāo)分析。

(一)知識(shí)技能目標(biāo)。

1.目標(biāo)內(nèi)容。

(2)培養(yǎng)學(xué)生建立方程模型來分析、解決實(shí)際問題的能力以及探索精神、合作意識(shí).。

2.目標(biāo)分析。

(二)過程目標(biāo)。

1.目標(biāo)內(nèi)容。

在活動(dòng)中感受方程思想在數(shù)學(xué)中的作用,進(jìn)一步增強(qiáng)應(yīng)用意識(shí).。

2.目標(biāo)分析。

(三)情感目標(biāo)。

1.目標(biāo)內(nèi)容。

2.目標(biāo)分析。

三、教材處理與教法分析。

解一元一次方程的教案設(shè)計(jì)篇十

1、學(xué)生通過旅游、選燈、用電、水費(fèi)、用氣、電信等問題的方案設(shè)計(jì),弄清各類問題中的等量關(guān)系,掌握用方程來解決一些生活中的實(shí)際問題的技巧.

2、通過一個(gè)開放式的空間,放手讓學(xué)生去探索,去發(fā)現(xiàn),培養(yǎng)學(xué)生分析問題和用方程去解決實(shí)際問題的能力.

3、讓學(xué)生在生動(dòng)活潑的問題情境中感受數(shù)學(xué)的應(yīng)用價(jià)值,產(chǎn)生對(duì)數(shù)學(xué)的興趣,養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流的樂趣。

把生活中的實(shí)際問題抽象出數(shù)學(xué)問題。

引導(dǎo)學(xué)生弄清題意,設(shè)計(jì)出各類問題的最佳方案。

(師生活動(dòng))設(shè)計(jì)理念。

提出問題問題:小江一家三口準(zhǔn)備國慶節(jié)外出旅游.現(xiàn)有兩家。

由學(xué)生完成選擇旅行社的方案。從學(xué)生比較感興趣的實(shí)際生活問題,引入新課,并由學(xué)生自己設(shè)計(jì)出選擇旅行社的方案,為新授哪種燈省錢埋下伏筆。

分析問題出示教科書94頁探究2:用哪種燈省錢?

師生共同探討完成下列問題:

1、上述問題中基本等量關(guān)系有哪些?

(費(fèi)用=燈的售價(jià)+電費(fèi),電費(fèi)=0.5×燈的功率(千。

瓦)×照明時(shí)間(時(shí))。

2、列式表示兩種燈的費(fèi)用各為多少?

(節(jié)能燈用t小時(shí)的費(fèi)用(元)為:60+0.5×0-o.11t。

白熾燈用t小時(shí)的費(fèi)用(元)為:3十0.06×0.5t)。

3、當(dāng)照明時(shí)間t取何值時(shí),(1)白熾燈比節(jié)能燈省錢,

(2)節(jié)能燈比白熾燈省錢?(3)白熾燈與節(jié)能燈費(fèi)用一樣?(精確到1小時(shí))。

4、如果計(jì)劃照明3500小時(shí),則需要購買兩個(gè)燈,試設(shè)計(jì)你認(rèn)為能省錢的選燈方案。

以課本例題中實(shí)際生活問題為素材,使學(xué)生感受數(shù)學(xué)來源于生活,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,師生共同參與合作完成問題中的探討的幾個(gè)問題,體現(xiàn)了以學(xué)生為主體,教師作為問題解決的組織者,引導(dǎo)者,合作者的新課程教育理念。

探索創(chuàng)新下面問題是學(xué)生課前調(diào)查到的與人們生活密切相關(guān)的實(shí)際問題,每一大組完成一個(gè),分四個(gè)小組討論后設(shè)計(jì)出最佳方案。

10分鐘后,大組派代表交流發(fā)言.

1、電價(jià)問題。

據(jù)我們調(diào)查,我市居民生活用電價(jià)格為每天早晨7時(shí)到晚上23時(shí)每度0.47元,每天23時(shí)到第二天7時(shí)每度0.25元.請(qǐng)根據(jù)你家每月用電情況,設(shè)計(jì)出用電的最佳方案.

2、水費(fèi)問題。

我市為鼓勵(lì)節(jié)約用水,對(duì)自來水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過10噸部分按0.45元/噸收費(fèi),超過10噸而不超過20噸部分按0.8元/噸收費(fèi),超過20噸部分按0.50元/噸收費(fèi),某月甲戶比乙戶多交水費(fèi)3.75元,已知乙戶交水費(fèi)3.15元.

問:(1)甲、乙兩戶該月各用水多少噸?(自來水按整噸收費(fèi))。

(2)根據(jù)你家用水情況,設(shè)計(jì)出最佳用水方案.

3、用氣問題。

某市按下列規(guī)定收取每月的煤氣費(fèi):用煤氣如果不超過60立方米,按每立方米o(hù).8元收費(fèi);如果超過60立方米,超過部分按每立方米1.2元收費(fèi).怎樣用氣最節(jié)約?請(qǐng)?jiān)O(shè)計(jì)出方案來.

4、電信支費(fèi)。

隨著電信事業(yè)的發(fā)展,各式各樣的電信業(yè)務(wù)不斷推出,請(qǐng)你通過市場(chǎng)調(diào)查,為你家設(shè)計(jì)出一種通訊方案.

(1)兩地間打長(zhǎng)途電話所付電費(fèi)有如下規(guī)定:若通話在3分鐘以內(nèi)都付2.4元.超過3分鐘以后,每分鐘付1元.

根據(jù)上述資料,(1)你認(rèn)為一個(gè)月通話多少分鐘,兩種移動(dòng)通訊費(fèi)用相同?(2)某人估計(jì)一個(gè)月內(nèi)通話300分鐘,應(yīng)選擇哪種移動(dòng)通訊或用長(zhǎng)途電話合算些?提供給學(xué)生一個(gè)開放的空間,放手讓學(xué)生去探索、去發(fā)揮,通過學(xué)生合作交流來設(shè)計(jì)最佳方案,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)和創(chuàng)新意識(shí)。

課堂小結(jié)可用教師對(duì)各小組交流的方案進(jìn)行簡(jiǎn)單的評(píng)價(jià)作為小結(jié)。

布置作業(yè)1、必做題:課本第98頁習(xí)題2.4第5、7題。

2、選做題:

分層次布置作業(yè)。

本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。

本課以生活中的實(shí)際問題引入,以學(xué)生為主體,師生共同合作參與完成例中設(shè)計(jì)的。

幾個(gè)問題,教師在學(xué)生接受新知識(shí)的過程中,起到了一個(gè)組織者、合作者、引導(dǎo)者的角色.學(xué)生的學(xué)習(xí)始終是主動(dòng)的.通過學(xué)生課前的社會(huì)調(diào)查,對(duì)生活中的一些方案以開放形式設(shè)計(jì)問題,學(xué)生通過小組合作交流,設(shè)計(jì)出不同的方案,讓學(xué)生在生動(dòng)活潑的交流情境中感受到數(shù)學(xué)的應(yīng)用價(jià)值,產(chǎn)生對(duì)數(shù)學(xué)的興趣.同時(shí)養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流想法的樂趣.通過用電、用水最佳方案的設(shè)計(jì),培養(yǎng)學(xué)生節(jié)約用電、用水的意識(shí).

解一元一次方程的教案設(shè)計(jì)篇十一

本課是針對(duì)人民教育出版社出版的《七年級(jí)數(shù)學(xué)上冊(cè)》第三章一元一次方程中3。4實(shí)際問題與一元一次方程(行程問題應(yīng)用題歸類解析——追及問題)設(shè)計(jì)的內(nèi)容。

(一)知識(shí)與技能:

1、使學(xué)生進(jìn)一步掌握列一元一次方程解應(yīng)用題的方法和步驟;

2、熟練掌握追及問題中的等量關(guān)系。

(二)過程與方法。

培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決實(shí)際問題的能力。

(三)情感態(tài)度價(jià)值觀:

培養(yǎng)學(xué)生勤于思考、樂于探究、敢于發(fā)表自己觀點(diǎn)的學(xué)習(xí)習(xí)慣,從實(shí)際問題中體驗(yàn)數(shù)學(xué)的價(jià)值。體會(huì)觀察、分析、歸納對(duì)數(shù)學(xué)知識(shí)中獲取數(shù)學(xué)信息的重要作用,進(jìn)一步掌握列一元一次方程解應(yīng)用題的方法和步驟,能在獨(dú)立思考和小組交流中獲益。

2、難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,并找出等量關(guān)系。

探究式。

一、創(chuàng)設(shè)問題情景,引入新課:

1、行程問題中有哪些基本量?它們間有什么關(guān)系?

2、行程問題有哪些基本類型?

二、知識(shí)應(yīng)用,拓展創(chuàng)新:

行程問題應(yīng)用題是中小學(xué)數(shù)學(xué)應(yīng)用題中很重要的一類,學(xué)生難以理解,不容易掌握。行程問題的題型千變?nèi)f化,導(dǎo)致許多學(xué)生感到束手無策,難以適從。其實(shí)認(rèn)真分析,就會(huì)發(fā)現(xiàn)行程問題應(yīng)用題主要有三種基本類型:追及問題、相遇問題和航行問題,而且三個(gè)基本量之間的基本關(guān)系“路程=速度×?xí)r間”保持不變。

三、例題講解。

解:設(shè)x秒后乙能追上甲。

根據(jù)題意得5x—3x=100。

解得x=50。

答:50秒后乙能追上甲。

小結(jié):針對(duì)本題進(jìn)行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)。

中的同時(shí)不同地問題,以后遇到此類題,該如何解決。

分析:這個(gè)問題中,由于黃色馬先跑1s(此時(shí)棕色馬未出發(fā)),經(jīng)過1s后棕色馬再開始出發(fā)和黃色馬同向而行,后來棕色馬追上黃色馬了。因此兩馬所跑路程是相同的,但由于黃色馬先跑了1秒,所以就產(chǎn)生了路程差,那么這個(gè)問題就和前面例1一樣了。也可以這樣想:棕色馬的路程=黃色馬的路程+相隔距離。

解:設(shè)x秒后,棕色馬追上黃色馬,根據(jù)題意,得6x=5x+5解得x=5答:5秒后,棕色馬可以追上黃色馬。

小結(jié):針對(duì)本題進(jìn)行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)。

中的同地不同時(shí)問題。

歸納小結(jié):列方程解應(yīng)用題的一般步驟:

審—通過審題明確已知量、未知量,找出等量關(guān)系;

設(shè)—設(shè)出合理的未知數(shù)(直接或間接);

列—依據(jù)找到的等量關(guān)系,列出方程;

解—求出方程的解;

驗(yàn)—檢驗(yàn)求出的值是否為方程的解,并檢驗(yàn)是否符合實(shí)際問題;

答—注意單位名稱。

解答由學(xué)生完成。

本節(jié)知識(shí)歸納:

1、追及問題的特點(diǎn)是同向而行,在直線運(yùn)動(dòng)中兩者路程之差等于兩者間的距離;

2、而在圓周運(yùn)動(dòng)中,若同時(shí)同地同向出發(fā),則二者路程之差等于跑道的周長(zhǎng)。

3、用示意圖輔助分析數(shù)量間的關(guān)系便于我們列方程。

四、作業(yè)布置:(見補(bǔ)充題)。

通過本節(jié)課的學(xué)習(xí),使學(xué)生進(jìn)一步掌握列一元一次方程解應(yīng)用題的方法和步驟,并能熟練尋找追及問題中的等量關(guān)系,列出方程,解決追及問題。

解一元一次方程的教案設(shè)計(jì)篇十二

(1)本節(jié)課是七年級(jí)第七章《用一元一次方程解決實(shí)際問題》的第3課時(shí),主要學(xué)習(xí)用一元一次方程解決路程問題。通過上兩節(jié)課的學(xué)習(xí),學(xué)生已經(jīng)初步掌握了用一元一次方程解決實(shí)際問題的方法,本節(jié)課在此基礎(chǔ)上,結(jié)合路程問題,進(jìn)一步學(xué)習(xí)如何從實(shí)際問題中分析數(shù)量關(guān)系,用一元一次方程解決實(shí)際問題。對(duì)學(xué)習(xí)函數(shù)、不等式與其他方程解實(shí)際問題都具有重要的意義和作用。

2、教學(xué)目標(biāo)(認(rèn)知、能力、情感)。

(1)知識(shí)目標(biāo)。

能借助“列表”的方法審題、找等量關(guān)系,進(jìn)而用一元一次方程解決路程問題。

(2)能力目標(biāo)。

進(jìn)一步培養(yǎng)學(xué)生分析問題,解決實(shí)際問題的能力。

(3)情感目標(biāo)。

通過實(shí)際問題的解決,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)的價(jià)值和學(xué)習(xí)數(shù)學(xué)的必要性;通過問題情境的設(shè)置,讓學(xué)生熱愛生活、熱愛體育。

3、教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷借助“列表法”找等量關(guān)系,用一元一次方程模型解決路程問題的過程。

知識(shí)、方法重要,其獲取過程更重要,在教學(xué)中不能只重結(jié)果而忽視過程中學(xué)生經(jīng)歷的觀察、分析、交流等活動(dòng),不然學(xué)生就不具備主動(dòng)建構(gòu)知識(shí)的能力和持續(xù)發(fā)展的動(dòng)力,只會(huì)成為解題工具,所以我把方法獲取過程作為本課的重點(diǎn)。

4、教學(xué)難點(diǎn)。

掌握用列表的方法審清題意,抽象具體問題中的數(shù)學(xué)背景,建立數(shù)量間的等量關(guān)系。

用一元一次方程解決實(shí)際問題的關(guān)鍵是找到等量關(guān)系。體會(huì)“列表法”在把握路程問題等量關(guān)系的優(yōu)越性,進(jìn)而掌握這種方法是學(xué)生感到困難的,所以把它是本節(jié)課的難點(diǎn)。

5、教法學(xué)法。

優(yōu)選教法。

指導(dǎo)學(xué)法。

學(xué)生不是被動(dòng)的接受信息,而是在“結(jié)合具體情景、設(shè)計(jì)解決策略、與他人合作交流、自我反思”的過程中學(xué)習(xí)。

二、教學(xué)環(huán)節(jié)。

我把本節(jié)課設(shè)計(jì)為5個(gè)環(huán)節(jié):

1、情境引入相遇問題,初步感知列表方法。

通過救人情境的創(chuàng)設(shè),既對(duì)學(xué)生已有知識(shí)的檢測(cè),又激發(fā)學(xué)生解決問題的興趣,在不知不覺中引入路程問題――相遇問題。

引入問題后,學(xué)生獨(dú)立思考如何確定問題中的等量關(guān)系,然后課堂交流理清題意、找到等量關(guān)系的方法(畫圖或列表)。在此基礎(chǔ)上,引導(dǎo)學(xué)生探究如何用列表的方法理清題目中的數(shù)量,讓學(xué)生初步感受“列表”表示數(shù)量關(guān)系的優(yōu)越性。

本環(huán)節(jié)讓學(xué)生在獨(dú)立思考、交流探討中感受“列表法”,讓學(xué)生參與的`知識(shí)獲取過程,真正體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。

2、感悟故事中的追及問題,拓展提高對(duì)列表的認(rèn)識(shí)。

以同學(xué)們熟悉的故事為背景,配以形象生動(dòng)的動(dòng)畫,引入路程問題――追擊問題。然后讓學(xué)生應(yīng)用列表法表示追擊問題的數(shù)量關(guān)系,思考解決問題的多種方法(根據(jù)不同等量關(guān)系,設(shè)不同未知數(shù),列出不同的方程),進(jìn)一步體會(huì)“列表”表示數(shù)量關(guān)系的威力。

教學(xué)過程不能簡(jiǎn)單地重復(fù),學(xué)習(xí)過程也不能使機(jī)械地模仿,而應(yīng)在螺旋上升的過程中不斷提高。由相遇問題到追擊問題,由一種方法到兩種方法,就是這一理念的直接體現(xiàn)。學(xué)生在應(yīng)用“列表”法的過程中,提高對(duì)“列表”法表示數(shù)量關(guān)系優(yōu)越性的認(rèn)識(shí)。

3、回歸現(xiàn)實(shí),梳理新知。

本環(huán)節(jié)讓學(xué)生應(yīng)用所學(xué)知識(shí)解決現(xiàn)實(shí)生活中的問題。

本題以“奧運(yùn)”為背景,不僅反映了數(shù)學(xué)來源于實(shí)際生活,同時(shí)也體現(xiàn)了知識(shí)的實(shí)用價(jià)值,而且解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程。這一環(huán)節(jié)既對(duì)路程問題進(jìn)行了鞏固練習(xí)又滲透了愛國主義教育。

4、合作互動(dòng),深化提高。

編寫一道應(yīng)用題,使它的題意適合一元一次方程60x=40x+100,要求題意清楚、聯(lián)系生活、符合實(shí)際、有一定的創(chuàng)意。

本環(huán)節(jié)讓學(xué)生以小組為單位編寫題目。

前面的環(huán)節(jié)是由實(shí)際問題到數(shù)學(xué)模型,現(xiàn)在是由數(shù)學(xué)模型到實(shí)際問題,不僅有利于學(xué)生獲取知識(shí),而且也有利于學(xué)生展示聰明才智、形成獨(dú)特個(gè)性和發(fā)展創(chuàng)新。以小組為單位編寫題目不僅可以發(fā)揮學(xué)生的集體智慧,而且還可以培養(yǎng)他們的合作和團(tuán)隊(duì)意識(shí)。

5、暢談收獲,內(nèi)化提高。

這節(jié)課體驗(yàn)到了什么?

讓學(xué)生本節(jié)學(xué)習(xí)收獲和感受,全體同學(xué)交流。

對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)的既要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更要關(guān)注他們?cè)跀?shù)學(xué)活動(dòng)中所表現(xiàn)出來的情感與態(tài)度,課后設(shè)計(jì)的暢談收獲,把課堂還給了學(xué)生,他們收獲,交流疑問,當(dāng)堂消化本節(jié)內(nèi)容,讓每一個(gè)學(xué)生都體驗(yàn)到成功的喜悅,學(xué)生的主體地位得以充分體現(xiàn)。

設(shè)計(jì)亮點(diǎn)。

(1)本節(jié)課在情境的創(chuàng)設(shè)上,突出了現(xiàn)實(shí)性、趣味性和挑戰(zhàn)性,學(xué)生喜聞樂見,使他們能快速進(jìn)入問題的解決。

(2)讓學(xué)生經(jīng)歷實(shí)踐―c認(rèn)識(shí)――再實(shí)踐――再認(rèn)識(shí)的過程,在這個(gè)過程中,學(xué)生分析問題和解決問題的能力螺旋上升,符合學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律。

解一元一次方程的教案設(shè)計(jì)篇十三

教學(xué)目標(biāo):

2、知道“元”和“次”的含義;

能力目標(biāo):

1、培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;

2、培養(yǎng)學(xué)生觀察、分析和概括的能力;

3、通過解方程的教學(xué),了解化歸的數(shù)學(xué)思想.。

德育目標(biāo):

1、滲透由特殊到一般的辯證唯物主義思想;

2、通過對(duì)方程的解進(jìn)行檢驗(yàn)的習(xí)慣的培養(yǎng),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、細(xì)致的學(xué)習(xí)習(xí)慣和責(zé)任感;

3、在學(xué)習(xí)和探索知識(shí)中提高學(xué)生的學(xué)習(xí)能力、合作精神及勇于探索的精神;

重點(diǎn):

2、最簡(jiǎn)方程的解法;

難點(diǎn):正確地解最簡(jiǎn)方程。

教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法。

教學(xué)過程。

一、舊知識(shí)的復(fù)習(xí):

1.什么叫等式?等式具有哪些性質(zhì)?

2.什么叫方程?方程的解?解方程?

二、新知識(shí)的教學(xué):

(1)只含有一個(gè)未知數(shù);

(2)未知數(shù)的次數(shù)都是一次。

想一想:

(2)怎樣求最簡(jiǎn)方程(其中是未知數(shù))的解?

三、鞏固練習(xí)。

1、通過練習(xí),請(qǐng)你總結(jié)一下,解方程(是未知數(shù))把系數(shù)化為1時(shí),怎樣運(yùn)用等式的性質(zhì)2,使計(jì)算比較簡(jiǎn)單。

2、檢測(cè):

3、課堂小結(jié):

四、本節(jié)學(xué)習(xí)的主要內(nèi)容。

2、最簡(jiǎn)方程(其中是未知數(shù));

3、解最簡(jiǎn)方程的主要思路和解題的關(guān)鍵步驟及依據(jù)。

五、課堂作業(yè)。

解一元一次方程的教案設(shè)計(jì)篇十四

2.掌握等式的性質(zhì),理解掌握移項(xiàng)法則。

3.會(huì)用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。

5.初步學(xué)會(huì)用方程的思想思考問題和解決問題的一些基本方法,學(xué)會(huì)用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實(shí)情境中的.實(shí)際問題。

難點(diǎn)重點(diǎn):

解方程、用方程解決實(shí)際問題。

難點(diǎn):用方程解決實(shí)際問題。

教學(xué)流程。

二、典例回顧。

(1).x=5(2).x2+3x=2(3).2x+3y=5。

判斷下列x值是否為方程3x-5=6x+4的解.

(1).x=3(2)x=3。

4.解決問題的基本步驟。

解:設(shè)先安排x人工作4小時(shí)。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括號(hào),得4x+8x+16=40。

移項(xiàng)及合并,得12x=24。

系數(shù)化為1,得x=2。

答:應(yīng)先安排2名工人工作4小時(shí).

注意:工作量=人均效率人數(shù)時(shí)間。

本題的關(guān)鍵是要人均效率與人數(shù)和時(shí)間之間的數(shù)量關(guān)系.

三、基礎(chǔ)訓(xùn)練:課本第113頁第1.2.3題.

四、綜合訓(xùn)練:課本113頁至114頁4.5.6.7.8。

五、達(dá)標(biāo)訓(xùn)練:3.7。

五、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?

解一元一次方程的教案設(shè)計(jì)篇十五

2.掌握等式的性質(zhì),理解掌握移項(xiàng)法則。

3.會(huì)用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。

5.初步學(xué)會(huì)用方程的思想思考問題和解決問題的一些基本方法,學(xué)會(huì)用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實(shí)情境中的實(shí)際問題。

難點(diǎn)重點(diǎn):

解方程、用方程解決實(shí)際問題。

難點(diǎn):用方程解決實(shí)際問題。

教學(xué)流程。

二、典例回顧。

(1).x=5(2).x2+3x=2(3).2x+3y=5。

判斷下列x值是否為方程3x-5=6x+4的解.

(1).x=3(2)x=3。

4.解決問題的基本步驟。

解:設(shè)先安排x人工作4小時(shí)。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括號(hào),得4x+8x+16=40。

移項(xiàng)及合并,得12x=24。

系數(shù)化為1,得x=2。

答:應(yīng)先安排2名工人工作4小時(shí).

注意:工作量=人均效率人數(shù)時(shí)間。

本題的關(guān)鍵是要人均效率與人數(shù)和時(shí)間之間的數(shù)量關(guān)系.

三、基礎(chǔ)訓(xùn)練:課本第113頁第1.2.3題.

四、綜合訓(xùn)練:課本113頁至114頁4.5.6.7.8。

五、達(dá)標(biāo)訓(xùn)練:3.7。

六、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?

【本文地址:http://mlvmservice.com/zuowen/14916559.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔