高中數(shù)學(xué)等比數(shù)列教案(實(shí)用21篇)

格式:DOC 上傳日期:2023-11-24 20:19:05
高中數(shù)學(xué)等比數(shù)列教案(實(shí)用21篇)
時(shí)間:2023-11-24 20:19:05     小編:飛雪

教案是教師與學(xué)生之間的橋梁,促進(jìn)了知識(shí)的傳遞和學(xué)習(xí)的效果。教案的編寫應(yīng)遵循循序漸進(jìn)的原則,合理安排教學(xué)步驟和時(shí)間分配。以下是一些不同學(xué)科和年級(jí)的教案示例,供大家參考和學(xué)習(xí)。

高中數(shù)學(xué)等比數(shù)列教案篇一

1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

(一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識(shí)的含義及其簡單應(yīng)用。

理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會(huì)選擇合適的模型(模式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第3單元函數(shù)(12學(xué)時(shí))

第4單元指數(shù)函數(shù)與對數(shù)函數(shù)(12學(xué)時(shí))

第5單元三角函數(shù)(18學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第9單元立體幾何(14學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2.職業(yè)模塊

第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))

高中數(shù)學(xué)等比數(shù)列教案篇二

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。

通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。

借助單位圓探究誘導(dǎo)公式。

能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。

誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。

誘導(dǎo)公式的應(yīng)用。

多媒體。

1. 誘導(dǎo)公式(一)(二)。

2. 角 (終邊在一條直線上)

3. 思考:下列一組角有什么特征?( )能否用式子來表示?

已知 由

可知

而 (課件演示,學(xué)生發(fā)現(xiàn))

所以

于是可得: (三)

設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。

設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。

1. 練習(xí)

(1)

設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。

(學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)

例3:求下列各三角函數(shù)值:

(1)

(2)

(3)

(4)

設(shè)計(jì)意圖:利用公式解決問題。

練習(xí):

(1)

(2) (學(xué)生板演,師生點(diǎn)評(píng))

設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。

四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。

很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:

1.要認(rèn)真的研讀新課標(biāo),對教學(xué)的目標(biāo),重難點(diǎn)把握要到位

2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正

3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作

5.上課的生動(dòng)化,形象化需要加強(qiáng)

1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。

2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。

3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。

4.評(píng)議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。

建議:課件制作在線測評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學(xué)生。

( 1)給學(xué)生思考的時(shí)間較長,語調(diào)相對平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語言更好

( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考

( 4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來

( 5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對是比較快的3.練習(xí)量比較少

( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧

( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)

( 8)教學(xué)模式相對簡單重復(fù)

( 9)思路較為清晰,規(guī)范化的推理

高中數(shù)學(xué)等比數(shù)列教案篇三

熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。

教學(xué)重難點(diǎn)。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

兩角差的余弦公式。

用-b代替b看看有什么結(jié)果?

高中數(shù)學(xué)等比數(shù)列教案篇四

:計(jì)算機(jī)

:啟發(fā)引導(dǎo)法,討論法

下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:

(一)引入的設(shè)計(jì)

前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

問:說出過點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問題:

問:求出過點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?

啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)??各小組可以討論討論.

學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問題:

【問題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

經(jīng)過一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

思路一:…

思路二:…

……

教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

綜合兩種情況,我們得出如下結(jié)論:

同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.

這樣上邊的結(jié)論可以表述如下:

啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?

【問題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?

師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

(1)當(dāng) 時(shí),方程可化為

這是表示斜率為 、在 軸上的截距為 的直線.

(2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為

這表示一條與 軸垂直的直線.

因此,得到結(jié)論:

為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的.

【動(dòng)畫演示】

演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.

(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

高中數(shù)學(xué)等比數(shù)列教案篇五

了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單性質(zhì)。

漸近線方程是,離心率,若點(diǎn)是雙曲線上的點(diǎn),則,。

2、又曲線的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是

3、經(jīng)過兩點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是。

4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。

5、與雙曲線有公共的漸近線,且經(jīng)過點(diǎn)的雙曲線的方程為

1、雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),求該雙曲線的方程。

2、已知橢圓具有性質(zhì):若是橢圓上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無關(guān)的定值,試對雙曲線寫出具有類似特性的性質(zhì),并加以證明。

3、設(shè)雙曲線的半焦距為,直線過兩點(diǎn),已知原點(diǎn)到直線的距離為,求雙曲線的離心率。

1、雙曲線上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則它到另一個(gè)焦點(diǎn)的距離為。

2、與雙曲線有共同的漸近線,且經(jīng)過點(diǎn)的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是。

3、若雙曲線上一點(diǎn)到它的右焦點(diǎn)的距離是,則點(diǎn)到軸的距離是

4、過雙曲線的左焦點(diǎn)的直線交雙曲線于兩點(diǎn),若。則這樣的'直線一共有條。

1、已知雙曲線的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率

2、已知雙曲線的焦點(diǎn)為,點(diǎn)在雙曲線上,且,則點(diǎn)到軸的距離為。

3、雙曲線的焦距為

4、已知雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離為,則

5、設(shè)是等腰三角形,,則以為焦點(diǎn)且過點(diǎn)的雙曲線的離心率為。

高中數(shù)學(xué)等比數(shù)列教案篇六

高中數(shù)學(xué)趣味競賽題(共10題)

5個(gè)高中生有,她們面對學(xué)校的新聞采訪說了如下的話:

愛:“我還沒有談過戀愛?!?靜香:“愛撒謊了?!?/p>

瑪麗:“我曾經(jīng)去過昆明。” 惠美:“瑪麗在撒謊。”

千葉子:“瑪麗和惠美都在撒謊?!?那么,這5個(gè)人之中到底有幾個(gè)人在撒謊呢?

有天使、惡魔、人三者,天使時(shí)刻都說真話,惡魔時(shí)時(shí)刻刻都說假話,人呢,有時(shí)候說真話,有時(shí)候說假話。

聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家??墒?,只剩下1只小貓了。

一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當(dāng)然,沒有數(shù)字的部分它沒有吃(因?yàn)闆]有墨水)。

那么,請問原來的算式是什么樣子的呢?

用16根火柴擺成5個(gè)正方形。請移動(dòng)2根火柴,

使

正形變成4。

把正三角形的紙如圖那樣折過來時(shí),角?的度數(shù)是多少度?

求星形尖端的角度之和。

丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財(cái)產(chǎn)的 2/3 、如果生的是女孩就給他財(cái)產(chǎn)的 2/5 、剩下的給妻子。

結(jié)果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個(gè)人怎么分財(cái)產(chǎn)好呢?

用折紙做成45度很簡單是吧。那么,請折成15度,你會(huì)嗎?

高中數(shù)學(xué)等比數(shù)列教案篇七

集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

教學(xué)重點(diǎn).難點(diǎn)

重點(diǎn):集合的含義與表示方法.

難點(diǎn):表示法的恰當(dāng)選擇.

教學(xué)目標(biāo)

l.知識(shí)與技能

(1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;

(2)知道常用數(shù)集及其專用記號(hào); (3)了解集合中元素的確定性.互異性.無序性;

(4)會(huì)用集合語言表示有關(guān)數(shù)學(xué)對象;

2.過程與方法

(1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過程,感知集合的含義.

(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí).

3.情感.態(tài)度與價(jià)值觀

使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.

1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).

(一)創(chuàng)設(shè)情景,揭示課題

1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級(jí)。

(2)問題:像“家庭”、“學(xué)?!?、“班級(jí)”等,有什么共同特征?

引導(dǎo)學(xué)生互相交流.與此同時(shí),教師對學(xué)生的活動(dòng)給予評(píng)價(jià).

2.活動(dòng):(1)列舉生活中的集合的例子;(2)分析、概括各實(shí)例的共同特征

由此引出這節(jié)要學(xué)的內(nèi)容。

設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

(二)研探新知,建構(gòu)概念

1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:

(1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;

(3)所有的安理會(huì)常任理事國; (4)所有的正方形;

(5)海南省在20xx年9月之前建成的所有立交橋;

(6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);

(7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體.

2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?

3.每個(gè)小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個(gè)對象叫作這個(gè)集合的元素.

4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.

設(shè)計(jì)意圖:通過實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神

(三)質(zhì)疑答辯,發(fā)展思維

1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱這兩個(gè)集合相等.

2.教師組織引導(dǎo)學(xué)生思考以下問題:

判斷以下元素的全體是否組成集合,并說明理由:

(1)大于3小于11的偶數(shù);(2)我國的小河流.讓學(xué)生充分發(fā)表自己的建解.

3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià).

4.教師提出問題,讓學(xué)生思考

高一(4)班的一位同學(xué),那么a,b與集合a分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.

如果a是集合a的元素,就說a屬于集合a,記作a?a.

如果a不是集合a的元素,就說a不屬于集合a,記作a?a.

(2)如果用a表示“所有的安理會(huì)常任理事國”組成的集合,則中國.日本與集合a的關(guān)系分別是什么?請用數(shù)學(xué)符號(hào)分別表示.

(3)讓學(xué)生完成教材第6頁練習(xí)第1題.

5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號(hào).并讓學(xué)生完成習(xí)題1.1a組第1題.

6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:

(1)要表示一個(gè)集合共有幾種方式?

(2)試比較自然語言.列舉法和描述法在表示集合時(shí),各自的特點(diǎn)?適用的對象是什么?

(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?

使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對象。

設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。

(四)鞏固深化,反饋矯正

教師投影學(xué)習(xí):

(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題.

設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對象

(五)歸納小結(jié),布置作業(yè)

小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問題:

1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容? 2.你認(rèn)為學(xué)習(xí)集合有什么意義?

3.選擇集合的表示法時(shí)應(yīng)注意些什么?

設(shè)計(jì)意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。

作業(yè):1.課后書面作業(yè):第13頁習(xí)題1.1a組第4題.

2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種

呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材.

高中數(shù)學(xué)等比數(shù)列教案篇八

熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

教學(xué)重難點(diǎn)。

熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

教學(xué)過程。

【復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

【方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問題的關(guān)鍵是通過對實(shí)際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差(或公比)等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。

一、基礎(chǔ)訓(xùn)練。

1.某種細(xì)菌在培養(yǎng)過程中,每20分鐘分裂一次(一個(gè)分裂為兩個(gè)),經(jīng)過3小時(shí),這種細(xì)菌由1個(gè)可繁殖成()。

a、511b、512c、1023d、1024。

2.若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為()。

a、b、

c、d、

二、典型例題。

例3、某地區(qū)位于沙漠邊緣,人與自然進(jìn)行長期頑強(qiáng)的斗爭,到1999年底全地區(qū)的綠化率已達(dá)到30%,從2000年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時(shí),原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?問經(jīng)過多少年的努力才能使全縣的綠洲面積超過60%.(lg2=0.3)。

例4、.流行性感冒(簡稱流感)是由流感病毒引起的急性呼吸道傳染病.某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù).

高中數(shù)學(xué)等比數(shù)列教案篇九

2. 你尊敬老師、團(tuán)結(jié)同學(xué)、熱愛勞動(dòng)、關(guān)心集體,所以大家都喜歡你。能嚴(yán)格遵守學(xué)校的各項(xiàng)規(guī)章制度。學(xué)習(xí)不夠刻苦,有畏難情緒。學(xué)習(xí)方法有待改進(jìn),掌握知識(shí)不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高。學(xué)習(xí)成績比上學(xué)期有一定的進(jìn)步。平時(shí)能積極參加體育鍛煉和有益的文娛活動(dòng)。今后如果能注意分配好學(xué)習(xí)時(shí)間,各科全面發(fā)展,均衡提高,相信一定會(huì)成為一名更加出色的學(xué)生。

3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學(xué)友愛相處,待人有禮,能虛心接受老師的教導(dǎo)。大多數(shù)的時(shí)候你都能遵守紀(jì)律,偶爾會(huì)犯一些小錯(cuò)誤。有時(shí)上課不夠留心,還有些小動(dòng)作,你能想辦法控制自己嗎?一開學(xué)老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學(xué)習(xí)成績不容樂觀,需努力提高學(xué)習(xí)成績。希望能從根本上認(rèn)識(shí)到自己的不足,在課堂上能認(rèn)真聽講,開動(dòng)腦筋,遇到問題敢于請教。

4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會(huì)提醒同學(xué)們及時(shí)安靜,對學(xué)習(xí)態(tài)度端正,及時(shí)完成作業(yè),但是少了點(diǎn)耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個(gè)腳印,一定能走出你自己絢麗的人生!

5. 學(xué)習(xí)態(tài)度端正,效率高,合理分配時(shí)間,學(xué)習(xí)生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學(xué)相處關(guān)系融洽。能嚴(yán)格遵守學(xué)校的各項(xiàng)規(guī)章制度。上課能專心聽講,認(rèn)真做好筆記,課后能按時(shí)完成作業(yè)。記憶力好,自學(xué)能力較強(qiáng)。希望你能更主動(dòng)地學(xué)習(xí),多思,多問,多練,大膽向老師和同學(xué)請教,注意采用科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,一定能取得滿意的成績!

6. 作為本班的班長,你對待班級(jí)工作能夠認(rèn)真負(fù)責(zé),積極配合老師和班委工作,集體榮譽(yù)感很強(qiáng),人際關(guān)系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領(lǐng)全班不僅在班級(jí)管理上有進(jìn)步,而且能在學(xué)習(xí)上也能成為全班的領(lǐng)頭雁,在下學(xué)期能取得更大的進(jìn)步!

7. 身為班委的你,對工作認(rèn)真負(fù)責(zé),以身作則,性格和善,與同學(xué)關(guān)系融洽,積極參加各項(xiàng)活動(dòng),不太張揚(yáng)的你顯得穩(wěn)重和踏實(shí),在學(xué)習(xí)上,你認(rèn)真聽課,及時(shí)完成各科作業(yè),但是我總覺得你的學(xué)習(xí)還不夠主動(dòng),沒有形成自己的一套方法,若從被動(dòng)的學(xué)習(xí)中解脫出來,應(yīng)該穩(wěn)定在班級(jí)前五名啊!加油!

8. 你是個(gè)懂禮貌明事理的孩子,你能嚴(yán)格遵守班級(jí)紀(jì)律,熱愛集體,對待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認(rèn)真完成作業(yè)。你的學(xué)習(xí)方法有待改進(jìn),若能做到學(xué)習(xí)時(shí)心無旁騖就好了,掌握知識(shí)也不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會(huì)在各方面取得長足進(jìn)步!

9. 你為人熱情大方,能和同學(xué)友好相處。你為人正直誠懇,尊敬老師,關(guān)心班集體,待人有禮,能認(rèn)真聽從老師的教導(dǎo),自覺遵守學(xué)校的各項(xiàng)規(guī)章制度,抵制各種不良思想。有集體榮譽(yù)感,樂于為集體做事。學(xué)習(xí)刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認(rèn)真做好筆記。今后如果能注意分配好學(xué)習(xí)時(shí)間,各科全面發(fā)展,均衡提高,相信一定會(huì)成為一名更加出色的學(xué)生。

10. 記得和你說過,你是個(gè)太聰明的孩子,你反應(yīng)敏捷,活潑靈動(dòng)。但是做學(xué)問是需要靜下心來老老實(shí)實(shí)去鉆研的,容不得賣弄小聰明和半點(diǎn)頑皮話。要知道,學(xué)如逆水行舟,不進(jìn)則退;心似平原野馬,易放難收!望你下學(xué)期重新抖擻精神早日進(jìn)入狀態(tài),不辜負(fù)關(guān)愛你的人對你的殷殷期盼。

高中數(shù)學(xué)等比數(shù)列教案篇十

了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單性質(zhì)。

【自學(xué)質(zhì)疑】

漸近線方程是 ,離心率 ,若點(diǎn) 是雙曲線上的點(diǎn),則 , 。

2.又曲線 的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是

3.經(jīng)過兩點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程是 。

4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。

5.與雙曲線 有公共的漸近線,且經(jīng)過點(diǎn) 的雙曲線的方程為

【例題精講】

1.雙曲線的離心率等于 ,且與橢圓 有公共焦點(diǎn),求該雙曲線的方程。

2.已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn) 是橢圓上任意一點(diǎn),當(dāng)直線 的斜率都存在,并記為 時(shí),那么 之積是與點(diǎn) 位置無關(guān)的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。

3.設(shè)雙曲線 的半焦距為 ,直線 過 兩點(diǎn),已知原點(diǎn)到直線 的距離為 ,求雙曲線的離心率。

【矯正鞏固】

1.雙曲線 上一點(diǎn) 到一個(gè)焦點(diǎn)的距離為 ,則它到另一個(gè)焦點(diǎn)的距離為 。

2.與雙曲線 有共同的漸近線,且經(jīng)過點(diǎn) 的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是 。

3.若雙曲線 上一點(diǎn) 到它的右焦點(diǎn)的距離是 ,則點(diǎn) 到 軸的距離是

4.過雙曲線 的左焦點(diǎn) 的直線交雙曲線于 兩點(diǎn),若 。則這樣的直線一共有 條。

【遷移應(yīng)用】

2. 已知雙曲線 的焦點(diǎn)為 ,點(diǎn) 在雙曲線上,且 ,則點(diǎn) 到 軸的距離為 。

3. 雙曲線 的焦距為

4. 已知雙曲線 的一個(gè)頂點(diǎn)到它的一條漸近線的距離為 ,則

5. 設(shè) 是等腰三角形, ,則以 為焦點(diǎn)且過點(diǎn) 的雙曲線的離心率為 .

高中數(shù)學(xué)等比數(shù)列教案篇十一

二、教學(xué)目標(biāo)分析。

1.知識(shí)目標(biāo)。

1)。

2)掌握等比數(shù)列的定義理解等比數(shù)列的通項(xiàng)公式及其推導(dǎo)。

2.能力目標(biāo)。

1)學(xué)會(huì)通過實(shí)例歸納概念。

2)通過學(xué)習(xí)等比數(shù)列的通項(xiàng)公式及其推導(dǎo)學(xué)會(huì)歸納假設(shè)。

3)提高數(shù)學(xué)建模的能力。

3、情感目標(biāo):

1)充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型。

2)體會(huì)數(shù)學(xué)是來源于現(xiàn)實(shí)生活并應(yīng)用于現(xiàn)實(shí)生活。

3)數(shù)學(xué)是豐富多彩的而不是枯燥無味的。

三、教學(xué)對象及學(xué)習(xí)需要分析。

1、教學(xué)對象分析:

1)高中生已經(jīng)有一定的.學(xué)習(xí)能力,對各方面的知識(shí)有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個(gè)別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時(shí)可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。

2)對歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)。

2、學(xué)習(xí)需要分析:

四.教學(xué)策略選擇與設(shè)計(jì)。

1.課前復(fù)習(xí)。

1)復(fù)習(xí)等差數(shù)列的概念及通向公式。

2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)。

2.情景導(dǎo)入。

高中數(shù)學(xué)等比數(shù)列教案篇十二

(2)進(jìn)一步理解曲線的方程和方程的曲線。

(3)初步掌握求曲線方程的方法。

(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力。

求曲線的方程。

計(jì)算機(jī)。

啟發(fā)引導(dǎo)法,討論法。

【引入】。

1.提問:什么是曲線的方程和方程的曲線。

學(xué)生思考并回答,教師強(qiáng)調(diào)。

2.坐標(biāo)法和解析幾何的意義、基本問題。

對于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何,解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程。

(2)通過方程,研究平面曲線的性質(zhì)。

【問題】。

如何根據(jù)已知條件,求出曲線的方程。

【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的點(diǎn)的集合;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

上述五個(gè)步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正。

下面再看一個(gè)問題:

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

【作業(yè)】課本第72頁練習(xí)1,2,3;

高中數(shù)學(xué)等比數(shù)列教案篇十三

重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

難點(diǎn)是解組合的應(yīng)用題.。

(一)導(dǎo)入新課。

(教師活動(dòng))提出下列思考問題,打出字幕.。

[字幕]一條鐵路線上有6個(gè)火車站。

(1)需準(zhǔn)備多少種不同的普通客車票?

(學(xué)生活動(dòng))討論并回答。

答案提示:

(1)排列;

(2)組合。

[評(píng)述]問題。

(二)新課講授。

[提出問題創(chuàng)設(shè)情境]。

(教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文。

[字幕]。

1.排列的定義是什么?

2.舉例說明一個(gè)組合是什么?

3.一個(gè)組合與一個(gè)排列有何區(qū)別?

(學(xué)生活動(dòng))閱讀回答.。

(教師活動(dòng))對照課文,逐一評(píng)析.。

設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境。

【歸納概括建立新知】。

(教師活動(dòng))承接上述問題的回答,展示下面知識(shí).。

(學(xué)生活動(dòng))傾聽、思索、記錄。

(教師活動(dòng))提出思考問題。

[投影]與的關(guān)系如何?

(師生活動(dòng))共同探討.求從個(gè)不同元素中取出個(gè)元素的排列數(shù),可分為以下兩步:

第1步,先求出從這個(gè)不同元素中取出個(gè)元素的組合數(shù)為;

第2步,求每一個(gè)組合中個(gè)元素的全排列數(shù)為。

根據(jù)分步計(jì)數(shù)原理,得到。

[字幕]公式1:

公式2:

(學(xué)生活動(dòng))驗(yàn)算,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票。

(三)小結(jié)。

(師生活動(dòng))共同小結(jié)。

本節(jié)主要內(nèi)容有。

1.組合概念。

2.組合數(shù)計(jì)算的兩個(gè)公式。

(四)布置作業(yè)。

1.課本作業(yè):習(xí)題103第1(1)、(4),3題。

3.研究性題:

(五)課后點(diǎn)評(píng)。

3.能組成(注意不能用點(diǎn)為頂點(diǎn))個(gè)四邊形,個(gè)三角形.。

探究活動(dòng)。

解設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解。

高中數(shù)學(xué)等比數(shù)列教案篇十四

3.進(jìn)一步提高問題探究意識(shí)、知識(shí)應(yīng)用意識(shí)和同伴合作意識(shí)。

問題的提出與解決。

如何進(jìn)行問題的探究。

啟發(fā)探究式。

研究方向提示:

1.?dāng)?shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來進(jìn)行研究;

2.研究所給數(shù)列的項(xiàng)之間的關(guān)系;

3.研究所給數(shù)列的子數(shù)列;

4.研究所給數(shù)列能構(gòu)造的新數(shù)列;

5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進(jìn)行研究;

6.研究所給數(shù)列與其它知識(shí)的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。

針對學(xué)生的研究情況,對所提問題進(jìn)行歸類,選擇部分類型問題共同進(jìn)行研究、分析與解決。

課堂小結(jié):

1.研究一個(gè)數(shù)列可以從哪些方面提出問題并進(jìn)行研究?

2.你最喜歡哪位同學(xué)的研究?為什么?

開展研究性學(xué)習(xí),培養(yǎng)問題解決能力。

一、對“研究性學(xué)習(xí)”和“問題解決”的認(rèn)識(shí)研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動(dòng)探究問題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說是一種學(xué)習(xí)活動(dòng):學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會(huì)生活中選擇課題,以類似科學(xué)研究的方式去主動(dòng)地獲取知識(shí)、應(yīng)用知識(shí)、解決問題。

“問題解決”(problemsolving)是美國數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號(hào),即認(rèn)為應(yīng)當(dāng)以“問題解決”作為學(xué)校數(shù)學(xué)教育的中心。

問題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實(shí)踐能力”。在數(shù)學(xué)教學(xué)活動(dòng)中開展研究性學(xué)習(xí)是培養(yǎng)問題解決能力的主要途徑。

二、“問題解決”課堂教學(xué)模式的建構(gòu)與實(shí)踐以研究性學(xué)習(xí)活動(dòng)為載體,以培養(yǎng)問題解決能力為核心的'課堂教學(xué)模式(以下簡稱為“問題解決”課堂教學(xué)模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨(dú)立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識(shí)的能力,提高合作意識(shí)、探究意識(shí)和創(chuàng)新意識(shí)。

(一)關(guān)于“問題解決”課堂教學(xué)模式。

通過實(shí)施“問題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動(dòng)參與、團(tuán)結(jié)協(xié)作精神,增進(jìn)師生、同伴之間的情感交流,形成自覺運(yùn)用數(shù)學(xué)基礎(chǔ)知識(shí)、基本技能和數(shù)學(xué)思想方法分析問題、解決問題的能力和意識(shí)。

(二)數(shù)學(xué)學(xué)科中的問題解決能力的培養(yǎng)目標(biāo)。

數(shù)學(xué)問題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會(huì)審題,會(huì)建模,會(huì)轉(zhuǎn)化,會(huì)歸類,會(huì)反思,會(huì)編題。

(三)“問題解決”課堂教學(xué)模式的教學(xué)流程。

(四)“問題解決”課堂教學(xué)評(píng)價(jià)標(biāo)準(zhǔn)。

1.教學(xué)目標(biāo)的確定;

2.教學(xué)方法的選擇;

3.問題的選擇;

4.師生主體意識(shí)的體現(xiàn);

5.教學(xué)策略的運(yùn)用。

(五)了解學(xué)生的數(shù)學(xué)問題解決能力的途徑。

(六)開展研究性學(xué)習(xí)活動(dòng)對教師的能力要求。

高中數(shù)學(xué)等比數(shù)列教案篇十五

理解數(shù)列的概念,掌握數(shù)列的運(yùn)用。

理解數(shù)列的概念,掌握數(shù)列的運(yùn)用。

【知識(shí)點(diǎn)精講】。

1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))。

2、通項(xiàng)公式:數(shù)列的.第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個(gè)公式來表示an=f(n)。

(通項(xiàng)公式不)。

3、數(shù)列的表示:。

(1)列舉法:如1,3,5,7,9……;。

(2)圖解法:由(n,an)點(diǎn)構(gòu)成;。

(3)解析法:用通項(xiàng)公式表示,如an=2n+1。

5、任意數(shù)列{an}的前n項(xiàng)和的性質(zhì)。

高中數(shù)學(xué)等比數(shù)列教案篇十六

1、掌握等比數(shù)列前項(xiàng)和公式,并能運(yùn)用公式解決簡單的問題。

(1)理解公式的推導(dǎo)過程,體會(huì)轉(zhuǎn)化的思想;

2、通過公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想。

3、通過公式推導(dǎo)的教學(xué),對學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度。

(1)知識(shí)結(jié)構(gòu)。

先用錯(cuò)位相減法推出等比數(shù)列前項(xiàng)和公式,而后運(yùn)用公式解決一些問題,并將通項(xiàng)公式與前項(xiàng)和公式結(jié)合解決問題,還要用錯(cuò)位相減法求一些數(shù)列的前項(xiàng)和。

(2)重點(diǎn)、難點(diǎn)分析。

是等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用。公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法。等比數(shù)列前項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意和兩種情況。

(1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問題。

(2)等比數(shù)列前項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論。

(3)等比數(shù)列前項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣。

(4)編擬例題時(shí)要全面,不要忽略的情況。

(5)通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大。

高中數(shù)學(xué)等比數(shù)列教案篇十七

教學(xué)內(nèi)容:

整十?dāng)?shù)加一位數(shù)及相應(yīng)的減法。

教學(xué)目標(biāo):

1、讓學(xué)生經(jīng)歷兩位數(shù)加、減一位數(shù)的口算方法的探索過程,能比較熟練的進(jìn)行口算。并了解加、減發(fā)算式中各部分的名稱。

2、在根據(jù)數(shù)的組成探索口算方法的過程中,體會(huì)知識(shí)間的內(nèi)在聯(lián)系,發(fā)展思維能力和口算能力。

3、培養(yǎng)用數(shù)學(xué)的觀念看周圍的事物的意識(shí),培養(yǎng)同學(xué)之間的相互合作、交流的態(tài)度。

教學(xué)重難點(diǎn):

兩位數(shù)加、減一位數(shù)的口算方法。

教學(xué)準(zhǔn)備:

課件。

教學(xué)過程:

2個(gè)十和5個(gè)一合起來是(),8個(gè)十和4個(gè)一合起來是()。95里面是由()個(gè)十和()個(gè)一組成。81里面有()個(gè)十和()個(gè)一。

1、出示32頁情景圖。

2、提問:你能從圖中獲得哪些數(shù)學(xué)信息?能提出一個(gè)數(shù)學(xué)問題嗎?

學(xué)生回答:梳理問題。

(1)一共有多少個(gè)桃?

(2)一共有34個(gè)桃,去掉框里的30個(gè),還剩多少個(gè)桃?

3、怎樣列式?

(1)先想一想。

(2)小組交流。

小組內(nèi)交流自己的算法。

(3)指名小組匯報(bào)。

結(jié)合學(xué)生回答小結(jié):根據(jù)看圖,數(shù)出來的;用小棒擺出來的;根據(jù)數(shù)的組成來思考的。34+4就是把3個(gè)十和4個(gè)一合起來,是34;34-30就是從34里去掉3個(gè)十,還剩4個(gè)一,是4。

4、解答“試一試”。

提問:4+30等于多少,你又可以怎樣算?

(1)先想一想。

(2)小組交流。

小組內(nèi)交流自己的算法。

(3)指名小組匯報(bào)。

4個(gè)一和3個(gè)十和起來是34;因?yàn)?0+4=34,所以4+30=34。

談話:“34-4”你會(huì)算嗎?填在書上,并輕聲地說說你是怎樣想的。

指名回答,結(jié)合學(xué)生回答適當(dāng)補(bǔ)充。

5、介紹算式中各部分的名稱。

(1)介紹加法算式中各部分的名稱。

談話:每個(gè)小朋友都有自己的名子,在每一個(gè)算式中每個(gè)部分也都有各自的名子。在加法算式30+4=34中,相加的兩個(gè)數(shù)都叫做加數(shù)。兩個(gè)加數(shù)相加的結(jié)果叫做和。

(2)介紹減法算式各部分的名稱。

(3)指名說出算式4+30=34,34-4=30中各部分的名稱。

1、“想想做做”第1題。

(1)出示圖,讓學(xué)生說圖意。

(2)根據(jù)圖意,列出四個(gè)算式。

(3)說說每道算式表達(dá)什么意思。

2、“想想做做”第2題。

先獨(dú)立完成,再說說怎樣想的?

提問:根據(jù)60+3=63你能想到其他三個(gè)算式嗎?

3、“想想做做”第3題。

先獨(dú)立完成,再說說是怎樣想的,集體核對結(jié)果。

4、“想想做做”第4題。

根據(jù)表中第一行的名稱說說左表用什么方法計(jì)算,右表用什么方法計(jì)算。

5、“想想做做”第5題。

先了解“相鄰數(shù)”是什么意思,再寫數(shù)交流。

6、“想想做做”第6、7題。

先說說每題中的.已知條件和要求的問題。

再自己獨(dú)立完成。

同桌交流并說說是怎樣想的。

高中數(shù)學(xué)等比數(shù)列教案篇十八

在具體的問題情境中,發(fā)現(xiàn)數(shù)列的`等比關(guān)系,能用有關(guān)知識(shí)解決相應(yīng)問題。

等比數(shù)列的前n項(xiàng)和的公式及應(yīng)用。

等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)過程。

一、復(fù)習(xí)準(zhǔn)備:

提問:等比數(shù)列的通項(xiàng)公式;

等比數(shù)列的性質(zhì);

等差數(shù)列的前n項(xiàng)和公式;

二、講授新課:

1、教學(xué):

思考:一個(gè)細(xì)胞每分鐘就變成兩個(gè),那么經(jīng)過一個(gè)小時(shí),它會(huì)分裂成多少個(gè)細(xì)胞呢?

分析:公比,因?yàn)?,一個(gè)小時(shí)有60分鐘。

思考:那么經(jīng)過一個(gè)小時(shí),一共有多少個(gè)細(xì)胞呢?

又因?yàn)椤?/p>

所以,則=1152921504。

則一個(gè)小時(shí)一共有1152921504個(gè)細(xì)胞。

2、練習(xí):

列1(解略)。

列2(解略)。

在等比數(shù)列中:已知求已知求。

在等比數(shù)列中,xx,則xx。

三、小結(jié):等比數(shù)列的前n項(xiàng)和公式。

四、作業(yè):p66,1題。

高中數(shù)學(xué)等比數(shù)列教案篇十九

掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。

(一)主要知識(shí):

1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的`有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略。

1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問題,

2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。

高中數(shù)學(xué)等比數(shù)列教案篇二十

(2)求數(shù)列的前10項(xiàng)的和。例7已知數(shù)列滿足,,.

(1)求證:數(shù)列是等比數(shù)列;

(2)求的表達(dá)式和的表達(dá)式。

作業(yè):

1.已知同號(hào),則是成等比數(shù)列的。

(a)充分而不必要條件(b)必要而不充分條件。

(c)充要條件(d)既不充分而也不必要條件。

2.如果和是兩個(gè)等差數(shù)列,其中,那么等于。

(a)(b)(c)3(d)。

3.若某等比數(shù)列中,前7項(xiàng)和為48,前14項(xiàng)和為60,則前21項(xiàng)和為。

(a)180(b)108(c)75(d)63。

4.已知數(shù)列,對所有,其前項(xiàng)的積為,求的值,

5.已知為等差數(shù)列,前10項(xiàng)的和為,前100項(xiàng)的和為,求前110項(xiàng)的和。

6.等差數(shù)列中,,,依次抽出這個(gè)數(shù)列的第項(xiàng),組成數(shù)列,求數(shù)列的通項(xiàng)公式和前項(xiàng)和公式。

7.&nbs…p;已知數(shù)列,,

(1)求通項(xiàng)公式;

(2)若,求數(shù)列的最小項(xiàng)的值;

(3)數(shù)列的前項(xiàng)和為,求數(shù)列前項(xiàng)的和.

8.三數(shù)成等比數(shù)列,若第二個(gè)數(shù)加4就成等差數(shù)列,再把這個(gè)等差數(shù)列的第三個(gè)數(shù)加上32又成等比數(shù)列,求這三個(gè)數(shù)。

高中數(shù)學(xué)等比數(shù)列教案篇二十一

掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【過程與方法】

經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。

【情感態(tài)度價(jià)值觀】

在猜想計(jì)算的過程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。

【教學(xué)重點(diǎn)】

三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【教學(xué)難點(diǎn)】

探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。

(一)引入新課

提出問題:如何研究三角函數(shù)的單調(diào)性

(四)小結(jié)作業(yè)

提問:今天學(xué)習(xí)了什么?

引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。

課后作業(yè):

思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

【本文地址:http://mlvmservice.com/zuowen/14749652.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔