高一數(shù)學必修教案大全(15篇)

格式:DOC 上傳日期:2023-11-24 16:04:04
高一數(shù)學必修教案大全(15篇)
時間:2023-11-24 16:04:04     小編:ZS文王

編寫教案可以幫助教師更好地把握教學進度和教學效果。教案的編寫需要考慮學生的興趣、學習方式和認知發(fā)展特點。以下是小編為大家整理的一些優(yōu)秀教案范例,供大家參考。希望通過這些范例,大家能夠更好地理解教案的編寫思路和方法,進一步提升自己的教學水平。在教育教學的道路上,讓我們一起努力,不斷探索和創(chuàng)新,為學生的成長和未來貢獻自己的力量??偨Y(jié)起來,編寫教案不僅僅是一種任務(wù),更是一種責任和使命。讓我們共同努力,打造出更優(yōu)秀的教案,為教育事業(yè)添磚加瓦。

高一數(shù)學必修教案篇一

(2)了解區(qū)間的概念;。

(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學中,學生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。

問題2:分析教科書中的實例(2),引導(dǎo)學生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。

問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。

設(shè)計意圖:通過這些問題,讓學生理解得到函數(shù)的定義,培養(yǎng)學生的歸納、概況的能力。

高一數(shù)學必修教案篇二

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。

二、重點難點分析。

(1)本節(jié)教學的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實。

(2)函數(shù)的單調(diào)性這一性質(zhì)學生在初中所學函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調(diào)性的證實是學生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調(diào)性的證實自然就是教學中的難點。

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時,可以先從學生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來。在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。

(2)函數(shù)單調(diào)性證實的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標為選題的標準,以便幫助學生總結(jié)規(guī)律。

函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來。經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

高一數(shù)學必修教案篇三

用坐標法解決幾何問題的步驟:

第二步:通過代數(shù)運算,解決代數(shù)問題;

第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論、

重點與難點:直線與圓的方程的應(yīng)用、

問 題設(shè)計意圖師生活動

生:回顧,說出自己的看法、

2、解決直線與圓的位置關(guān)系,你將采用什么方法?

生:回顧、思考、討論、交流,得到解決問題的方法、

問 題設(shè)計意圖師生活動

3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題

生:自 學例4,并完成練習題1、2、

生:建立適當?shù)闹苯亲鴺讼担?探求解決問題的方法、

8、小結(jié):

(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導(dǎo) 學生完成練習題、

生:閱讀教科書的例3,并完成第

問 題設(shè)計意圖師生活動

題的需要準備什么工作?

(2)如何建立直角坐標系,才能易于解決平面幾何問題?

(3)你認為學好“坐標法”解決問題的關(guān)鍵是什么?

高一數(shù)學必修教案篇四

忙碌的日子總是過得很快,轉(zhuǎn)眼間期中考試的時間又到了,我們高一數(shù)學必修四的教學也進入了最后的復(fù)習沖刺階段?;仡櫚雽W期以來,我對前面的教學感受頗深。

必修四由三角函數(shù)、平面向量、和三角恒等變換三章構(gòu)成,三角函數(shù)與三角恒等變換是高中數(shù)學課程的傳統(tǒng)內(nèi)容,平面向量基本上也是,因此,本模塊的內(nèi)容屬于“傳統(tǒng)內(nèi)容”。與以往的教科書相比較,本書在內(nèi)容、要求以及章節(jié)安排、處理方法上都有新的變化。

在內(nèi)容安排上,第一章三角函數(shù)的學習為第二章平面向量作了必要的準備,同時應(yīng)用第二章平面向量的知識推導(dǎo)兩角差的余弦公式,使第三章三角恒等變換可以獨立成章。學習完后,心中有幾點體會如下:

高一數(shù)學必修教案篇五

掌握三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。

·利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。

一、練習講解:《習案》作業(yè)十三的第3、4題。

(精確到0·001)·。

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的`進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習:教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。

2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。

四、作業(yè)《習案》作業(yè)十四及十五。

高一數(shù)學必修教案篇六

o通過學生對向量與數(shù)量的識別能力的訓練,培養(yǎng)學生認識客觀事物的數(shù)學本質(zhì)的能力·。

教學難點:平行向量、相等向量和共線向量的區(qū)別和聯(lián)系·。

(一)向量的概念:我們把既有大小又有方向的量叫向量。

(二)(教材p74面的四個圖制作成幻燈片)請同學閱讀課本后回答:(7個問題一次出現(xiàn))。

1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)。

2、如何表示向量?

3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?

4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?

5、滿足什么條件的兩個向量是相等向量?單位向量是相等向量嗎?

6、有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?

7、如果把一組平行向量的起點全部移到一點o,這是它們是不是平行向量?

這時各向量的終點之間有什么關(guān)系?

課后小結(jié)。

1、描述向量的兩個指標:模和方向·。

2、平面向量的概念和向量的幾何表示;

3、向量的模、零向量、單位向量、平行向量等概念。

高一數(shù)學必修教案篇七

一、除了高等植物成熟的篩管細胞和哺乳動物成熟的紅細胞等極少數(shù)細胞外,真核細胞都有細胞核。植物的導(dǎo)管細胞是死細胞(主要運輸水分、無機鹽),篩管主要運輸有機物。

二、細胞核控制著細胞的代謝和遺傳。

三、細胞核的結(jié)構(gòu)。

2.染色質(zhì)(主要由dna和蛋白質(zhì)組成,dna是遺傳信息的載體。

4.核孔(實現(xiàn)核質(zhì)之間頻繁的物質(zhì)交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(zhì)(蛋白質(zhì)和mrna)出入細胞需要能量和載體,細胞代謝越旺盛,核孔越多,核仁體積越大。

四、細胞分裂時,細胞核解體,染色質(zhì)高度螺旋化,縮短變粗,成為光學顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結(jié)束時,染色體解螺旋,重新成為細絲狀的染色質(zhì)。染色質(zhì)(分裂間期)和染色體(分裂時)是同樣的物質(zhì)在細胞不同時期的兩種存在狀態(tài)。

五、細胞既是生物體結(jié)構(gòu)的基本單位,又是生物體代謝和遺傳的基本單位。

高一數(shù)學必修教案篇八

教學目標。

理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用.

教學重難點。

1.教學重點:兩角和、差正弦和正切公式的推導(dǎo)過程及運用;。

2.教學難點:兩角和與差正弦、余弦和正切公式的靈活運用.

教學過程。

高一數(shù)學必修教案篇九

1、教材(教學內(nèi)容)。

2、設(shè)計理念。

3、教學目標。

情感態(tài)度與價值觀目標:引導(dǎo)學生學會閱讀數(shù)學教材,學會發(fā)現(xiàn)和欣賞數(shù)學的理性之美、

4、重點難點。

重點:任意角三角函數(shù)的定義、

難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

5、學情分析。

6、教法分析。

7、學法分析。

本課時先通過“閱讀”學習法,引導(dǎo)學生改造已有的認知結(jié)構(gòu),再通過類比學習法引導(dǎo)學生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學生運用類比學習法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學生形成新的認識結(jié)構(gòu),達成教學目標。

高一數(shù)學必修教案篇十

教學目標。

熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。

教學重難點。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

教學過程。

復(fù)習。

兩角差的余弦公式。

用-b代替b看看有什么結(jié)果?

高一數(shù)學必修教案篇十一

一、創(chuàng)設(shè)情景,激趣導(dǎo)入。

學生活動:學生猜測各種可能性,你一言我一語地發(fā)表自己的高見。師:大家的猜測都有自己的道理,但答案到底是什么呢?暫時老師還不想告訴你們,我想通過下面的活動,大家一定能自己找到答案的。

二、探究體驗,經(jīng)歷過程。

1、教學例1.

方法一:

師:學校準備從每個班中選幾名熱愛運動的學生參加體育訓練,為下學期的校運動會做準備。下面是三(1)班參加跳繩、踢毽比賽的學生名單。

學生可能回答;

一共有17人,9+8=17(人)。

可是,參加這兩項活動的沒有17人呀。

我發(fā)現(xiàn)有的人兩項活動都參加了。

應(yīng)該是一共有14人參加了,算式是9+8-3=14(人)。

師:到底怎么回事呢?為什么有人說一共是14人呢?為什么要減去3呢?

生:因為有3個人重復(fù)了。

生:因為這3個人既參加了跳繩,又參加了踢毽。

生:因為跳繩的9人里面有這3個人,踢毽的8人里面也有這3個人,所以計算的時候就不能是9+8=17(人),還應(yīng)該減去3人,所以是9+8-3=14(人)。

生:因為9+8就把這3個人重復(fù)算了,也就是多算了一遍,所以要減掉3人。

師:同學們的發(fā)言真是精彩,報名參加校體育訓練的一共有多少名同。

學呢?

生:14人。

方法二:

師:為了能使同學們更方便的看清楚,我們把一項活動演示一遍,請班里的`14名同學分別對應(yīng)的替代其中一人,自己選一個替代的對象吧。

班內(nèi)的14名學生分別選定自己要替代的人。

生:不知道站哪邊。

師:哦?為什么?怎么會出現(xiàn)這樣的情況呢?

生:站中間。

三位同學都站到了講臺的中間。

師:那左邊、右邊、中間分別表示什么?

生:左邊表示參加跳繩的同學,右邊表示參加踢毽的同學,中間就是兩種訓練都參加的同學。

方法三:

師:誰能用畫圖的方法來表示一下剛才看到的情形?

學生組內(nèi)討論,畫出自己設(shè)計的圖來,教師巡視觀察了解情況并及時指導(dǎo)創(chuàng)作。

分組展示自己設(shè)計的圖畫,并介紹自己的創(chuàng)意或想法。

學生可能會說:

生1:我覺得左邊的同學是代表參加跳繩的,應(yīng)該圈在一起;右邊的同學代表參加踢毽的,他們也應(yīng)該圈在一起;中間的同學再畫一個圈。師:這樣的話,能不能讓大家一看就知道中間的是既參加了跳繩的,又參加了踢毽的呢?再想想,看還有沒有更好的畫法。

生2:中間的同學也應(yīng)該和左邊的圈在一起,因為他們也參加了跳繩的呀。

生3:那我還說中間的還可以圈到右邊呢,他們還參加了踢毽呢。師:那就按你們說的試試吧。

學生動手試著畫圖,并向全班展示。

方法四:

師:看圖,說說每一部分分別表示什么?生:左邊,表示只參加跳繩的;右邊,表示只參加踢毽的;中間既參加跳繩又參加踢毽的。

師:你能列式計算這兩個小組的人數(shù)嗎?

生:9+8-3=14(人)。

生:(8-3)+3+(9-3)=14(人)。

高一數(shù)學必修教案篇十二

教學目標。

o了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量。

o通過對向量的學習,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別。

o通過學生對向量與數(shù)量的識別能力的訓練,培養(yǎng)學生認識客觀事物的數(shù)學本質(zhì)的能力。

教學重難點。

教學重點:理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會表示向量。

教學難點:平行向量、相等向量和共線向量的區(qū)別和聯(lián)系。

教學過程。

(一)向量的概念:我們把既有大小又有方向的量叫向量。

(二)(教材p74面的四個圖制作成幻燈片)請同學閱讀課本后回答:(7個問題一次出現(xiàn))。

1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)。

2、如何表示向量?

3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?

4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?

5、滿足什么條件的兩個向量是相等向量?單位向量是相等向量嗎?

6、有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?

7、如果把一組平行向量的起點全部移到一點o,這是它們是不是平行向量?

這時各向量的終點之間有什么關(guān)系?

課后小結(jié)。

1、描述向量的兩個指標:模和方向。

2、平面向量的概念和向量的幾何表示;

3、向量的模、零向量、單位向量、平行向量等概念。

高一數(shù)學必修教案篇十三

教學目標。

1、理解平面向量的坐標的概念;。

2、掌握平面向量的坐標運算;。

3、會根據(jù)向量的坐標,判斷向量是否共線.

教學重難點。

教學重點:平面向量的坐標運算。

教學難點:向量的坐標表示的理解及運算的準確性.

教學過程。

平面向量基本定理:。

什么叫平面的一組基底?

平面的基底有多少組?

引入:。

1.平面內(nèi)建立了直角坐標系,點a可以用什么來。

表示?

2.平面向量是否也有類似的表示呢?

高一數(shù)學必修教案篇十四

對課堂教學的有效性,我們不僅應(yīng)該有全面衡量的意識,也應(yīng)該有從定性與定量兩方面衡量的意識。就當前課堂教學而言,我們要特別關(guān)注數(shù)學教學層次問題。以《平面向量基本定理》為例,采用“一個定理+三項注意”的模式,重點放在學生接受平面向量的基本定理和例題、習題的模仿與訓練上,是一個層次;告訴學生平面向量基本定理蘊含著分解、轉(zhuǎn)化思想,重點放在定理的得出和證明的方法上是另一層次;理解平面向量基底的作用與意義,師生共同探討為什么要研究這個問題,怎樣研究這個問題,搞清楚其中體現(xiàn)的數(shù)學思維是更高的一個層次;如果學生能由平面向量基本定理體會到“事物是相互聯(lián)系、相互轉(zhuǎn)化的”,“事情是由一定的基本要素構(gòu)成的,可以用構(gòu)成它的基本要素來表示”,“研究事物可轉(zhuǎn)化為對它的基本要素的研究”,有助于養(yǎng)成理性地、有條理地思考和探究問題的習慣,那就更理想。

高一數(shù)學必修教案篇十五

1、使學生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。

2、在奇偶性概念形成過程中,培養(yǎng)學生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法。

3、在學生感受數(shù)學美的同時,激發(fā)學習的愛好,培養(yǎng)學生樂于求索的精神。

重點是奇偶性概念的形成與函數(shù)奇偶性的判定。

難點是對概念的熟悉。

投影儀,計算機。

引導(dǎo)發(fā)現(xiàn)法。

一。引入新課。

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì)。從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì)。

(學生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學生把函數(shù)具體化,如和等。)。

學生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱。最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。

二。講解新課。

2、函數(shù)的奇偶性(板書)。

學生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學生先把它們具體化,再用數(shù)學符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立。最后讓學生用完整的語言給出定義,不準確的地方教師予以提示或調(diào)整。

(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù)。(板書)。

(給出定義后可讓學生舉幾個例子,如等以檢驗一下對概念的初步熟悉)。

提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學生觀察研究)。

學生可類比剛才的方法,很快得出結(jié)論,再讓學生給出奇函數(shù)的定義。

(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù)。(板書)。

(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。

例1。判定下列函數(shù)的奇偶性(板書)。

(1);(2);

(3);;

(5);(6)。

(要求學生口答,選出12個題說過程)。

解:(1)是奇函數(shù)。(2)是偶函數(shù)。

(3),是偶函數(shù)。

學生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學生再次熟悉到定義中任意性的重要)。

從(4)題開始,學生的答案會有不同,可以讓學生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。

(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)。

由學生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。

例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學生來完成)。

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。

例3。判定下列函數(shù)的奇偶性(板書)。

(1);(2);(3)。

由學生回答,不完整之處教師補充。

解:(1)當時,為奇函數(shù),當時,既不是奇函數(shù)也不是偶函數(shù)。

(2)當時,既是奇函數(shù)也是偶函數(shù),當時,是偶函數(shù)。

(3)當時,于是,

當時,,于是=,

綜上是奇函數(shù)。

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。

三。小結(jié)。

1、奇偶性的概念。

2、判定中注重的問題。

四。作業(yè)略。

五。板書設(shè)計。

2、函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

(3)定義域關(guān)于原點對稱是函數(shù)例2。小結(jié)。

具備奇偶性的必要條件。

(4)函數(shù)按奇偶性分類分四類。

(1)定義域為的任意函數(shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證實之嗎?

(2)判定函數(shù)在上的單調(diào)性,并加以證實。

在此基礎(chǔ)上試利用這個函數(shù)的單調(diào)性解決下面的問題:

【本文地址:http://mlvmservice.com/zuowen/14678844.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔