高中數(shù)學等比數(shù)列教案(通用21篇)

格式:DOC 上傳日期:2023-11-24 16:00:05
高中數(shù)學等比數(shù)列教案(通用21篇)
時間:2023-11-24 16:00:05     小編:影墨

教案的編寫需要考慮學生的學習需求和教學資源的充分利用。要編寫一份較為完美的教案,要注意靈活運用不同的教學方法和手段。小編為大家整理了一些經(jīng)典、優(yōu)秀的教案,供大家學習參考,希望能夠對大家的教學工作有所啟發(fā)。

高中數(shù)學等比數(shù)列教案篇一

了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質。

【自學質疑】

漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。

2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是

3.經(jīng)過兩點 的雙曲線的標準方程是 。

4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。

5.與雙曲線 有公共的漸近線,且經(jīng)過點 的雙曲線的方程為

【例題精講】

1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。

2.已知橢圓具有性質:若 是橢圓 上關于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關的定值,試對雙曲線 寫出具有類似特性的性質,并加以證明。

3.設雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。

【矯正鞏固】

1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。

2.與雙曲線 有共同的漸近線,且經(jīng)過點 的雙曲線的一個焦點到一條漸近線的距離是 。

3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是

4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。

【遷移應用】

2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。

3. 雙曲線 的焦距為

4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則

5. 設 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .

高中數(shù)學等比數(shù)列教案篇二

熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關問題。

教學重難點。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

兩角差的余弦公式。

用-b代替b看看有什么結果?

高中數(shù)學等比數(shù)列教案篇三

集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。

教學重點.難點

重點:集合的含義與表示方法.

難點:表示法的恰當選擇.

教學目標

l.知識與技能

(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

(2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;

(4)會用集合語言表示有關數(shù)學對象;

2.過程與方法

(1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

(2)讓學生歸納整理本節(jié)所學知識.

3.情感.態(tài)度與價值觀

使學生感受到學習集合的必要性,增強學習的積極性.

1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.

(一)創(chuàng)設情景,揭示課題

1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。

(2)問題:像“家庭”、“學?!薄ⅰ鞍嗉墶钡?,有什么共同特征?

引導學生互相交流.與此同時,教師對學生的活動給予評價.

2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征

由此引出這節(jié)要學的內容。

設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊

(二)研探新知,建構概念

1.教師利用多媒體設備向學生投影出下面7個實例:

(1)1—20以內的所有質數(shù);(2)我國古代的四大發(fā)明;

(3)所有的安理會常任理事國; (4)所有的正方形;

(5)海南省在20xx年9月之前建成的所有立交橋;

(6)到一個角的兩邊距離相等的所有的點;

(7)國興中學20xx年9月入學的高一學生的全體.

2.教師組織學生分組討論:這7個實例的共同特征是什么?

3.每個小組選出——位同學發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.

設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神

(三)質疑答辯,發(fā)展思維

1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

2.教師組織引導學生思考以下問題:

判斷以下元素的全體是否組成集合,并說明理由:

(1)大于3小于11的偶數(shù);(2)我國的小河流.讓學生充分發(fā)表自己的建解.

3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.

4.教師提出問題,讓學生思考

高一(4)班的一位同學,那么a,b與集合a分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.

如果a是集合a的元素,就說a屬于集合a,記作a?a.

如果a不是集合a的元素,就說a不屬于集合a,記作a?a.

(2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關系分別是什么?請用數(shù)學符號分別表示.

(3)讓學生完成教材第6頁練習第1題.

5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內容,寫出常用數(shù)集的記號.并讓學生完成習題1.1a組第1題.

6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:

(1)要表示一個集合共有幾種方式?

(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?

(3)如何根據(jù)問題選擇適當?shù)募媳硎痉?

使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。

設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。

(四)鞏固深化,反饋矯正

教師投影學習:

(3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.

設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

(五)歸納小結,布置作業(yè)

小結:在師生互動中,讓學生了解或體會下例問題:

1.本節(jié)課我們學習了哪些知識內容? 2.你認為學習集合有什么意義?

3.選擇集合的表示法時應注意些什么?

設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

作業(yè):1.課后書面作業(yè):第13頁習題1.1a組第4題.

2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種

呢?如何表示?請同學們通過預習教材.

高中數(shù)學等比數(shù)列教案篇四

2. 你尊敬老師、團結同學、熱愛勞動、關心集體,所以大家都喜歡你。能嚴格遵守學校的各項規(guī)章制度。學習不夠刻苦,有畏難情緒。學習方法有待改進,掌握知識不夠牢固,思維能力要進一步培養(yǎng)和提高。學習成績比上學期有一定的進步。平時能積極參加體育鍛煉和有益的文娛活動。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。

3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學友愛相處,待人有禮,能虛心接受老師的教導。大多數(shù)的時候你都能遵守紀律,偶爾會犯一些小錯誤。有時上課不夠留心,還有些小動作,你能想辦法控制自己嗎?一開學老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學習成績不容樂觀,需努力提高學習成績。希望能從根本上認識到自己的不足,在課堂上能認真聽講,開動腦筋,遇到問題敢于請教。

4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會提醒同學們及時安靜,對學習態(tài)度端正,及時完成作業(yè),但是少了點耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個腳印,一定能走出你自己絢麗的人生!

5. 學習態(tài)度端正,效率高,合理分配時間,學習生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學相處關系融洽。能嚴格遵守學校的各項規(guī)章制度。上課能專心聽講,認真做好筆記,課后能按時完成作業(yè)。記憶力好,自學能力較強。希望你能更主動地學習,多思,多問,多練,大膽向老師和同學請教,注意采用科學的學習方法,提高學習效率,一定能取得滿意的成績!

6. 作為本班的班長,你對待班級工作能夠認真負責,積極配合老師和班委工作,集體榮譽感很強,人際關系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領全班不僅在班級管理上有進步,而且能在學習上也能成為全班的領頭雁,在下學期能取得更大的進步!

7. 身為班委的你,對工作認真負責,以身作則,性格和善,與同學關系融洽,積極參加各項活動,不太張揚的你顯得穩(wěn)重和踏實,在學習上,你認真聽課,及時完成各科作業(yè),但是我總覺得你的學習還不夠主動,沒有形成自己的一套方法,若從被動的學習中解脫出來,應該穩(wěn)定在班級前五名啊!加油!

8. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態(tài)度端正,上課能夠專心聽講,課下能夠認真完成作業(yè)。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會在各方面取得長足進步!

9. 你為人熱情大方,能和同學友好相處。你為人正直誠懇,尊敬老師,關心班集體,待人有禮,能認真聽從老師的教導,自覺遵守學校的各項規(guī)章制度,抵制各種不良思想。有集體榮譽感,樂于為集體做事。學習刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認真做好筆記。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。

10. 記得和你說過,你是個太聰明的孩子,你反應敏捷,活潑靈動。但是做學問是需要靜下心來老老實實去鉆研的,容不得賣弄小聰明和半點頑皮話。要知道,學如逆水行舟,不進則退;心似平原野馬,易放難收!望你下學期重新抖擻精神早日進入狀態(tài),不辜負關愛你的人對你的殷殷期盼。

高中數(shù)學等比數(shù)列教案篇五

三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教b版)數(shù)學必修四,第一章第二節(jié)內容,其主要內容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法。

通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內容在三角函數(shù)中占有非常重要的地位.

以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。

借助單位圓探究誘導公式。

能正確運用誘導公式將任意角的三角函數(shù)化為銳角三角函數(shù)。

誘導公式(三)的推導及應用。

誘導公式的應用。

多媒體。

1. 誘導公式(一)(二)。

2. 角 (終邊在一條直線上)

3. 思考:下列一組角有什么特征?( )能否用式子來表示?

已知 由

可知

而 (課件演示,學生發(fā)現(xiàn))

所以

于是可得: (三)

設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。

設計意圖:結合學過的公式(一)(二),發(fā)現(xiàn)特點,總結公式。

1. 練習

(1)

設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。

(學生板演,老師點評,用彩色粉筆強調重點,引導學生總結公式。)

例3:求下列各三角函數(shù)值:

(1)

(2)

(3)

(4)

設計意圖:利用公式解決問題。

練習:

(1)

(2) (學生板演,師生點評)

設計意圖:觀察公式特點,選擇公式解決問題。

四.課堂小結:將任意角三角函數(shù)轉化為銳角三角函數(shù),體現(xiàn)轉化化歸,數(shù)形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。

很榮幸大家來聽我的課,通過這課,我學習到如下的東西:

1.要認真的研讀新課標,對教學的目標,重難點把握要到位

2.注意板書設計,注重細節(jié)的東西,語速需要改正

3.進一步的學習網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學生更容易操作

5.上課的生動化,形象化需要加強

1.評議者:網(wǎng)絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數(shù)學時,最好值有個側重點;網(wǎng)絡設計上,網(wǎng)頁上公開的推導公式為上,留有更大的空間讓學生來思考。

2.評議者:網(wǎng)絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。

3.評議者:學科網(wǎng)絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經(jīng)驗。

4.評議者:引導學生通過網(wǎng)絡進行探究。

建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。

( 1)給學生思考的時間較長,語調相對平緩,總結時,給學生一些激勵的語言更好

( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考

( 4)給學生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來

( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少

( 6)讓學生多探究,課堂會更熱鬧

( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習

( 8)教學模式相對簡單重復

( 9)思路較為清晰,規(guī)范化的推理

高中數(shù)學等比數(shù)列教案篇六

熟悉與數(shù)列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。

教學重難點。

熟悉與數(shù)列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。

教學過程。

【復習要求】熟悉與數(shù)列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。

【方法規(guī)律】應用數(shù)列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數(shù)學模型是等差數(shù)列,還是等比數(shù)列,并確定其首項,公差(或公比)等基本元素,然后設計合理的計算方案,即數(shù)學建模是解答數(shù)列應用題的關鍵。

一、基礎訓練。

1.某種細菌在培養(yǎng)過程中,每20分鐘分裂一次(一個分裂為兩個),經(jīng)過3小時,這種細菌由1個可繁殖成()。

a、511b、512c、1023d、1024。

2.若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為()。

a、b、

c、d、

二、典型例題。

例3、某地區(qū)位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區(qū)的綠化率已達到30%,從2000年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?問經(jīng)過多少年的努力才能使全縣的綠洲面積超過60%.(lg2=0.3)。

例4、.流行性感冒(簡稱流感)是由流感病毒引起的急性呼吸道傳染病.某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù).

高中數(shù)學等比數(shù)列教案篇七

1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。

2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。

難點:識別三視圖所表示的空間幾何體。

觀察、動手實踐、討論、類比。

(一)創(chuàng)設情景,揭開課題

展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。

(二)講授新課

1、中心投影與平行投影:

中心投影:光由一點向外散射形成的投影;

平行投影:在一束平行光線照射下形成的投影。

正投影:在平行投影中,投影線正對著投影面。

2、三視圖:

正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

長對正:正視圖與俯視圖的長相等,且相互對正;

高平齊:正視圖與側視圖的高度相等,且相互對齊;

寬相等:俯視圖與側視圖的寬度相等。

3、畫長方體的三視圖:

正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

4、畫圓柱、圓錐的三視圖:

5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。

(三)鞏固練習

課本p15練習1、2;p20習題1.2[a組]2。

(四)歸納整理

請學生回顧發(fā)表如何作好空間幾何體的三視圖

(五)布置作業(yè)

課本p20習題1.2[a組]1。

高中數(shù)學等比數(shù)列教案篇八

設計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養(yǎng)學生對含有參數(shù)的問題進行分類討論的數(shù)學思想。7.總結歸納,加深理解以問題的形式出現(xiàn),引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數(shù)學思想方法兩方面總結。設計意圖:以此培養(yǎng)學生的口頭表達能力,歸納概括能力。8.故事結束,首尾呼應最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1.84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。設計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續(xù)積極思維。9.課后作業(yè),分層練習必做:p129練習1、2、3、4選作:(2)“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首中國古詩的答案是多少?設計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間。四、教法分析對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學中,我采用“問題――探究”的教學模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結規(guī)律、應用規(guī)律四個階段。利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優(yōu)化了教學過程,大大提高了課堂教學效率。五、評價分析本節(jié)課通過三種推導方法的研究,使學生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉化;遞推思想:縱橫聯(lián)系,揭示本質;等比定理:回歸定義,自然樸實。學生從中深刻地領會到推導過程中所蘊含的數(shù)學思想,培養(yǎng)了學生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學,使學生既鞏固了知識,又形成了技能。在此基礎上,通過民主和諧的課堂氛圍,培養(yǎng)了學生自主學習、合作交流的學習習慣,也培養(yǎng)了學生勇于探索、不斷創(chuàng)新的思維品質。

高中數(shù)學等比數(shù)列教案篇九

了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質。

漸近線方程是,離心率,若點是雙曲線上的點,則,。

2、又曲線的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是

3、經(jīng)過兩點的雙曲線的標準方程是。

4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。

5、與雙曲線有公共的漸近線,且經(jīng)過點的雙曲線的方程為

1、雙曲線的離心率等于,且與橢圓有公共焦點,求該雙曲線的方程。

2、已知橢圓具有性質:若是橢圓上關于原點對稱的兩個點,點是橢圓上任意一點,當直線的斜率都存在,并記為時,那么之積是與點位置無關的定值,試對雙曲線寫出具有類似特性的性質,并加以證明。

3、設雙曲線的半焦距為,直線過兩點,已知原點到直線的距離為,求雙曲線的離心率。

1、雙曲線上一點到一個焦點的距離為,則它到另一個焦點的距離為。

2、與雙曲線有共同的漸近線,且經(jīng)過點的雙曲線的一個焦點到一條漸近線的距離是。

3、若雙曲線上一點到它的右焦點的距離是,則點到軸的距離是

4、過雙曲線的左焦點的直線交雙曲線于兩點,若。則這樣的'直線一共有條。

1、已知雙曲線的焦點到漸近線的距離是其頂點到漸近線距離的2倍,則該雙曲線的離心率

2、已知雙曲線的焦點為,點在雙曲線上,且,則點到軸的距離為。

3、雙曲線的焦距為

4、已知雙曲線的一個頂點到它的一條漸近線的距離為,則

5、設是等腰三角形,,則以為焦點且過點的雙曲線的離心率為。

高中數(shù)學等比數(shù)列教案篇十

:計算機

:啟發(fā)引導法,討論法

下面給出教學實施過程設計的簡要思路:

(一)引入的設計

前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是 ,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.

肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:

問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?

啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:

【問題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節(jié)主體內容教學的設計

學生或獨立研究,或合作研究,教師巡視指導.

經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

思路一:…

思路二:…

……

教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

綜合兩種情況,我們得出如下結論:

同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

學生們不難得出:二者可以概括為統(tǒng)一的形式.

這樣上邊的結論可以表述如下:

啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

師生共同討論,評價不同思路,達成共識:

(1)當 時,方程可化為

這是表示斜率為 、在 軸上的截距為 的直線.

(2)當 時,由于 、 不同時為0,必有 ,方程可化為

這表示一條與 軸垂直的直線.

因此,得到結論:

為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

【動畫演示】

演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.

(三)練習鞏固、總結提高、板書和作業(yè)等環(huán)節(jié)的設計

高中數(shù)學等比數(shù)列教案篇十一

高中數(shù)學趣味競賽題(共10題)

5個高中生有,她們面對學校的新聞采訪說了如下的話:

愛:“我還沒有談過戀愛。” 靜香:“愛撒謊了?!?/p>

瑪麗:“我曾經(jīng)去過昆明?!?惠美:“瑪麗在撒謊?!?/p>

千葉子:“瑪麗和惠美都在撒謊?!?那么,這5個人之中到底有幾個人在撒謊呢?

有天使、惡魔、人三者,天使時刻都說真話,惡魔時時刻刻都說假話,人呢,有時候說真話,有時候說假話。

聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家。可是,只剩下1只小貓了。

一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當然,沒有數(shù)字的部分它沒有吃(因為沒有墨水)。

那么,請問原來的算式是什么樣子的呢?

用16根火柴擺成5個正方形。請移動2根火柴,

使

正形變成4。

把正三角形的紙如圖那樣折過來時,角?的度數(shù)是多少度?

求星形尖端的角度之和。

丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財產(chǎn)的 2/3 、如果生的是女孩就給他財產(chǎn)的 2/5 、剩下的給妻子。

結果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個人怎么分財產(chǎn)好呢?

用折紙做成45度很簡單是吧。那么,請折成15度,你會嗎?

高中數(shù)學等比數(shù)列教案篇十二

教學重點:理解等比數(shù)列的概念,認識等比數(shù)列是反映自然規(guī)律的重要數(shù)列模型之一,探索并掌握等比數(shù)列的通項公式。

教學難點:遇到具體問題時,抽象出數(shù)列的模型和數(shù)列的等比關系,并能用有關知識解決相應問題。

教學過程:

1.等差數(shù)列的通項公式。

2.等差數(shù)列的前n項和公式。

引入:1“一尺之棰,日取其半,萬世不竭。”

2細胞分裂模型。

3計算機病毒的傳播。

由學生通過類比,歸納,猜想,發(fā)現(xiàn)等比數(shù)列的特點。

進而讓學生通過用遞推公式描述等比數(shù)列。

讓學生回憶用不完全歸納法得到等差數(shù)列的通項公式的過程然后類比等比數(shù)列的通項公式。

注意:1公比q是任意一個常數(shù),不僅可以是正數(shù)也可以是負數(shù)。

2當首項等于0時,數(shù)列都是0。當公比為0時,數(shù)列也都是0。

所以首項和公比都不可以是0。

3當公比q=1時,數(shù)列是怎么樣的,當公比q大于1,公比q小于1時數(shù)列是怎么樣的?

4以及等比數(shù)列和指數(shù)函數(shù)的關系。

5是后一項比前一項。

列:1,2,(略)。

小結:等比數(shù)列的通項公式。

1.教材p59練習1,2,3,題。

2.作業(yè):p60習題1,4。

第二課時5.2.4等比數(shù)列(二)。

提問:等差數(shù)列的通項公式。

等比數(shù)列的通項公式。

1.討論:如果是等差列的三項滿足。

由學生給出如果是等比數(shù)列滿足。

2練習:如果等比數(shù)列=4,=16,=?(學生口答)。

如果等比數(shù)列=4,=16,=?(學生口答)。

3等比中項:如果等比數(shù)列。那么,

則叫做等比數(shù)列的等比中項(教師給出)。

4思考:是否成立呢?成立嗎?

成立嗎?

又學生找到其間的規(guī)律,并對比記憶如果等差列,

5思考:如果是兩個等比數(shù)列,那么是等比數(shù)列嗎?

如果是為什么?是等比數(shù)列嗎?引導學生證明。

6思考:在等比數(shù)列里,如果成立嗎?

如果是為什么?由學生給出證明過程。

列3:一個等比數(shù)列的第3項和第4項分別是12和18,求它的第1項和第2項。

解(略)。

列4:略:

練習:1在等比數(shù)列,已知那么。

2p61a組8。

高中數(shù)學等比數(shù)列教案篇十三

二、教學目標分析。

1.知識目標。

1)。

2)掌握等比數(shù)列的定義理解等比數(shù)列的通項公式及其推導。

2.能力目標。

1)學會通過實例歸納概念。

2)通過學習等比數(shù)列的通項公式及其推導學會歸納假設。

3)提高數(shù)學建模的能力。

3、情感目標:

1)充分感受數(shù)列是反映現(xiàn)實生活的模型。

2)體會數(shù)學是來源于現(xiàn)實生活并應用于現(xiàn)實生活。

3)數(shù)學是豐富多彩的而不是枯燥無味的。

三、教學對象及學習需要分析。

1、教學對象分析:

1)高中生已經(jīng)有一定的.學習能力,對各方面的知識有一定的基礎,理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。

2)對歸納假設較弱,應加強這方面教學。

2、學習需要分析:

四.教學策略選擇與設計。

1.課前復習。

1)復習等差數(shù)列的概念及通向公式。

2)復習指數(shù)函數(shù)及其圖像和性質。

2.情景導入。

高中數(shù)學等比數(shù)列教案篇十四

理解數(shù)列的概念,掌握數(shù)列的運用。

理解數(shù)列的概念,掌握數(shù)列的運用。

【知識點精講】。

1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)。

2、通項公式:數(shù)列的.第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。

(通項公式不)。

3、數(shù)列的表示:。

(1)列舉法:如1,3,5,7,9……;。

(2)圖解法:由(n,an)點構成;。

(3)解析法:用通項公式表示,如an=2n+1。

5、任意數(shù)列{an}的前n項和的性質。

高中數(shù)學等比數(shù)列教案篇十五

1、掌握等比數(shù)列前項和公式,并能運用公式解決簡單的問題。

(1)理解公式的推導過程,體會轉化的思想;

2、通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉化的思想。

3、通過公式推導的教學,對學生進行思維的嚴謹性的訓練,培養(yǎng)他們實事求是的科學態(tài)度。

(1)知識結構。

先用錯位相減法推出等比數(shù)列前項和公式,而后運用公式解決一些問題,并將通項公式與前項和公式結合解決問題,還要用錯位相減法求一些數(shù)列的前項和。

(2)重點、難點分析。

是等比數(shù)列前項和公式的推導與應用。公式的推導中蘊含了豐富的數(shù)學思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前項和公式的要求,不單是要記住公式,更重要的是掌握推導公式的方法。等比數(shù)列前項和公式是分情況討論的,在運用中要特別注意和兩種情況。

(1)本節(jié)內容分為兩課時,一節(jié)為等比數(shù)列前項和公式的推導與應用,一節(jié)為通項公式與前項和公式的綜合運用,另外應補充一節(jié)數(shù)列求和問題。

(2)等比數(shù)列前項和公式的推導是重點內容,引導學生觀察實例,發(fā)現(xiàn)規(guī)律,歸納總結,證明結論。

(3)等比數(shù)列前項和公式的推導的其他方法可以給出,提高學生學習的興趣。

(4)編擬例題時要全面,不要忽略的情況。

(5)通項公式與前項和公式的綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數(shù)方程難度大。

高中數(shù)學等比數(shù)列教案篇十六

(3)能用邏輯聯(lián)結詞和簡單命題構成不同形式的復合命題;

(4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡單命題;

(5)會用真值表判斷相應的復合命題的真假;

(6)在知識學習的基礎上,培養(yǎng)學生簡單推理的技能.

重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.

1.新課導入

在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質的重要方面.數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識.

初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)

(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)

學生舉例:平行四邊形的對角線互相平. ……(1)

兩直線平行,同位角相等.…………(2)

教師提問:“……相等的角是對頂角”是不是命題?……(3)

(同學議論結果,答案是肯定的)

教師提問:什么是命題?

(學生進行回憶、思考.)

概念總結:對一件事情作出了判斷的語句叫做命題.

(教師肯定了同學的回答,并作板書.)

由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

(教師利用投影片,和學生討論以下問題.)

例1 判斷以下各語句是不是命題,若是,判斷其真假:

命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識.

2.講授新課

(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)

(1)什么叫做命題?

可以判斷真假的語句叫做命題.

判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

(2)介紹邏輯聯(lián)結詞“或”、“且”、“非”.

“或”、“且”、“非”這些詞叫做邏輯聯(lián)結詞.邏輯聯(lián)結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.

對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.

對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應于集合 ,則命題非 就對應著集合 在全集 中的補集 .

命題可分為簡單命題和復合命題.

不含邏輯聯(lián)結詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題.

由簡單命題和邏輯聯(lián)結詞構成的命題叫做復合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結詞“且”構成的復合命題.

(4)命題的表示:用 , , , ,……來表示.

(教師根據(jù)學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開.)

我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.

給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯(lián)結詞;應能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結詞“或”、“且”、“非”的復合命題.

對于給出“若 則 ”形式的復合命題,應能找到條件 和結論 .

在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復合命題.

3.鞏固新課

例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡單命題.

(1) ;

(2)0.5非整數(shù);

(3)內錯角相等,兩直線平行;

(4)菱形的對角線互相垂直且平分;

(5)平行線不相交;

(6)若 ,則 .

(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)

例3 寫出下表中各給定語的否定語(用課件打出來).

若給定語為

等于

大于

都是

至多有一個

至少有一個

至多有個

其否定語分別為

分析:“等于”的否定語是“不等于”;

“大于”的否定語是“小于或者等于”;

“是”的否定語是“不是”;

“都是”的否定語是“不都是”;

“至多有一個”的否定語是“至少有兩個”;

“至少有一個”的否定語是“一個都沒有”;

“至多有 個”的否定語是“至少有 個”.

(如果時間寬裕,可讓學生討論后得出結論.)

置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當?shù)谋嫖雠c展開.)

4.課堂練習:第26頁練習1

5.課外作業(yè):第29頁習題1.6

高中數(shù)學等比數(shù)列教案篇十七

教學內容:

整十數(shù)加一位數(shù)及相應的減法。

教學目標:

1、讓學生經(jīng)歷兩位數(shù)加、減一位數(shù)的口算方法的探索過程,能比較熟練的進行口算。并了解加、減發(fā)算式中各部分的名稱。

2、在根據(jù)數(shù)的組成探索口算方法的過程中,體會知識間的內在聯(lián)系,發(fā)展思維能力和口算能力。

3、培養(yǎng)用數(shù)學的觀念看周圍的事物的意識,培養(yǎng)同學之間的相互合作、交流的態(tài)度。

教學重難點:

兩位數(shù)加、減一位數(shù)的口算方法。

教學準備:

課件。

教學過程:

2個十和5個一合起來是(),8個十和4個一合起來是()。95里面是由()個十和()個一組成。81里面有()個十和()個一。

1、出示32頁情景圖。

2、提問:你能從圖中獲得哪些數(shù)學信息?能提出一個數(shù)學問題嗎?

學生回答:梳理問題。

(1)一共有多少個桃?

(2)一共有34個桃,去掉框里的30個,還剩多少個桃?

3、怎樣列式?

(1)先想一想。

(2)小組交流。

小組內交流自己的算法。

(3)指名小組匯報。

結合學生回答小結:根據(jù)看圖,數(shù)出來的;用小棒擺出來的;根據(jù)數(shù)的組成來思考的。34+4就是把3個十和4個一合起來,是34;34-30就是從34里去掉3個十,還剩4個一,是4。

4、解答“試一試”。

提問:4+30等于多少,你又可以怎樣算?

(1)先想一想。

(2)小組交流。

小組內交流自己的算法。

(3)指名小組匯報。

4個一和3個十和起來是34;因為30+4=34,所以4+30=34。

談話:“34-4”你會算嗎?填在書上,并輕聲地說說你是怎樣想的。

指名回答,結合學生回答適當補充。

5、介紹算式中各部分的名稱。

(1)介紹加法算式中各部分的名稱。

談話:每個小朋友都有自己的名子,在每一個算式中每個部分也都有各自的名子。在加法算式30+4=34中,相加的兩個數(shù)都叫做加數(shù)。兩個加數(shù)相加的結果叫做和。

(2)介紹減法算式各部分的名稱。

(3)指名說出算式4+30=34,34-4=30中各部分的名稱。

1、“想想做做”第1題。

(1)出示圖,讓學生說圖意。

(2)根據(jù)圖意,列出四個算式。

(3)說說每道算式表達什么意思。

2、“想想做做”第2題。

先獨立完成,再說說怎樣想的?

提問:根據(jù)60+3=63你能想到其他三個算式嗎?

3、“想想做做”第3題。

先獨立完成,再說說是怎樣想的,集體核對結果。

4、“想想做做”第4題。

根據(jù)表中第一行的名稱說說左表用什么方法計算,右表用什么方法計算。

5、“想想做做”第5題。

先了解“相鄰數(shù)”是什么意思,再寫數(shù)交流。

6、“想想做做”第6、7題。

先說說每題中的.已知條件和要求的問題。

再自己獨立完成。

同桌交流并說說是怎樣想的。

高中數(shù)學等比數(shù)列教案篇十八

【知識與技能】。

在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。

【過程與方法】。

通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。

【情感態(tài)度與價值觀】。

滲透數(shù)形結合、化歸與轉化等數(shù)學思想方法,提高學生的整體素質,激勵學生創(chuàng)新,勇于探索。

【重點】。

掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

【難點】。

二元二次方程與圓的一般方程及標準圓方程的'關系。

三、教學過程。

(一)復習舊知,引出課題。

1、復習圓的標準方程,圓心、半徑。

2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學等比數(shù)列教案篇十九

知識與技能。

在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的.圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。

過程與方法。

通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。

情感態(tài)度與價值觀。

滲透數(shù)形結合、化歸與轉化等數(shù)學思想方法,提高學生的整體素質,激勵學生創(chuàng)新,勇于探索。

重點。

掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

難點。

二元二次方程與圓的一般方程及標準圓方程的關系。

(一)復習舊知,引出課題。

1、復習圓的標準方程,圓心、半徑。

2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學等比數(shù)列教案篇二十

(2)求數(shù)列的前10項的和。例7已知數(shù)列滿足,,.

(1)求證:數(shù)列是等比數(shù)列;

(2)求的表達式和的表達式。

作業(yè):

1.已知同號,則是成等比數(shù)列的。

(a)充分而不必要條件(b)必要而不充分條件。

(c)充要條件(d)既不充分而也不必要條件。

2.如果和是兩個等差數(shù)列,其中,那么等于。

(a)(b)(c)3(d)。

3.若某等比數(shù)列中,前7項和為48,前14項和為60,則前21項和為。

(a)180(b)108(c)75(d)63。

4.已知數(shù)列,對所有,其前項的積為,求的值,

5.已知為等差數(shù)列,前10項的和為,前100項的和為,求前110項的和。

6.等差數(shù)列中,,,依次抽出這個數(shù)列的第項,組成數(shù)列,求數(shù)列的通項公式和前項和公式。

7.&nbs…p;已知數(shù)列,,

(1)求通項公式;

(2)若,求數(shù)列的最小項的值;

(3)數(shù)列的前項和為,求數(shù)列前項的和.

8.三數(shù)成等比數(shù)列,若第二個數(shù)加4就成等差數(shù)列,再把這個等差數(shù)列的第三個數(shù)加上32又成等比數(shù)列,求這三個數(shù)。

高中數(shù)學等比數(shù)列教案篇二十一

掌握三角函數(shù)的單調性以及三角函數(shù)值的取值范圍。

【過程與方法】

經(jīng)歷三角函數(shù)的單調性的探索過程,提升邏輯推理能力。

【情感態(tài)度價值觀】

在猜想計算的過程中,提高學習數(shù)學的興趣。

【教學重點】

三角函數(shù)的單調性以及三角函數(shù)值的取值范圍。

【教學難點】

探究三角函數(shù)的單調性以及三角函數(shù)值的取值范圍過程。

(一)引入新課

提出問題:如何研究三角函數(shù)的單調性

(四)小結作業(yè)

提問:今天學習了什么?

引導學生回顧:基本不等式以及推導證明過程。

課后作業(yè):

思考如何用三角函數(shù)單調性比較三角函數(shù)值的大小。

【本文地址:http://mlvmservice.com/zuowen/14677723.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔