成功的背后,是不懈的努力與堅持;總結(jié)的內(nèi)容應(yīng)緊扣主題,剔除無關(guān)信息,保持主次分明。為了提高效率,以下是一些高效學習方法供大家參考。
平方差公式教學設(shè)計理念篇一
《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標。為此,我作了如下努力:
1、把數(shù)學問題“蘊藏”在游戲中。
導入新課,是課堂教學的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學習方式的教學,我發(fā)現(xiàn)也真正體會到,只要我們給學生創(chuàng)造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
2、充分重視“自主、合作、探究”的教學方式的運用。
把探究的機會留給學生,讓學生在動腦思考中構(gòu)建知識,真正成為教學活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習、應(yīng)用,深化了對規(guī)律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認識到理性認識的升華。在此設(shè)計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學生歸納出平方差公式的運用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學生每人都設(shè)計了題目,任意叫了四位學生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
4、切實落在實效上。
本節(jié)課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學習效果不錯。
5、值得注意的是:
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學生的主體地位上。
這節(jié)課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現(xiàn)實的好。
平方差公式教學設(shè)計理念篇二
學習目標:
1、能推導平方差公式,并會用幾何圖形解釋公式;。
3、經(jīng)歷探索平方差公式的推導過程,發(fā)展符號感,體會“特殊——一般——特殊”的認識規(guī)律.
學習重難點:
難點:探索平方差公式,并用幾何圖形解釋公式.
學習過程:
一、自主探索。
1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn).
3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?
(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差?;蛘哒f兩個二項式必須有一項完全相同,另一項只有符號不同。
(2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。
二、試一試。
平方差公式教學設(shè)計理念篇三
2.經(jīng)歷探索平方差公式的過程,認識“特殊”與“一般”的關(guān)系,了解“特殊到一般”的認識規(guī)律和數(shù)學發(fā)現(xiàn)方法,平方差公式第一課時教學反思。
重點:公式的理解與正確運用(考點:此公式很關(guān)鍵,一定要搞清楚特征,在以后的學習中還繼續(xù)應(yīng)用)。
難點:公式的理解與正確運用。
教法:自主探究和合作交流。
(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
=x2-22=12-(2y)2=x2-(3y)2。
學生分組討論,交流,小組長回答問題。
師生共同總結(jié)歸納:
即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
(1)一組完全相同的項;
(2)一組互為相反數(shù)的項。
2.例題。
(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
3.公式應(yīng)用。
(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
兩個學生板演,其余學生在練習本上自己獨立完成。
老師巡視,輔導學困生。
1.計算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
師生共同分析:此題特征,兩次利用平方差公式,教學反思《平方差公式第一課時教學反思》。
學生在練習本上獨立完成,同桌互相檢查。
2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?
學生分組討論交流,獨立完成運算。
1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
2、運用公式要注意的.問題:
(2)公式中的a、b可以代表什么?
一、檢測導入。
二、例題展示。
三、拓展延伸。
四、達標堂測。
五、歸納小結(jié)。
即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
六、布置作業(yè)。
p21:習題1.91、2。
平方差公式教學設(shè)計理念篇四
學生已經(jīng)掌握了多項式與多項式相乘,但是對于某些特殊的多項式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點內(nèi)容之一。
平方差公式是第一個乘法公式,教學時,我是這樣引入新課的,先計算下列各題,看誰做的又對又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學生的好勝心并為進一步探索新知搭建好有力的平臺,然后我又讓學生討論交流上面幾個等式左、右兩邊各有什么特點,你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語言敘述這個規(guī)律嗎?給學生充分的觀察、分析、討論交流的時間,老師應(yīng)及時的給與必要的指導、鼓勵和由衷的贊美,這一點我做的還很不夠,今后要多多注意。
然后我有設(shè)計了這樣一道題:下列多項式乘法中可以用平方差公式計算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學生理解公式的特征,掌握公式的。特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應(yīng)由易到難逐步安排學習這方面的內(nèi)容。
平方差公式教學設(shè)計理念篇五
一、教學目標:
1、使學生理解和掌握平方差公式,并會用公式進行計算;
2、注意培養(yǎng)學生分析、綜合和抽象、概括以及運算能力,培養(yǎng)應(yīng)用數(shù)學的意識;
3、在緊張而輕松地教學氛圍內(nèi),進一步激發(fā)學生的學習興趣熱情。
二、重點、難點:
重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
三、教學方法。
以教師的精講、引導為主,輔以引導發(fā)現(xiàn)、合作交流。
四、教學過程。
(一)創(chuàng)設(shè)問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學生興趣。)。
交流上面第1題的答案,引導學生進一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎(chǔ)上,讓學生用語言敘述公式,并讓學生熟記。)。
(三)嘗試探究。
(四)鞏固練習。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學生獨立完成,互評互改。)。
(五)小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。
(學生回答,教師總結(jié))。
(六)作業(yè)。
p106習題1—5題。
七、板書設(shè)計:
教學反思。
通過精心備課,本節(jié)課在教學中是比較成功的。成功之處在于整個教學流程環(huán)環(huán)相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規(guī)律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
平方差公式教學設(shè)計理念篇六
平方差公式是多項式乘法運算中一個重要的公式,是特殊的多項式與多項式相乘的一種簡便計算。通過復習多項式乘以多項式的計算導入新課,為探究新知識奠定基礎(chǔ)。在重難點處設(shè)計問題:“觀察以上3個算式的特點和運算結(jié)果的特點,對比等號兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學生發(fā)現(xiàn)規(guī)律并嘗試運用自己的語言來描述。
問題提出后,學生能積極進行分組討論、交流,各組小組長闡述自己小組討論的結(jié)果。大多數(shù)的學生能找出規(guī)律,說出大概意思,但是無法用精準的語言完整的描述出來,語言表達無條理、含糊。針對這種情況,在以后的課堂教學過程中要注意加強對學生的邏輯思維能力和語言表達能力的.培養(yǎng)。最后經(jīng)過師生的共同努力,得出了平方差公式以及公式的特征。
在例題展示環(huán)節(jié)中,我通過2道例題的運算,訓練學生正確應(yīng)用公式進行計算,體會公式在簡化運算中的作用。實踐練習的設(shè)計,使學生從不同角度認識平方差公式,進一步加強學生對公式的理解。在運用公式時,學生基本掌握運用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項,最后運用平方差公式運算。
拓展延伸環(huán)節(jié)中,學生通過尋找算式中的a,b項,慢慢發(fā)現(xiàn)a,b項不僅可以代表數(shù),也可以代表單項式、多項式等代數(shù)式,這樣設(shè)計可以進一步深化學生對字母含義的理解。在學生獨立完成練習和堂測中,經(jīng)過巡視,我發(fā)現(xiàn)近三分之一的學生對較復雜的多項式不能準確找出a,b項,特別是b項代表多項式時,負數(shù)去括號時出錯較多。
最后通過設(shè)計遞進式的問題串,引導學生自己一步步總結(jié)出本節(jié)課所學的知識內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語言表達能力。
本節(jié)課采用學習小組討論、交流的學習方式,讓學優(yōu)生帶動學困生,整體教學效果良好,學生基本掌握平方差公式的運用,對于較復雜的a、b項的運算,在自習課上將加強練習。
平方差公式教學設(shè)計理念篇七
3、在緊張而輕松地教學氛圍內(nèi),進一步激發(fā)學生的學習興趣熱情。
重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
以教師的精講、引導為主,輔以引導發(fā)現(xiàn)、合作交流。
(一)創(chuàng)設(shè)問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學生興趣。)。
交流上面第1題的答案,引導學生進一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎(chǔ)上,讓學生用語言敘述公式,并讓學生熟記。)。
(三)嘗試探究。
(四)鞏固練習。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學生獨立完成,互評互改。)。
(五)小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。
(學生回答,教師總結(jié))。
(六)作業(yè)。
p106習題1—5題。
教學反思。
通過精心備課,本節(jié)課在教學中是比較成功的。成功之處在于整個教學流程環(huán)環(huán)相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規(guī)律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
平方差公式教學設(shè)計理念篇八
我參與了學校組織的“同課異構(gòu)”活動,授課內(nèi)容是《乘法公式——平方差公式(一課時)》。
上學期末我恰好在任縣二中參加了一次關(guān)于教材研究的會議,當時河南一位從教三十多年且參與教材編寫的專家指出:關(guān)于概念、公式、法則的教學一般有六個環(huán)節(jié):引入;形成;明確表述;辨析;鞏固應(yīng)用;歸納提升。新課標也要求我們在教學中不只是傳授學生基本的知識技能,還要以培養(yǎng)學生的數(shù)學能力及合作探究的意識為目標。為此,我在設(shè)計本節(jié)課的教學環(huán)節(jié)時充分考慮學生的認知規(guī)律,并以培養(yǎng)學生的數(shù)學素質(zhì),了解運用數(shù)學思想方法,增強學生的合作探究意識為宗旨。
我的教學流程是按照“引入——猜想——證明——辨析——應(yīng)用——歸納——檢測”的順序進行的,非常符合學生的認知規(guī)律。我覺得本節(jié)課比較好的方面有以下幾點:
1.在利用圖形面積證明平方差公式時,我沒有采用教材上直接給出剪接方法再證明的過程,只給出了原圖讓學生們自己去探究不同的方法。事實證明,學生們不只拼出了書上的方法,還從對角線剪開拼出了梯形,平行四邊形和長方形三種方法,思維一下就開闊了。這里我并沒有為了證明而證明,也沒有怕浪費時間匆匆而過,而是給學生留下了充足的思考和討論時間,真正激發(fā)了學生的思維。
2.通過設(shè)置一個“找朋友”的小游戲來辨析公式,調(diào)動了學生的積極性,活躍了課堂氣氛,因此,游戲過后學生對公式的結(jié)構(gòu)特征也有了更深刻的了解。
3.共享收獲環(huán)節(jié),我采用的是制作微課的方式,形式比較新穎,從認識公式到知道公式的特征,再到感悟數(shù)形結(jié)合的數(shù)學思想,最后是感受到數(shù)學運算的一種簡捷美,將本節(jié)課升華到了一個新的高度。
當然,本節(jié)課也有一些遺憾和不足之處。比如,由于緊張,在授課過程中遺漏了兩點,通過播放幻燈片才慌忙補充上;在處理學生練習時,為了抓緊時間完成進度沒有把學生的出錯點講透講細;游戲環(huán)節(jié)參與學生有些少,應(yīng)讓更多的同學動起來;當堂檢測的題目應(yīng)該設(shè)置上分值和檢測時間,讓學生限時完成,然后可以根據(jù)學生得分了解本節(jié)課的學習效果,以便下節(jié)課再有針對性的進行講解和練習查漏補缺。
通過這次“同課異構(gòu)”活動,我感覺自己在教學環(huán)節(jié)設(shè)計、課件制作和使用、導學案的規(guī)范書寫等各方面都有了提高,通過各位領(lǐng)導和老師的點評,我也有了更多的收獲,相信可以為我今后的教學所用。
平方差公式教學設(shè)計理念篇九
指導學生用語言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個公式叫做平方差公式。
指導學生發(fā)現(xiàn)公式的特點:
1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個二項式的積,在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。
2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。
提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。
平方差公式教學設(shè)計理念篇十
會推導公式(a+b)(a-b)=a2-b2。
通過教學我對本節(jié)課的反思如下:
1、本節(jié)課我從復習舊知入手,在教學設(shè)計時提供充分探索與交流的空間,使學生經(jīng)歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學要重視結(jié)果更要重視其發(fā)現(xiàn)過程,充分發(fā)揮其教育價值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學生被動學習的局面。我在教學時沒有直接讓學生推導平方差公式,而是設(shè)置了一個做一做,讓學生通過計算四個多項式乘以多項式的題目,讓學生通過運算并觀察這幾個算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學生經(jīng)歷觀察、歸納、概括公式的全過程,以培養(yǎng)學生學習數(shù)學的一般能力,讓學生體會發(fā)現(xiàn)的愉悅,激發(fā)學生學習數(shù)學的興趣,感覺效果很好。
不足:在學生將4個多項式乘多項式做完評價后,應(yīng)及時把他們歸納為某式的平方差的形式,以便學生順理成章的猜測公式的結(jié)果。
2、學生剛接觸這類乘法,我設(shè)計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學生發(fā)現(xiàn)總結(jié)。在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。平方差公式(a-b)(a+b)=a2-b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結(jié)果.我很細地給學生講了以上特點,學生容易接受,課堂氣氛活躍,收到了一定的效果。
3、本節(jié)課如能將平方差公式的幾何意義簡要的結(jié)合說明,更能體會數(shù)學中數(shù)形結(jié)合的特點,因時間關(guān)系放在下一課時。
4、學生錯誤主要是:
(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;
(2)平方時忽視系數(shù)的平方,如(2m)2=2m2。針對這一點在課堂教學中應(yīng)著重對于共性的或思維方式方面的錯誤及時指正,以確保達到教學效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學生往往學起來容易,真正掌握起來困難。部分學生只是死記硬背公式,不能完全理解其含義和具體應(yīng)用。
總之,在以后的教學中我會更深入的專研教材,結(jié)合教學目標與要求,結(jié)合學生的實際特點,克服自己的弱點,盡量使數(shù)學課生動、自然、有趣。
平方差公式教學設(shè)計理念篇十一
上周我們學習了“乘法公式”,乘法公式在簡化多項式乘法運算、因式分解及以后的數(shù)學學習中有著廣泛的應(yīng)用。根據(jù)課標的規(guī)定主要學習兩個最基本的乘法公式,留出更多的時間和空間給學生自主探索,發(fā)現(xiàn)規(guī)律,體驗乘法公式的來源,理解公式的意義和作用,掌握公式的應(yīng)用。
通過一周的學習,學生基本上掌握了公式的形式,并能運用公式解答簡單的乘法運算,化簡多項式乘法。但是,對于形式較復雜的,3、4學生就辨認不出運用哪個公式,或者把公式用混,特別是符號問題。所以,要多訓練,多強化,在作題中掌握技巧,掌握公式的特點。
平方差公式教學設(shè)計理念篇十二
平方差公式與完全平方公式是初中數(shù)學代數(shù)學知識方面應(yīng)用最廣泛的公式,也是學生代數(shù)運算的基礎(chǔ)公式,在今后的數(shù)學學習過程中,更能體現(xiàn)其重要性,所以這兩個公式的教學要求很高,需要每一名學生都必須熟練掌握這兩個公式,并因此可以靈活運用公式進行因式分解和分解因式,解決很多代數(shù)問題。
如同勾股定理在全世界數(shù)學基礎(chǔ)教學中地位顯著,全世界各地數(shù)學教科書都要求學生掌握一樣,平方差公式與完全平方公式也是全世界以致全國各地教科書都必講必學的內(nèi)容之一,作為整式的乘法公式,人教版教科書把平方差公式與完全平方公式安排在整式的乘法這一章的第二節(jié),在第一節(jié)內(nèi)容上先讓學生掌握整式乘法的各項法則,當學生熟練掌握多項式與多項式的乘法后,再由此讓學生來學生我們的乘法公式,本節(jié)內(nèi)容分兩部分,先介紹平方差公式,再介紹完全平方公式。
在學生熟練掌握多項式與多項式的乘法后,開始介紹平方差公式,教科書上是由找規(guī)律開始,讓學生利用多項式乘法法則計算,從而發(fā)現(xiàn)平方差公式,由找規(guī)律得出公式的猜想,再介紹平方差公式的幾何面積驗證方法,來驗證公式猜想的正確性,從而由代數(shù)探究及幾何論證來得出平方差公式,得出公式后再來實際應(yīng)用。
我一直嚴格要求自己,認真?zhèn)浣滩?,當然也認真?zhèn)鋵W生,使課堂教學符合學生的實際需要。學生基礎(chǔ)較差,教學內(nèi)容要求生動、易學易懂,讓學生能在活動教學中進行簡單探究從而掌握好基礎(chǔ)知識。,我認真準備,仔細研讀教材,精心制作出課件和教案,按教科書的教學順序和過程,既安排學生計算上的運算探究猜想,又安排幾何實踐剪紙法,利用面積來驗證公式。我從實際問題出發(fā),給出動手操作的實際幾何問題引出本課,得出平方差公式的猜想,讓學生動手實踐,數(shù)形結(jié)合得出平方差公式,在利用多項式的乘法法則計算驗證,最后辨析、應(yīng)用,讓學生熟悉平方差公式,最后應(yīng)用提高,給出實際生活中的一個問題,利用平方差公式計算較大的數(shù)字,讓學生明白學習,平方差公式不但可以在實際生活中運用,而且還可以簡便計算,激發(fā)學生對平方差公式學習的興趣,從而很好地掌握好平方差公式。最后再進行小結(jié),反饋。
平方差公式教學設(shè)計理念篇十三
1、把數(shù)學問題“蘊藏”在游戲中。
導入新課,是課堂教學的重要一環(huán)。“好的開始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學習方式的教學,我發(fā)現(xiàn)也真正體會到,只要我們給學生創(chuàng)造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
2、充分重視“自主、合作、探究”的教學方式的運用。
把探究的機會留給學生,讓學生在動腦思考中構(gòu)建知識,真正成為教學活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習、應(yīng)用,深化了對規(guī)律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認識到理性認識的升華。在此設(shè)計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學生歸納出平方差公式的運用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學生每人都設(shè)計了題目,任意叫了四位學生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
4、切實落在實效上。
本節(jié)課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學習效果不錯。
5、值得注意的是:
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學生的主體地位上。
這節(jié)課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現(xiàn)實的好。
【本文地址:http://mlvmservice.com/zuowen/13502500.html】