數(shù)學(xué)建模論文投稿(模板17篇)

格式:DOC 上傳日期:2023-11-20 03:39:25
數(shù)學(xué)建模論文投稿(模板17篇)
時間:2023-11-20 03:39:25     小編:雨中梧

總結(jié)是一種對過去經(jīng)歷的梳理和歸納。在總結(jié)中,我們可以提出一些改進(jìn)和發(fā)展的建議。如果你正在寫總結(jié),以下范文可以幫助你更好地理解總結(jié)的寫作要點(diǎn)。

數(shù)學(xué)建模論文投稿篇一

摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過程中進(jìn)行了分析。

數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個小學(xué)數(shù)學(xué)教師都值得思考的問題。

數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。

二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題。

對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運(yùn)用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。

三、選擇合適的題目作為建模案例。

在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進(jìn)行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。

四、引導(dǎo)學(xué)生主動進(jìn)行數(shù)學(xué)建模。

在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進(jìn)行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。

數(shù)學(xué)建模論文投稿篇二

大學(xué)數(shù)學(xué)具有高度抽象性和概括性等特點(diǎn),知識本身難度大再加上學(xué)時少、內(nèi)容多等教學(xué)現(xiàn)狀常常造成學(xué)生的學(xué)習(xí)積極性不高、知識掌握不夠透徹、遇到實際問題時束手無策,而數(shù)學(xué)建模思想能激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,提高其解決實際問題的能力。數(shù)學(xué)建?;顒訛閷W(xué)生構(gòu)建了一個由數(shù)學(xué)知識通向?qū)嶋H問題的橋梁,是學(xué)生的數(shù)學(xué)知識和應(yīng)用能力共同提高的最佳結(jié)合方式。因此在大學(xué)數(shù)學(xué)教育中應(yīng)加強(qiáng)數(shù)學(xué)建模教育和活動,讓學(xué)生積極主動學(xué)習(xí)建模思想,認(rèn)真體驗和感知建模過程,以此啟迪創(chuàng)新意識和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。

數(shù)學(xué)建模即抓住問題的本質(zhì),抽取影響研究對象的主因素,將其轉(zhuǎn)化為數(shù)學(xué)問題,利用數(shù)學(xué)思維、數(shù)學(xué)邏輯進(jìn)行分析,借助于數(shù)學(xué)方法及相關(guān)工具進(jìn)行計算,最后將所得的答案回歸實際問題,即模型的檢驗,這就是數(shù)學(xué)建模的全過程。一般來說",數(shù)學(xué)建模"包含五個階段。

1.準(zhǔn)備階段。

主要分析問題背景,已知條件,建模目的等問題。

2.假設(shè)階段。

做出科學(xué)合理的假設(shè),既能簡化問題,又能抓住問題的本質(zhì)。

3.建立階段。

從眾多影響研究對象的因素中適當(dāng)?shù)厝∩?,抽取主因素予以考慮,建立能刻畫實際問題本質(zhì)的數(shù)學(xué)模型。

4.求解階段。

對已建立的數(shù)學(xué)模型,運(yùn)用數(shù)學(xué)方法、數(shù)學(xué)軟件及相關(guān)的工具進(jìn)行求解。

5.驗證階段。

用實際數(shù)據(jù)檢驗?zāi)P?,如果偏差較大,就要分析假設(shè)中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實。如果建立的模型經(jīng)得起實踐的檢驗,那么此模型就是符合實際規(guī)律的,能解決實際問題或有效預(yù)測未來的,這樣的建模就是成功的,得到的模型必被推廣應(yīng)用。

二、加強(qiáng)數(shù)學(xué)建模教育的作用和意義。

(一)加強(qiáng)數(shù)學(xué)建模教育有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高數(shù)學(xué)修養(yǎng)和素質(zhì)。

數(shù)學(xué)建模教育強(qiáng)調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,進(jìn)而利用數(shù)學(xué)及其有關(guān)的工具解決這些問題,因此在大學(xué)數(shù)學(xué)的教學(xué)活動中融入數(shù)學(xué)建模思想,鼓勵學(xué)生參與數(shù)學(xué)建模實踐活動,不但可以使學(xué)生學(xué)以致用,做到理論聯(lián)系實際,而且還會使他們感受到數(shù)學(xué)的生機(jī)與活力,激發(fā)求知的興趣和探索的欲望,變被動學(xué)習(xí)為主動參與其效率就會大為改善。數(shù)學(xué)修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。

(二)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生的分析解決問題能力、綜合應(yīng)用能力。

數(shù)學(xué)建模問題來源于社會生活的眾多領(lǐng)域,在建模過程中,學(xué)生首先需要閱讀相關(guān)的文獻(xiàn)資料,然后應(yīng)用數(shù)學(xué)思維、數(shù)學(xué)邏輯及相關(guān)知識對實際問題進(jìn)行深入剖析研究并經(jīng)過一系列復(fù)雜計算,得出反映實際問題的最佳數(shù)學(xué)模型及模型最優(yōu)解。因此通過數(shù)學(xué)建?;顒訉W(xué)生的視野將會得以拓寬,應(yīng)用意識、解決復(fù)雜問題的能力也會得到增強(qiáng)和提高。

(三)加強(qiáng)數(shù)學(xué)建模教育有助于培養(yǎng)學(xué)生的創(chuàng)造性思維和創(chuàng)新能力。

所謂創(chuàng)造力是指"對已積累的知識和經(jīng)驗進(jìn)行科學(xué)地加工和創(chuàng)造,產(chǎn)生新概念、新知識、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成".現(xiàn)今教育界認(rèn)為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學(xué)建?;顒拥母鱾€環(huán)節(jié)無不充滿了創(chuàng)造性思維的挑戰(zhàn)。

很多不同的實際問題,其數(shù)學(xué)模型可以是相同或相似的,這就要求學(xué)生在建模時觸類旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對一個具體的建模問題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學(xué)問題,是完成建模過程的關(guān)鍵所在。同時建模題材有較大的靈活性,沒有統(tǒng)一的標(biāo)準(zhǔn)答案,因此數(shù)學(xué)建模過程是培養(yǎng)學(xué)生創(chuàng)造性思維,提高創(chuàng)新能力的過程.

(四)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生科技論文的撰寫能力。

數(shù)學(xué)建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來,對本科生來說是一個挑戰(zhàn)。經(jīng)歷數(shù)學(xué)建模全過程的磨練,特別是數(shù)模論文的撰寫,學(xué)生的文字語言、數(shù)學(xué)表述能力及論文的撰寫能力無疑會得到前所未有的提高。

(五)加強(qiáng)數(shù)學(xué)建模教育有助于增強(qiáng)學(xué)生的團(tuán)結(jié)合作精神并提高協(xié)調(diào)組織能力建模問題通常較復(fù)雜,涉及的知識面也很廣,因此數(shù)學(xué)建模實踐活動一般效仿正規(guī)競賽的規(guī)則,三人為一隊在三天內(nèi)以論文形式完成建模題目。要較好地完成任務(wù),離不開良好的組織與管理、分工與協(xié)作.

三、開展數(shù)學(xué)建模教育及活動的具體途徑和有效方法。

即在課堂教學(xué)中,教師以具體的案例作為主要的教學(xué)內(nèi)容,通過具體問題的建模,介紹建模的過程和思想方法及建模中要注意的問題。案例教學(xué)法的關(guān)鍵在于把握兩個重要環(huán)節(jié):

案例的選取和課堂教學(xué)的組織。

教學(xué)案例一定要精心選取,才能達(dá)到預(yù)期的教學(xué)效果。其選取一般要遵循以下幾點(diǎn)。

1.代表性:案例的選取要具有科學(xué)性,能拓寬學(xué)生的知識面,突出數(shù)學(xué)建模活動重在培養(yǎng)興趣提高能力等特點(diǎn)。

2.原始性:來自媒體的信息,企事業(yè)單位的報告,現(xiàn)實生活和各學(xué)科中的問題等等,都是數(shù)學(xué)建模問題原始資料的重要來源。

3.創(chuàng)新性:案例應(yīng)注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學(xué)生的創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神和提高創(chuàng)造能力。

案例教學(xué)的課堂組織,一部分是教師講授,從實際問題出發(fā),講清問題的背景、建模的要求和已掌握的信息,介紹如何通過合理的假設(shè)和簡化建立優(yōu)化的數(shù)學(xué)模型。還要強(qiáng)調(diào)如何用求解結(jié)果去解釋實際現(xiàn)象即檢驗?zāi)P?。另一部分是課堂討論,讓學(xué)生自由發(fā)言各抒己見并提出新的模型,簡介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點(diǎn)評,提供一些改進(jìn)的方向,讓學(xué)生自己課外獨(dú)立探索和鉆研,這樣既突出了教學(xué)重點(diǎn),又給學(xué)生留下了進(jìn)一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學(xué)生的課堂學(xué)習(xí)興趣和積極性,使傳授知識變?yōu)閷W(xué)習(xí)知識、應(yīng)用知識,真正地達(dá)到提高素質(zhì)和培養(yǎng)能力的教學(xué)目的.

(二)開展數(shù)模競賽的專題培訓(xùn)指導(dǎo)工作。

建立數(shù)學(xué)建模競賽指導(dǎo)團(tuán)隊,分專題實行教師負(fù)責(zé)制。每位教師根據(jù)自己的專長,負(fù)責(zé)講授某一方面的數(shù)學(xué)建模知識與技巧,并選取相應(yīng)地建模案例進(jìn)行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計回歸模型及數(shù)學(xué)軟件的使用等。學(xué)生根據(jù)自己的薄弱點(diǎn),選擇適合的專題培訓(xùn)班進(jìn)行學(xué)習(xí),以彌補(bǔ)自己的不足。這種針對性的數(shù)模教學(xué),會極大地提高教學(xué)效率。

以現(xiàn)代網(wǎng)絡(luò)技術(shù)為依托,建立數(shù)學(xué)建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學(xué)實驗,教學(xué)錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國內(nèi)外數(shù)模競賽介紹,校內(nèi)競賽,專家點(diǎn)評,獲獎心得交流;同時提供數(shù)模學(xué)習(xí)資源下載如講義,背景材料,歷年國內(nèi)外競賽題,優(yōu)秀論文等。以此為學(xué)生提供良好的自主學(xué)習(xí)網(wǎng)絡(luò)平臺,實現(xiàn)課堂教學(xué)與網(wǎng)絡(luò)教學(xué)的有機(jī)結(jié)合,達(dá)到有效地提高學(xué)生數(shù)學(xué)建模綜合應(yīng)用能力的目的。

完全模擬全國大學(xué)生數(shù)模競賽的形式規(guī)則:定時公布賽題,三人一組,只能隊內(nèi)討論,按時提交論文,之后指導(dǎo)教師、參賽同學(xué)集中討論,進(jìn)一步完善。筆者負(fù)責(zé)數(shù)學(xué)建模競賽培訓(xùn)近20年,多年的實踐證明,每進(jìn)行一次這樣的訓(xùn)練,學(xué)生在建模思路、建模水平、使用軟件能力、論文書寫方面就有大幅提高。多次訓(xùn)練之后,學(xué)生的建模水平更是突飛猛進(jìn),效果甚佳。

如20xx年我指導(dǎo)的隊榮獲全國高教社杯大學(xué)生數(shù)學(xué)建模競賽的最高獎---高教社杯獎,這是此賽設(shè)置的唯一一個名額,也是當(dāng)年從全國(包括香港)院校的約1萬多個本科參賽隊中脫穎而出的。又如20xx年我校57隊參加全國大學(xué)生數(shù)學(xué)建模競賽,43隊獲獎,獲獎比例達(dá)75%,創(chuàng)歷年之最。

(五)鼓勵學(xué)生積極參加全國大學(xué)生數(shù)學(xué)建模競賽、國際數(shù)學(xué)建模競賽。

全國大學(xué)生數(shù)學(xué)建模競賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競賽,國際大學(xué)生數(shù)學(xué)建模競賽是世界上影響范圍最大的高水平大學(xué)生學(xué)術(shù)賽事。參加數(shù)學(xué)建模大賽可以激勵學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高運(yùn)用數(shù)學(xué)及相關(guān)工具分析問題解決問題的綜合能力,開拓知識面,培養(yǎng)創(chuàng)造精神及合作意識。

四、結(jié)束語。

數(shù)學(xué)建模本身是一個創(chuàng)造性的思維過程,它是對數(shù)學(xué)知識的綜合應(yīng)用,具有較強(qiáng)的創(chuàng)新性,而高校數(shù)學(xué)教學(xué)改革的目的之一是要著力培養(yǎng)學(xué)生的創(chuàng)造性思維,提高學(xué)生的創(chuàng)新能力。因此應(yīng)將數(shù)學(xué)建模思想融入教學(xué)活動中,通過不斷的數(shù)學(xué)建模教育和實踐培養(yǎng)學(xué)生的創(chuàng)新能力和應(yīng)用能力從而提高學(xué)生的基本素質(zhì)以適應(yīng)社會發(fā)展的要求。

數(shù)學(xué)建模論文投稿篇三

3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。

選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實際問題所選擇的數(shù)學(xué)模型列表:

一次函數(shù)成本、利潤、銷售收入等。

二次函數(shù)優(yōu)化問題、用料最省問題、造價最低、利潤最大等。

冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)細(xì)胞分裂、生物繁殖等。

三角函數(shù)測量、交流量、力學(xué)問題等。

3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。

數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。

利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實踐,有利于實踐能力的培養(yǎng),是實施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。

數(shù)學(xué)建模論文投稿篇四

摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識解決日常問題的一個重要手段。本文通過簡述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實際經(jīng)濟(jì)問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問題解決中的重要作用。

經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟(jì)形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風(fēng)險的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。

數(shù)學(xué)建模,其實就是建立數(shù)學(xué)模型的簡稱,實際上數(shù)學(xué)建模可以稱之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個中介和橋梁,在工業(yè)設(shè)計、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個方面,運(yùn)用數(shù)學(xué)的語言和方法進(jìn)行問題的求解和推導(dǎo),實際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學(xué)模型的最終建立是一個反復(fù)驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實際對象的特性,對復(fù)雜問題進(jìn)行簡化,提取主要因素,提煉精確的數(shù)學(xué)語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個量(變量、常量)間的數(shù)學(xué)關(guān)系,化實際問題為數(shù)學(xué)語言;4.模型求解:對上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗?zāi)P偷暮侠硇院瓦m用性。

二、經(jīng)濟(jì)問題數(shù)學(xué)模型的建立。

經(jīng)濟(jì)類問題因為其特有的特點(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟(jì)問題的建模計算實際上是一個從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對實際經(jīng)濟(jì)問題和情況有一個較為深入的認(rèn)識,然后通過細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應(yīng)用數(shù)學(xué)知識建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。

三、建模舉例。

四、結(jié)語。

綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤、規(guī)避風(fēng)險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。

數(shù)學(xué)建模論文投稿篇五

為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重數(shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖耍恼聦牟煌姆矫鎸πW(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。

作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實際培養(yǎng)效果,需要加強(qiáng)對學(xué)生動手實踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計劃的實施。因此,教師需要利用學(xué)生動手實踐能力的作用,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識角”知識的過程中,某些學(xué)生認(rèn)為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點(diǎn)有更加正確而全面的認(rèn)識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學(xué)生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計劃的實施打下堅實的基礎(chǔ)。通過這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。

通過對小學(xué)階段各種數(shù)學(xué)實踐教學(xué)活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動參與數(shù)學(xué)建模教學(xué)活動的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點(diǎn)的理解,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。

加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動開展中注重對數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動態(tài)化的文字與圖片對其中的知識要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點(diǎn)的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。

總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實現(xiàn)提供可靠的保障。

[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).

[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).

數(shù)學(xué)建模論文投稿篇六

摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。

一、新課的引入需要發(fā)揮教師的作用。

教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時,新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進(jìn)行情感教育的最佳時刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。

二、在教學(xué)任務(wù)的設(shè)計上需要發(fā)揮教師的作用。

數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應(yīng)通過設(shè)計一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。

三、在新舊知識的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用。

建構(gòu)主義強(qiáng)調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。

四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)。

教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。

數(shù)學(xué)建模論文投稿篇七

隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨(dú)立學(xué)院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學(xué)類課程。但在教學(xué)中,普遍認(rèn)為理論性太強(qiáng),與實際脫節(jié)嚴(yán)重,不能引起學(xué)生的學(xué)習(xí)興趣。并且,傳統(tǒng)教學(xué)忽視了學(xué)生用數(shù)學(xué)解決實際問題的能力,所以,進(jìn)行數(shù)學(xué)教學(xué)改革勢在必行。數(shù)學(xué)建模可培養(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力,通過數(shù)模方法對實際問題進(jìn)行巧妙處理,讓學(xué)生體會到數(shù)學(xué)不僅能傳播理論知識和求解一些數(shù)學(xué)問題,還可將其應(yīng)用到實際問題中,讓學(xué)生看到一些實際模型的來龍去脈,提高學(xué)生的學(xué)習(xí)積極性。數(shù)學(xué)建模是培養(yǎng)學(xué)生綜合科學(xué)素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗學(xué)生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當(dāng)代科技最新成果的能力等。學(xué)生們同舟共濟(jì)的團(tuán)隊合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團(tuán)隊合作精神對于獨(dú)立學(xué)院學(xué)生將來進(jìn)入社會十分重要,這也是衡量獨(dú)立學(xué)院辦學(xué)成功與否的一個方面。因此,獨(dú)立學(xué)院的人才培養(yǎng)目標(biāo)定位,既要達(dá)到本科生應(yīng)具備的理論基礎(chǔ),又要有相對突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨(dú)立學(xué)院的數(shù)學(xué)課堂上應(yīng)該多方面滲透數(shù)學(xué)模型的思想。

(一)人才培養(yǎng)創(chuàng)新的需要。

根據(jù)獨(dú)立學(xué)院人才培養(yǎng)目標(biāo)和實際情況,有針對性的加大基礎(chǔ)課和實踐環(huán)節(jié)教學(xué)的'比重,側(cè)重于實踐能力的培養(yǎng),在專業(yè)課程體系中適當(dāng)增加實驗、實踐教學(xué)內(nèi)容,加強(qiáng)與社會實體的聯(lián)系。力求培養(yǎng)出具有實際操作能力的高素質(zhì)大學(xué)生。數(shù)學(xué)建模是將一個實際問題,對其作出一些必要的簡化與假設(shè),將其轉(zhuǎn)化成一個數(shù)學(xué)問題,借助數(shù)學(xué)工具和數(shù)學(xué)方法精確或近似地解決該問題,并用數(shù)學(xué)結(jié)果解釋客觀現(xiàn)象、回答實際問題并接受客觀實際的檢驗。數(shù)學(xué)建模能彌補(bǔ)傳統(tǒng)數(shù)學(xué)教學(xué)在實際應(yīng)用方面的不足,促進(jìn)數(shù)學(xué)教師在現(xiàn)代化教學(xué)手段、教學(xué)模式方面的更新。數(shù)學(xué)建模有助于調(diào)動學(xué)生的學(xué)習(xí)興趣,在計算機(jī)應(yīng)用能力、實踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學(xué)生將來能更好地適應(yīng)工作崗位。

(二)高校教學(xué)改革的需要。

當(dāng)今社會信息高度發(fā)達(dá),競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應(yīng)社會信息時代的要求。傳統(tǒng)的教學(xué)模式是以課堂理論講授為主,學(xué)生絕大部分時間都集中學(xué)習(xí)書本知識,很少有機(jī)會接觸社會,也難做到學(xué)以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學(xué)生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學(xué)導(dǎo)致學(xué)生明顯缺乏學(xué)習(xí)的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點(diǎn),很難適應(yīng)企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學(xué)作為一門傳統(tǒng)基礎(chǔ)學(xué)科,對獨(dú)立學(xué)院的學(xué)生來說,學(xué)習(xí)上有一定的難度。我們的教學(xué)應(yīng)以“必需,夠用”為度。數(shù)學(xué)建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學(xué)生通過自主的學(xué)習(xí),把實際的問題轉(zhuǎn)化為數(shù)學(xué)理論解決,有助于學(xué)生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨(dú)立學(xué)院院校應(yīng)用型本科人才培養(yǎng)的方向。

(三)學(xué)生參加數(shù)學(xué)建模競賽的需要。

獨(dú)立學(xué)院學(xué)生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學(xué)生愿意在學(xué)校參加一些競賽來提高自己。全國大學(xué)生數(shù)學(xué)建模競賽尤其受學(xué)生重視,但仍有很多大學(xué)生不了解這類競賽,因此,在數(shù)學(xué)課堂上引入數(shù)學(xué)建模思想,學(xué)生既了解了數(shù)學(xué)建模,又對數(shù)學(xué)公式提起了興趣,還有助于獨(dú)立學(xué)院學(xué)生在全國大學(xué)生數(shù)學(xué)建模競賽中取得優(yōu)異成績。

高等數(shù)學(xué)的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學(xué)習(xí)提供必要的數(shù)學(xué)知識,培養(yǎng)各專業(yè)學(xué)生的數(shù)學(xué)思想與數(shù)學(xué)修養(yǎng),全面提高大學(xué)生創(chuàng)新思維和應(yīng)用能力。只有把數(shù)學(xué)建模思想融入數(shù)學(xué)教學(xué)中,才能調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的創(chuàng)新能力,實現(xiàn)提高學(xué)生綜合分析問題能力的最終目標(biāo)。

作者:崔瑋王文麗單位:中國地質(zhì)大學(xué)長城學(xué)院信息工程系。

數(shù)學(xué)建模論文投稿篇八

使學(xué)生的綜合應(yīng)用能力、實踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。

對于醫(yī)學(xué)專業(yè)的學(xué)生來說,在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對純粹的數(shù)學(xué)知識與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢必會使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺,既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。

因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點(diǎn)。針對這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實踐中來,到實踐中去”的教學(xué)理念。一方面,從最現(xiàn)實、最熱門的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進(jìn)一步學(xué)習(xí)的主動性,使他們從一開始就能進(jìn)入到學(xué)習(xí)的角色中去;另一方面,通過開展多種方式的實踐教學(xué)活動,使學(xué)生在實踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過程,讓學(xué)生體會發(fā)現(xiàn)問題和思考問題的過程,培養(yǎng)學(xué)生解決問題的創(chuàng)新能力。

近些年來,我們開設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評,其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機(jī)會。這些舉措旨在進(jìn)一步激發(fā)學(xué)生的創(chuàng)新意識,提高學(xué)生的數(shù)學(xué)建模實踐能力。研討班面向全校各類醫(yī)學(xué)專業(yè)的學(xué)生,并以三人為單位,劃分成若干個組,通過專題研討的形式開展活動。實踐證明:通過這種研討過程,學(xué)生不僅對所學(xué)的醫(yī)學(xué)知識有了更深刻的理解與認(rèn)識,在文獻(xiàn)資料查閱、計算機(jī)編程、語言表達(dá)能力等諸多方面也都有了顯著的提高。通過這個過程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。

為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識,我們在教學(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識的應(yīng)用思想和應(yīng)用意識,讓學(xué)生帶著問題上課,嘗試在解決問題中與教師進(jìn)行交流,下課帶著問題回去。

在課堂教學(xué)中,重點(diǎn)講解發(fā)現(xiàn)問題和解決問題的方法與技巧。通過課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問題;通過課堂講解和研討,引導(dǎo)學(xué)生解決問題;通過課后作業(yè),總結(jié)和鞏固所學(xué)知識,學(xué)習(xí)應(yīng)用與拓展知識。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。

在現(xiàn)實生活中的實際問題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。

因此,以實際問題驅(qū)動的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實際問題分解為一系列簡單的小問題,在解決每一個小問題的過程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。

在整個教學(xué)過程中,貫穿以學(xué)生為主體,通過案例分析引導(dǎo)學(xué)生的思維方法,針對一個案例的解決過程和方法,要求實現(xiàn)舉一反三,促使學(xué)生對所掌握的知識進(jìn)行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問題的解決中學(xué)會不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結(jié)經(jīng)驗、彌補(bǔ)不足,進(jìn)一步學(xué)習(xí)相關(guān)知識和方法,再進(jìn)行實踐,從而不斷增強(qiáng)自身的綜合應(yīng)用能力和素質(zhì)。

隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開設(shè)對培養(yǎng)大學(xué)生實踐創(chuàng)新能力的幾點(diǎn)做法。教學(xué)實踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項能力,是提高醫(yī)學(xué)專業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。

數(shù)學(xué)建模論文投稿篇九

數(shù)學(xué)是在實際應(yīng)用的需求中產(chǎn)生的,要描述一個實際現(xiàn)象可以有很多種方式,為了實際問題描述的更具邏輯性、科學(xué)性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。數(shù)學(xué)建模則是架于數(shù)學(xué)理論和實際問題之間的橋梁,數(shù)學(xué)模型是對于現(xiàn)實生活中的特定對象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個特定目的,運(yùn)用數(shù)學(xué)工具,得到的一個數(shù)學(xué)結(jié)構(gòu),用來解釋現(xiàn)實現(xiàn)象,預(yù)測未來狀況。因此,數(shù)學(xué)建模就是用數(shù)學(xué)語言描述實際現(xiàn)象的過程。

大部分的獨(dú)立院校的數(shù)學(xué)建模工作純在一定的問題,主要體現(xiàn)在以下幾個方面:(一)學(xué)生方面的問題。獨(dú)立院校的大部分學(xué)生的數(shù)學(xué)功底差,對數(shù)學(xué)的學(xué)習(xí)興趣不大,普遍認(rèn)為數(shù)學(xué)的學(xué)習(xí)對自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學(xué)有關(guān)的數(shù)學(xué)建模,對數(shù)學(xué)建模競賽的興趣不大。在獨(dú)立院校中,參加數(shù)學(xué)建模競賽的大都是低年級的學(xué)生,而這些學(xué)生的數(shù)學(xué)知識結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學(xué)競賽并未獲得獎項后就不愿意再次參加。而高年級的同學(xué)忙于其他的就業(yè)、考研等壓力,無暇參加數(shù)學(xué)建模競賽的培訓(xùn)。(二)教資方面的問題。首先。傳統(tǒng)的教學(xué)是知識為中心、以教師的講解為中心。數(shù)學(xué)建模的教學(xué)要求教師以學(xué)生為中心,培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)的能力,發(fā)展學(xué)生的創(chuàng)新能力和創(chuàng)造能力。獨(dú)立院校外聘的老師常常對獨(dú)立院校的學(xué)生不夠了解,這直接影響到教學(xué)成果。其次,數(shù)學(xué)建模涉及的知識面廣,不但包括數(shù)學(xué)的各個分支,還包含了其他背景的專業(yè)知識。獨(dú)立院校的教師一部分是才從大學(xué)畢業(yè)不久的研究生,他們對于數(shù)學(xué)建模教學(xué)和競賽的培訓(xùn)經(jīng)驗不足,科研能力不是很強(qiáng),對數(shù)學(xué)的各個分支的把控能力不強(qiáng),對其他專業(yè)的了解不夠全面。(三)教學(xué)實施方面的問題。大學(xué)生數(shù)學(xué)建模競賽的目的決不僅僅是獲獎,更重要的是通過參加大學(xué)生數(shù)學(xué)建模競賽活動,促進(jìn)高校數(shù)學(xué)教學(xué)改革,起到培養(yǎng)全體學(xué)生能力、提高全體學(xué)生素質(zhì)的作用。獨(dú)立院校數(shù)學(xué)建模教學(xué)存在很多的問題。首先,大學(xué)數(shù)學(xué)建模教育在獨(dú)立院校中的普及性不夠。數(shù)學(xué)建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個時候?qū)W生的數(shù)學(xué)知識結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學(xué)建模的相關(guān)教材大都是為了數(shù)學(xué)建模競賽而編寫的,對于獨(dú)立院校的學(xué)生來說,這些教材的難度系數(shù)大,涉及的知識面廣,遠(yuǎn)遠(yuǎn)超過了學(xué)生的接受能力。

(一)讓學(xué)生了解數(shù)學(xué)建模,培養(yǎng)學(xué)習(xí)數(shù)學(xué)建模的興趣。數(shù)學(xué)建模課程的開設(shè)有利于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)具體解決實際問題的能力,讓學(xué)生發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)的用處,改變學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度,提高學(xué)習(xí)數(shù)學(xué)的能力,認(rèn)識到數(shù)學(xué)的意義和價值。獨(dú)立院校學(xué)生的數(shù)學(xué)基礎(chǔ)雖然比較差,但是學(xué)生的動手能力強(qiáng)。學(xué)??梢栽诙嚅_展數(shù)學(xué)建模的講座和課程,讓學(xué)生了解數(shù)學(xué)建模。同時多向?qū)W生宣傳數(shù)學(xué)建模的成果。(二)在教學(xué)內(nèi)容中滲透數(shù)學(xué)建模思想和方法。1.在日常數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)教學(xué)重視的是知識的培養(yǎng)和傳輸,而忽視的是實際應(yīng)用能力。教師的教學(xué)目標(biāo)是使學(xué)生掌握數(shù)學(xué)理論知識。一般的教學(xué)方法是:教師引入相關(guān)的的基本概念,證明定理,推導(dǎo)公式,列舉例題,學(xué)生記住公式,套用公式,掌握解題方法與技巧。學(xué)生往往學(xué)習(xí)了不少的純粹的數(shù)學(xué)理論知識,卻不知道如何應(yīng)用到實際問題中。數(shù)學(xué)建模課程與傳統(tǒng)數(shù)學(xué)課程相比差別較大,學(xué)校開設(shè)的數(shù)學(xué)建??邕x課及數(shù)學(xué)建模培訓(xùn)班,對培養(yǎng)學(xué)生觀察能力、分析能力、想象力、邏輯能力、解決實際問題的能力起到了很好的作用。由于學(xué)校開設(shè)的數(shù)學(xué)建模課程大多是選修課程,課時較少,參選的學(xué)生也有限,數(shù)學(xué)建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學(xué)中的很多內(nèi)容都與數(shù)學(xué)建模的思想有關(guān),因此,在大學(xué)數(shù)學(xué)課程的教學(xué)過程中,教師應(yīng)有意識地結(jié)合傳統(tǒng)的數(shù)學(xué)課程的特點(diǎn),將數(shù)學(xué)建模的思想和內(nèi)容融入到數(shù)學(xué)課堂教學(xué)中。這樣既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能很好的將突出數(shù)學(xué)建模的思想。2.數(shù)學(xué)建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學(xué)對專業(yè)知識的服務(wù)作用。數(shù)學(xué)建模與專業(yè)知識的結(jié)合,不僅可以讓學(xué)生認(rèn)識到數(shù)學(xué)的重要作用,在專業(yè)知識學(xué)習(xí)中的地位,還可以培養(yǎng)學(xué)習(xí)數(shù)學(xué)知識的興趣,增強(qiáng)數(shù)學(xué)學(xué)習(xí)的凝聚力,同時加深對專業(yè)知識的理解。通過專業(yè)知識作為背景,學(xué)生更愿意嘗試問題的研究。在學(xué)習(xí)中遇到的專業(yè)問題也可以嘗試用數(shù)學(xué)建模的思想進(jìn)行解決。這有利于提高學(xué)生的綜合能力的培養(yǎng)。3.分層次進(jìn)行數(shù)學(xué)建模教育。大體說來獨(dú)立院校的數(shù)學(xué)建模課程的開設(shè)應(yīng)該分成兩個階段:(1)第一階段:大學(xué)一年級,在這個階段,大部分學(xué)生對數(shù)學(xué)建模沒有了解,這時候適合開設(shè)一些數(shù)學(xué)建模的講座和活動,讓學(xué)生了解數(shù)學(xué)建模。同時,在日常的數(shù)學(xué)教學(xué)中選擇簡單的應(yīng)用問題和改變后的數(shù)學(xué)建模題目,結(jié)合自身的專業(yè)知識進(jìn)行講解,讓學(xué)生了解數(shù)學(xué)建模的一般含義。基本方法和步驟,讓學(xué)生具備初步的建模能力。(2)中級層次:大學(xué)二、三年級。在這個階段,學(xué)生基本具備了完整的數(shù)學(xué)結(jié)構(gòu),具有了基本的建模能力。這個時候應(yīng)該開設(shè)數(shù)學(xué)建模專業(yè)課程,讓學(xué)生處理比較復(fù)雜的數(shù)學(xué)建模問題,讓學(xué)生自己去采集有用的信息,學(xué)會提出模型的假設(shè),對數(shù)據(jù)和信息需進(jìn)行整理、分析和判斷,并模型進(jìn)行分析和評價,最終完成科技論文。

(一)提高數(shù)學(xué)教師自身水平。在數(shù)學(xué)建模教學(xué)過程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學(xué)建模教學(xué)能否達(dá)到預(yù)期的目的。數(shù)學(xué)建模的教學(xué),不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實際問題的能力和豐富的數(shù)學(xué)建模實踐經(jīng)驗。而獨(dú)立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實踐經(jīng)驗。這就對獨(dú)立院校的的數(shù)學(xué)建模教學(xué)工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進(jìn)行專業(yè)培訓(xùn)學(xué)習(xí)和學(xué)術(shù)交流,參加各種學(xué)術(shù)會議、到名校去做訪問學(xué)者等等。同時可以多請著名的數(shù)學(xué)專家教授來到校園做建模學(xué)術(shù)報告,使師生拓寬視野,增長知識,了解建模的新趨勢、新動態(tài)。青年教師還需要依據(jù)特定的教學(xué)內(nèi)容、教學(xué)對象和教學(xué)環(huán)境對自己的教學(xué)工作作出計劃、實施和調(diào)整以及反思和總結(jié)。青年數(shù)學(xué)教師還必須更新教育理念,改變傳統(tǒng)的教學(xué)理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應(yīng)新的形勢,符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學(xué)建模教材使用也存在諸多不足之處。絕大部分高校教學(xué)建模課程采用的是理工類專業(yè)數(shù)學(xué)建模教材。這些教材主要涵蓋的數(shù)學(xué)模型的難度系數(shù)大。而獨(dú)立院校的學(xué)生的基礎(chǔ)薄弱,無法接收這些模型。在教學(xué)過程中,教師可以將具體的案例或是歷年的數(shù)學(xué)建模題目做為教學(xué)內(nèi)容。通過具體的建模實例,講解建模的思想和方法。一邊講解,一邊讓學(xué)生分組討論,提出對問題的新的理解和對魔性的認(rèn)識,嘗試提出新的模型。(三)豐富建?;顒?。全面開展數(shù)學(xué)建?;顒邮菙?shù)學(xué)建模思想的最重要的形式,它既使課內(nèi)和課外知識相互結(jié)合,又可以普及建模知識與提高建模能力結(jié)合,可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識分析和解決實際問題的能力,可以有效地提升了學(xué)生的數(shù)學(xué)綜合素質(zhì)。學(xué)校可以定期的開展數(shù)學(xué)建模宣傳活動,擴(kuò)大數(shù)學(xué)建模的知名度。學(xué)校還可以邀請有經(jīng)驗的專家和獲獎學(xué)生開展建模講座,提高對數(shù)學(xué)建模的重視,積極的組織建模活動。實踐證明,只有根據(jù)獨(dú)立院校的自身特點(diǎn)和培養(yǎng)目標(biāo),對數(shù)學(xué)建模課程的教學(xué)不斷進(jìn)行改革,才能解決獨(dú)立院校數(shù)學(xué)建模課程教學(xué)的問題,才能真正的讓學(xué)生喜歡上數(shù)學(xué),喜歡上數(shù)學(xué)建模。

[1]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)主干課程[j].中國大學(xué)教育.20xx.

[2]賈曉峰等.大學(xué)生數(shù)學(xué)建模競賽與高等學(xué)校數(shù)學(xué)改革[j].工科數(shù)學(xué).20xx:162.

[3]融入數(shù)學(xué)建模思想的高等數(shù)學(xué)教學(xué)研究[j].科技創(chuàng)新導(dǎo)報.20xx:162.

作者:李雙單位:湖北文理學(xué)院理工學(xué)院。

數(shù)學(xué)建模論文投稿篇十

摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從初中數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過程中進(jìn)行了分析。

數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高初中數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。初中數(shù)學(xué)是初中學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段。可以說,初中數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于初中數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓初中數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。初中數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的.將數(shù)學(xué)建模運(yùn)用在初中數(shù)學(xué)教學(xué)過程中,是每個初中數(shù)學(xué)教師都值得思考的問題。

數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是初中數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。

二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題。

對于初中生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)初中生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運(yùn)用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。

三、選擇合適的題目作為建模案例。

在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到初中數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進(jìn)行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。

四、引導(dǎo)學(xué)生主動進(jìn)行數(shù)學(xué)建模。

在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進(jìn)行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于初中數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。

數(shù)學(xué)建模論文投稿篇十一

眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅實的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級中已經(jīng)實際應(yīng)用過幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實能極大地調(diào)動學(xué)生的學(xué)習(xí)積極性。

提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個連著一個;極限、連續(xù)、可導(dǎo)可積一個涵蓋另一個[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實際上是知識點(diǎn)太多,記不住了),而對思維的要求卻提高了。對大學(xué)生來說,每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時間可以達(dá)到,長久下去學(xué)生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學(xué)生,剛開始時,興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應(yīng)對。怪學(xué)生嗎?誠然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對學(xué)生提的這些問題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會用到高等數(shù)學(xué)的知識,那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問題不及時解決,時間長了一定會影響到大學(xué)生對高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。

一、以實際問題反推解決問題時我們需要的高等數(shù)學(xué)知識。

有這樣一個實際問題:報童每天清晨從報社購進(jìn)報紙零售,晚上將沒賣掉的報紙退回給報社。假設(shè)報紙每份的購進(jìn)價為b元,零售價為a元,退回價為c元,自然地有abc。這就是說,報童每售出一份報紙賺a-b元,每退回一份報紙賠b-c元,報童每天如果購進(jìn)的報紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進(jìn)的報紙?zhí)?,那么會賣不完,將要賠錢。請為報童規(guī)劃一下,他該如何確定每天購進(jìn)的報紙份數(shù),以獲得最大的收入[3]。

現(xiàn)在我們來反推該問題涉及到的高等數(shù)學(xué)的知識:首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報紙需求量,注意每天的報紙需求量是隨機(jī)變化的?解決這個關(guān)鍵問題的知識我們早就掌握了,分別是數(shù)理統(tǒng)計中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。

二、利用高等數(shù)學(xué)的解決實際問題。

f(r)[4]。如果求出了f(r),那么。

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。

現(xiàn)在我們來求f(r),假定報童已經(jīng)通過自己的經(jīng)驗和其他渠道掌握了一年(365天)中每天報紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報紙日需求量r的概率f(r)為:

f(r)=,r=(0,1,2,3,…)。

其中k表示為賣出r份的天數(shù)。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。

通過上面的分析,可知實際問題歸結(jié)為,在p(r)和a,b,c已知時,求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。

令=0,得到=,又因為p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。

在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進(jìn)的報紙份數(shù),使報童每天獲得最大的收入。

三、利用現(xiàn)實問題,讓學(xué)生學(xué)會思考,給他們提供創(chuàng)造成就感的機(jī)會。

通過上面碰到的實際問題,可以很容易地說服同學(xué)們靜下心來好好學(xué)習(xí)高等數(shù)學(xué)。因為通過實際問題的求解,學(xué)生們了解到了,要想解決一個實際問題(哪怕是很小的問題),也需要大量的高等數(shù)學(xué)知識的儲備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡單、直接,勝過老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實際問題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們在解決實際問題中學(xué)會思考,掌握知識,提高能力。

通過訓(xùn)練后,碰到實際問題,同學(xué)們會自然的想到我們的教學(xué)方法:(1)這些實際問題涉及到的高等數(shù)學(xué)知識?那些自己掌握了,那些還沒有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識點(diǎn)找到后,如何建立起數(shù)學(xué)與實際問題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實際問題,能否用高等數(shù)學(xué)的知識去解決?通過思考、分析、解決這些問題,學(xué)生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會大大提高了。

數(shù)學(xué)建模論文投稿篇十二

1培養(yǎng)創(chuàng)造性思維學(xué)生在學(xué)習(xí)數(shù)學(xué)知識的過程中,雖然其接受的知識和經(jīng)驗是前人研究和發(fā)現(xiàn)的成果,但對于學(xué)生來說,其處于知識再發(fā)現(xiàn)的地位。教師向?qū)W生教授數(shù)學(xué)發(fā)現(xiàn)的思維和方法,換言之就是重點(diǎn)引導(dǎo)學(xué)生重溫數(shù)學(xué)經(jīng)驗和知識的研究道路,進(jìn)而保證學(xué)生的再發(fā)現(xiàn)能夠順利實現(xiàn)。這也是培養(yǎng)學(xué)生創(chuàng)新思維和能力的一個重要途徑。利用數(shù)學(xué)建模能夠有效地彌補(bǔ)數(shù)學(xué)教學(xué)過程中存在的缺陷,使學(xué)生充分體會到數(shù)學(xué)發(fā)現(xiàn)過程中的樂趣,進(jìn)而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和積極性,培養(yǎng)其創(chuàng)造性思維。

2選擇經(jīng)典案例開展數(shù)學(xué)建模討論、分析教師在實際的數(shù)學(xué)課堂教學(xué)中,可選擇一些社會實際案例為講授分析的主要對象,如實際生活和高科技的熱點(diǎn)話題。教師可對此類實例進(jìn)行必要的分析與講解,在此過程中,積極引導(dǎo)學(xué)生獨(dú)立鉆研和研究問題,并培養(yǎng)學(xué)生主動查閱相關(guān)資料、自主討論的能力。與此同時,教師還要及時與學(xué)生進(jìn)行交流,答疑釋難,并要求學(xué)生在自己實際能力的基礎(chǔ)上構(gòu)建恰當(dāng)?shù)哪P?,由易到難,循序漸進(jìn)。除此之外,還要使學(xué)生充分發(fā)揮其主觀能動性,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,思考問題以及處理問題的能力。以微積分方程為例,教師在課堂教學(xué)中,可以“經(jīng)濟(jì)增長”作為主要案例,向?qū)W生系統(tǒng)地闡述微積分方程的實際應(yīng)用過程,進(jìn)一步加深學(xué)生對知識的理解、掌握和應(yīng)用。

3同時開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程在職業(yè)院校數(shù)學(xué)教學(xué)過程中,同時開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程,能夠有效提高學(xué)生對基礎(chǔ)知識的理解能力和掌握程度,促進(jìn)學(xué)生實踐動手能力的培養(yǎng)。在數(shù)學(xué)建模課程的開設(shè)中,應(yīng)該在教師的指導(dǎo)下,充分利用教學(xué)軟件,引導(dǎo)學(xué)生動手實驗和計算,加深學(xué)生對知識的掌握。在此過程中,使學(xué)生充分了解到運(yùn)用數(shù)學(xué)理論和方法去分析和解決實際問題的全過程,進(jìn)一步提高學(xué)生的積極性和思維意識能力,使他們意識到數(shù)學(xué)在實際生活應(yīng)用中的關(guān)鍵作用。同時,促使學(xué)生將計算機(jī)技術(shù)融入數(shù)學(xué)學(xué)習(xí)中去,以現(xiàn)代化的高新科技為媒介,著手實際社會問題的解決。

4創(chuàng)新教學(xué)模式根據(jù)職業(yè)院校學(xué)生學(xué)習(xí)的特點(diǎn)和知識水平,重點(diǎn)提高學(xué)生運(yùn)用數(shù)學(xué)的技能和思維方式來處理實際生活和專業(yè)問題的能力。要想從根本上培養(yǎng)學(xué)生的創(chuàng)新能力,一定要改變原來單一固定的教學(xué)模式,嘗試和探索基于學(xué)生實際情況的教學(xué)措施和方式。經(jīng)過長期的實踐經(jīng)驗研究,討論式教學(xué)和雙向教學(xué)方式對培養(yǎng)學(xué)生的能力非常有效。這兩種教學(xué)模式能夠加深學(xué)生參與課堂教學(xué)的程度,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的'主動性,最終達(dá)到提高教學(xué)效率的目的。所以,數(shù)學(xué)建??梢砸跃唧w問題為媒介,采用小組集體討論解決問題的方法,培養(yǎng)學(xué)生的創(chuàng)新能力和意識,進(jìn)一步加快職業(yè)技術(shù)院校數(shù)學(xué)教學(xué)模式的創(chuàng)新。

5組建數(shù)學(xué)建模團(tuán)隊在實際的數(shù)學(xué)教學(xué)中,教師可引導(dǎo)學(xué)生構(gòu)建數(shù)學(xué)建模團(tuán)隊。在教師對數(shù)學(xué)建模的深入分析為基礎(chǔ),充分調(diào)動學(xué)生參與問題解決的主動性,師生積極互動,最終完成數(shù)學(xué)建模。如此一來,不僅能夠有效培養(yǎng)學(xué)生積極進(jìn)取的良好學(xué)習(xí)態(tài)度,而且還能夠促進(jìn)學(xué)生數(shù)學(xué)邏輯思維能力的提高。

6搭建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺在職業(yè)技術(shù)院校中構(gòu)建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺,積極宣傳與數(shù)學(xué)建模有關(guān)的知識經(jīng)驗,為學(xué)生主動獲取數(shù)學(xué)建模信息提供各種數(shù)據(jù)資料。數(shù)學(xué)建模網(wǎng)絡(luò)平臺的搭建,能夠有效促進(jìn)教師和學(xué)生,學(xué)生與學(xué)生之間的交流與溝通,大大縮短學(xué)生和數(shù)學(xué)建模之間的距離,進(jìn)而促進(jìn)學(xué)生自主學(xué)習(xí)能力的提高和培養(yǎng)。

總而言之,數(shù)學(xué)建模思想是學(xué)生將基礎(chǔ)理論知識與實際解決問題的方法相結(jié)合的最佳途徑。將數(shù)學(xué)建模融入職業(yè)院校數(shù)學(xué)中,全面培養(yǎng)學(xué)生的創(chuàng)新意識和數(shù)學(xué)應(yīng)用能力,進(jìn)一步使數(shù)學(xué)為達(dá)成學(xué)院的教學(xué)和培養(yǎng)計劃奠定基礎(chǔ),為培養(yǎng)更多更優(yōu)秀的現(xiàn)代化社會人才服務(wù)。

數(shù)學(xué)建模論文投稿篇十三

隨著社會的不斷發(fā)展和科學(xué)技術(shù)的進(jìn)步,數(shù)學(xué)在現(xiàn)實生活中的應(yīng)用越來越廣泛,尤其是計算機(jī)技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會各個領(lǐng)域中的實際問題的應(yīng)用越來越深入。本文筆者簡要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義和方法。

所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過程,也就是說用公式、符號和圖表等數(shù)學(xué)語言來刻畫和描述一個實際問題,再經(jīng)過計算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語對一部分現(xiàn)實世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實際,將實際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來解決問題的一種思想。

在新形勢下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。

(1)數(shù)學(xué)知識在各個領(lǐng)域的應(yīng)用越來越廣泛。如今數(shù)學(xué)知識在各個領(lǐng)域的應(yīng)用越來越廣泛,尤其是在經(jīng)濟(jì)學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟(jì)學(xué)獎以來,就有不少理論成果來自利用數(shù)學(xué)工具分析經(jīng)濟(jì)問題。事實上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎?wù)撸渲袚碛袛?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計占52.8%;其中共有29位諾貝爾經(jīng)濟(jì)學(xué)獎的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟(jì)學(xué)獎獲得者都運(yùn)用了數(shù)學(xué)方法來研究經(jīng)濟(jì)學(xué)理論。除了在經(jīng)濟(jì)領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進(jìn)了基因科學(xué),例如基因表達(dá)的定型、基因組測序、基因分類等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型??梢姅?shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對其他領(lǐng)域的發(fā)展起著重要的推動作用。

(2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識的講解和傳授,對知識點(diǎn)的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類型題”的方式去復(fù)習(xí)知識點(diǎn)。這樣的方式雖然能夠讓學(xué)生掌握一部分?jǐn)?shù)學(xué)知識,可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運(yùn)用數(shù)學(xué)知識來解決生活中的實際問題,這樣就使數(shù)學(xué)活了起來,而不是死的理論知識。運(yùn)用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會數(shù)學(xué)的價值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動力,讓學(xué)生主動參與學(xué)習(xí)而非被動學(xué)習(xí),取得的教學(xué)效果會更好。

(3)是加強(qiáng)數(shù)學(xué)教學(xué)改革,適應(yīng)時代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動中,許多學(xué)生常常陷入這樣的困惑之中:花費(fèi)了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門很有用的課程,但是卻舉不出現(xiàn)實的例子。并且傳統(tǒng)的教學(xué)方式也只是教會學(xué)生掌握簡單的理論知識,并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類課程之中就能很好地解決這些問題。因為將數(shù)學(xué)建模思想運(yùn)用到數(shù)學(xué)類課程中,就能夠讓學(xué)生在獨(dú)立思考和探索中感受到數(shù)學(xué)在現(xiàn)實生活中的實用價值,提高學(xué)生運(yùn)用數(shù)學(xué)的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識。

(1)教師在教學(xué)過程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開展大學(xué)數(shù)學(xué)類課程時,仍然只是停留在數(shù)學(xué)知識的教學(xué)方面,并沒有對學(xué)生進(jìn)行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對日常的教學(xué)工作能夠認(rèn)真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少。可見多數(shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識及經(jīng)驗,在實際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運(yùn)用。

(2)開設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動較少。雖然數(shù)學(xué)建模思想得到了越來越廣泛的應(yīng)用,但是在高校中實際開設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實驗以及計算機(jī)應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實際的教學(xué)過程中并沒有創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開展的有關(guān)數(shù)學(xué)建模競賽和活動并不多,宣傳力度也不夠,無法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價值,更無法參與到數(shù)學(xué)建?;顒又腥?。

(3)學(xué)生對數(shù)學(xué)的態(tài)度和觀念還未改變,對數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對大學(xué)數(shù)學(xué)類課程以及數(shù)學(xué)建模沒有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒有見識到數(shù)學(xué)的應(yīng)用性,覺得數(shù)學(xué)是一門純理論的課程,沒有實用價值。同時很多學(xué)生對數(shù)學(xué)建模思想的運(yùn)用并不夠了解,不知道如何將數(shù)學(xué)知識和數(shù)學(xué)方法應(yīng)用到實際的生活中去,覺得數(shù)學(xué)沒有用,也沒有深入學(xué)習(xí)的意義。

(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類課程主要有“線性代數(shù)”、“高等數(shù)學(xué)”、“運(yùn)籌學(xué)”、“數(shù)學(xué)建?!?、“概率論與數(shù)理統(tǒng)計”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對于主修數(shù)學(xué)的學(xué)生,要加強(qiáng)對計算機(jī)軟件和語言的學(xué)習(xí),系統(tǒng)性地對數(shù)學(xué)原理進(jìn)行剖解和分析,合理運(yùn)用數(shù)學(xué)知識和數(shù)學(xué)方法解決社會實際問題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對生活問題和科學(xué)問題的深入研究,主動結(jié)合自己的課程理論知識和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個學(xué)習(xí)過程中去。對于非數(shù)學(xué)領(lǐng)域的問題,要啟發(fā)學(xué)生運(yùn)用計算機(jī)軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問題。

(2)多開設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類課程。例如除了開設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機(jī)會,為學(xué)生拓展知識領(lǐng)域,為其解決該領(lǐng)域的問題提供有效的方法。例如,經(jīng)濟(jì)學(xué)有關(guān)專業(yè)的學(xué)生就可以通過選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟(jì)學(xué)中遇到的問題,因為很多跟經(jīng)濟(jì)學(xué)有關(guān)的問題僅僅靠經(jīng)濟(jì)學(xué)的知識是無法解決的,像貸款計算這樣的問題就要將數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系起來才能解決實際問題。

(3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價值。學(xué)生是教學(xué)過程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的參與性,促進(jìn)數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程的融合就必須加強(qiáng)宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時,在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對社會實際生活的重要作用,轉(zhuǎn)變他們對數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。

(4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點(diǎn)放在數(shù)學(xué)知識在生活中的應(yīng)用問題上,而不是將知識與實際生活割裂開來。同時在教學(xué)中要注重證明和推理,加強(qiáng)學(xué)生對數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對實際問題的邏輯分析、簡化、抽象并運(yùn)用數(shù)學(xué)語言表達(dá)的能力。也就是說教學(xué)的重點(diǎn)在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強(qiáng)數(shù)學(xué)意識和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識的人才。

(5)多開展數(shù)學(xué)建?;顒雍透傎?,提高學(xué)生參與性。在高校內(nèi)部要多開展跟數(shù)學(xué)有關(guān)的活動和競賽以及專家講座等,一方面加強(qiáng)學(xué)生對數(shù)學(xué)建模的認(rèn)識,另一方面也提高了學(xué)生的參與性。通過專家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價值,也加強(qiáng)了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過數(shù)學(xué)建模競賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺。同時,競賽也可以讓學(xué)生在競賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過讓學(xué)生探究跟生活實際有關(guān)的例子,提高學(xué)生對數(shù)學(xué)建模的興趣,加強(qiáng)學(xué)生對模型應(yīng)用的直觀性認(rèn)識,促進(jìn)學(xué)校應(yīng)用型人才的培養(yǎng)。

總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類課程的融合,對于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運(yùn)用數(shù)學(xué)思想和數(shù)學(xué)方法分析問題、解決問題和抽象思維的能力。高校教師要加強(qiáng)數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實際問題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專業(yè)課的學(xué)習(xí)奠定堅實的數(shù)學(xué)基礎(chǔ)。

數(shù)學(xué)建模論文投稿篇十四

將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過程中去,是我們當(dāng)前開展應(yīng)用數(shù)學(xué)教育的未來發(fā)展趨勢,怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會經(jīng)濟(jì)的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實際問題解決中的重要作用,是我們當(dāng)前進(jìn)行應(yīng)用數(shù)學(xué)研究的核心問題,而建模思想在應(yīng)用數(shù)學(xué)中的運(yùn)用則能夠很好的解決這一問題。

數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實際問題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機(jī)地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問題的有效方法。事實上,數(shù)學(xué)發(fā)展的根本原動力,它的最初的根源,是來自客觀實際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來龍去脈,揭示數(shù)學(xué)概念和公式的實際來源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會生產(chǎn)力的不斷發(fā)展,多個學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運(yùn)用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會經(jīng)濟(jì)發(fā)展的各個行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應(yīng)用數(shù)學(xué)發(fā)展的新機(jī)遇。

數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計算機(jī)網(wǎng)絡(luò)在社會生活中的廣泛運(yùn)用,人們對于實踐問題的解決要求越來越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運(yùn)用帶來了前所未有的機(jī)遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識,開展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識,而且還能夠?qū)I(yè)知識同建模密切結(jié)合在一起,對于專業(yè)知識的有效掌握是非常有益的。

3.1充分重視建模的橋梁作用。

建模是實現(xiàn)數(shù)學(xué)知識與現(xiàn)實問題相聯(lián)系的橋梁與紐帶,通過進(jìn)行建模能夠有效的`將實際問題進(jìn)行簡化。在這一轉(zhuǎn)化的過程中,應(yīng)當(dāng)深入實際進(jìn)行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對象的獨(dú)特特征及規(guī)律,構(gòu)建起反映實際問題的數(shù)學(xué)關(guān)系,運(yùn)用數(shù)學(xué)理論進(jìn)行問題的解決。這正是各個學(xué)科之間進(jìn)行有效聯(lián)系的結(jié)合點(diǎn),通過引進(jìn)建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。

3.2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來。

我國當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計等幾個部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的建設(shè)以及其他學(xué)科對這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進(jìn)行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們在課堂上就能夠獲得更多的思考和討論的機(jī)會,能夠充分調(diào)動學(xué)生們的積極性,使其能夠立足實際進(jìn)行思考,這樣一來就形成了以實際問題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。

3.3積極參加數(shù)學(xué)模型課等相關(guān)課程與活動。

數(shù)學(xué)應(yīng)用綜合性的實驗,要求我們掌握數(shù)學(xué)知識的綜合性運(yùn)用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實例,然后學(xué)生上機(jī)實踐,強(qiáng)調(diào)學(xué)生的動手實踐。數(shù)學(xué)實驗課應(yīng)該說是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。

上述幾個部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強(qiáng)建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過程中認(rèn)真掌握數(shù)學(xué)理論知識,還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實踐過程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來看,加強(qiáng)創(chuàng)新意識以及將實際問題轉(zhuǎn)化為數(shù)學(xué)問題能力的培養(yǎng),提升綜合運(yùn)用本專業(yè)知識以來解決實踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。

[1]余荷香,趙益民.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].出國與就業(yè)(就業(yè)版),20xx(10).

[2]關(guān)淮海.培養(yǎng)數(shù)學(xué)建模思想與方法高職高專數(shù)學(xué)教改之趨勢[j].職大學(xué)報,20xx(02).

[3]李傳欣.數(shù)學(xué)建模在工程類專業(yè)數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].中國科教創(chuàng)新導(dǎo)刊,20xx(35).

[4]李秀林.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的探討[j].吉林省教育學(xué)院學(xué)報(學(xué)科版),20xx(08).

[5]吳健輝,黃志堅,汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教.學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報,20xx(04).

數(shù)學(xué)建模論文投稿篇十五

2.1、建立引導(dǎo)機(jī)制,激發(fā)學(xué)習(xí)動力。

2.2、建立轉(zhuǎn)化機(jī)制,促進(jìn)知識向能力的轉(zhuǎn)化。

2.3、建立協(xié)作機(jī)制,增強(qiáng)團(tuán)隊意識。

高校學(xué)生在平時的學(xué)習(xí)過程中,絕大多數(shù)情況下,基本上都是獨(dú)自學(xué)習(xí),與他人合作研究和解決問題機(jī)會很少.而在各種層次級別的數(shù)學(xué)建模競賽中,參賽學(xué)生要3人一組,以團(tuán)隊而不是個人身份參賽.在正式比賽之前,要按照學(xué)科、特長等因素尋找隊友,組成隊伍.在比賽期間,由于隊友經(jīng)常是來自不同專業(yè),知識能力水平各有所長,脾氣秉性各有特點(diǎn),需要在比賽時認(rèn)真溝通,相互協(xié)調(diào),合理分工,團(tuán)結(jié)協(xié)作共同完成整個比賽.為了比賽,在發(fā)生矛盾時,要學(xué)會忍耐和妥協(xié),而不能意氣用事.在整個比賽期間,求同存異,取長補(bǔ)短,優(yōu)勢互補(bǔ),最終合作完成任務(wù).這個過程,無形中就培養(yǎng)了學(xué)生的合作意識和團(tuán)隊精神,使學(xué)生親身感受到現(xiàn)代社會與人合作是大多數(shù)人成功的必要選擇.依托數(shù)學(xué)建模競賽,培養(yǎng)創(chuàng)新型人才的團(tuán)隊協(xié)作意識,建立培養(yǎng)人才的.合作交流機(jī)制,這是適應(yīng)社會和時代需要的人才培養(yǎng)過程中的重要環(huán)節(jié)之一。

2.4、建立溝通表達(dá)機(jī)制,提高學(xué)生的語言及文字表達(dá)能力。

2.5、建立問題導(dǎo)向機(jī)制,培養(yǎng)學(xué)生主動式學(xué)習(xí)的自主學(xué)習(xí)能力。

3.1、促進(jìn)了學(xué)生全面發(fā)展。

3.2、提高了學(xué)生的就業(yè)質(zhì)量。

數(shù)學(xué)建模論文投稿篇十六

就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對學(xué)生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動力。

(二)教學(xué)方法傳統(tǒng)化。

教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動參與學(xué)習(xí)。

二、建模在高等數(shù)學(xué)教學(xué)中的作用。

對學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進(jìn)行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動以及教研活動,其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識、實際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會對復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。

高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達(dá)能力。在實際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動地、客觀的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。

三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施。

(一)在公式中使用建模思想。

在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對計算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實例開展教學(xué)。

(二)講解習(xí)題的時候使用數(shù)學(xué)模型的方式。

課本例題使用建模思想進(jìn)行解決,老師通過對例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認(rèn)識在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。

(三)組織學(xué)生積極參加數(shù)學(xué)建模競賽。

一般而言,在競賽中可以很好地鍛煉學(xué)生競爭意識以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競賽,在實踐中鍛煉學(xué)生的實際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨(dú)自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學(xué)習(xí),改正錯誤,提升自身的能力。

四、結(jié)束語。

高等數(shù)學(xué)主要對學(xué)生從理論學(xué)習(xí)走向解決實際問題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對高數(shù)知識更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。

參考文獻(xiàn)。

[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等??茖W(xué)校學(xué)報,20xx(02):119—120。

[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。

[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長春教育學(xué)院學(xué)報,20xx(30):89,95。

[4]劉合財。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽學(xué)院學(xué)報,20xx(03):63—65。

數(shù)學(xué)建模論文投稿篇十七

走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡稱。

“走進(jìn)美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇是中國少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動。20xx年,由國際數(shù)學(xué)家大會組委會、中國數(shù)學(xué)會、中國教育學(xué)會、中國少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國三十多個城市近三十萬人參與了此項活動,在全國青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇活動是一項面對小學(xué)三年級至初中二年級學(xué)生的綜合性數(shù)學(xué)活動。通過“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對抗賽”等一系列內(nèi)容豐富的活動提高廣大中小學(xué)生的數(shù)學(xué)建模意識和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺地成為學(xué)習(xí)的主人,實現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過程的轉(zhuǎn)變,從而進(jìn)一步推動我國數(shù)學(xué)文化的傳播與普及。

“走美”活動已連續(xù)舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導(dǎo)員工作綱要(試行)》,向全國少年兒童推廣。

“走美”作為數(shù)學(xué)競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發(fā)展,近年來在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注。客觀地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。

1、活動對象。

全國各地小學(xué)三年級至初中二年級學(xué)生。

2、總成績計算。

筆試獲獎率:

一等獎5%,二等獎10%,三等獎15%。

3、筆試時間。

每年3月上、中旬。

報名截止時間:每年12月底。

走美杯比賽流程。

1、全國組委會下發(fā)通知,各地組委會開始組織工作。

2、學(xué)生到當(dāng)?shù)亟M委會報名,填寫《報名表》。

3、各地組委會將報名學(xué)生名單全部匯總至全國組委會。

4、全國“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國統(tǒng)一筆試)。

6、全國組委會公布初賽獲獎名單并頒發(fā)獲獎證書。

7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學(xué)數(shù)學(xué)交流活動。

8、各地按照組委會要求提交數(shù)學(xué)建模小論文。

9、前各地組委會上報參加全國總論壇學(xué)生名單。

10、全國總論壇和表彰活動。

【本文地址:http://mlvmservice.com/zuowen/13485331.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔