在平日里,心中難免會有一些新的想法,往往會寫一篇心得體會,從而不斷地豐富我們的思想。我們想要好好寫一篇心得體會,可是卻無從下手嗎?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的心得體會范文,我們一起來了解一下吧。
學數(shù)學心得體會篇一
數(shù)學是一門需要深思熟慮和不斷練習的學科。我在數(shù)學學習的過程中,逐漸領會到了一些學習心得和體會。在下面的文章中,我將就數(shù)學學習的方法、技巧、態(tài)度以及一些實踐經(jīng)驗來進行探討和總結。
第一,學習方法的選擇非常重要。我發(fā)現(xiàn),每個人在數(shù)學學習上有自己的優(yōu)勢和劣勢。有的人擅長理解和記憶概念,而有的人則擅長運用和推理定理。因此,我們應該找到適合自己的學習方法,發(fā)揮自己的優(yōu)勢。例如,我自己對數(shù)學運算和解題技巧比較熟悉,所以我更傾向于通過練習來加深對問題的理解和運用。而對于抽象的數(shù)學概念,我會選擇通過實例和圖形來幫助自己理解。總之,學習方法的選擇需要根據(jù)個人的情況來決定。
第二,定期復習是鞏固知識的關鍵。數(shù)學是一門層次分明的學科,新知識總是建立在舊知識的基礎上。如果沒有對舊知識進行及時的鞏固和復習,新知識就很難真正扎根。因此,我時常會抽出一些時間來復習之前學過的知識,通過做一些簡單的練習題來檢驗自己的掌握程度。這樣不僅可以鞏固舊知識,還可以提前預習新知識,更好地接受新的挑戰(zhàn)。
第三,正確的態(tài)度至關重要。數(shù)學學習過程中,很容易遇到一些困難和挫折。有時候會遇到一道解不出的題目,有時候會看不懂一篇復雜的證明。此時,我們不能放棄,更不能急躁。正確的態(tài)度是要耐心思考,發(fā)現(xiàn)問題所在,并找到解決問題的方法。同時,我們也要學會從失敗中吸取教訓,認識到失敗是成功的一部分。只有保持正確的態(tài)度,才能在數(shù)學學習中不斷進步。
第四,靈活運用多種資源?,F(xiàn)在,我們身邊有很多優(yōu)秀的數(shù)學資源,如教科書、習題集、數(shù)學網(wǎng)站等等。我們應該善于利用這些資源,幫助自己更好地學習數(shù)學。例如,我會通過教科書來學習和理解基本概念和定理,同時也會通過習題集來訓練和提高自己的解題能力。此外,我還會利用一些數(shù)學網(wǎng)站,如Khan Academy和Coursera等,來學習一些前沿的數(shù)學知識和應用。通過靈活運用多種資源,我們可以獲取更加全面和深入的數(shù)學知識。
第五,數(shù)學學習需要持之以恒。數(shù)學學習是一個長期的過程,沒有捷徑可走。只有持之以恒,才能在數(shù)學的道路上走得更遠。在學習中,我們應該時刻保持對數(shù)學的興趣和熱愛,不斷激發(fā)學習的動力。同時,我們也要有堅持不懈的毅力和耐心,不怕困難和挫折,勇敢地迎接數(shù)學的挑戰(zhàn)。只要堅持下去,最終一定能夠收獲到滿滿的成就感和快樂。
綜上所述,數(shù)學學習是一門需要用心去學、用腦去想的學科。通過選擇適合自己的學習方法、定期復習、正確的態(tài)度、靈活運用多種資源以及持之以恒,我們可以更好地學習數(shù)學,提高自己的數(shù)學水平。相信只要我們堅持不懈,就會在數(shù)學學習中取得令人滿意的進步。
學數(shù)學心得體會篇二
學習新課程,使我對新課程標準有了進一步的理解,對新教材有了一個新的認識,獲得了教材實驗操作上的一些寶貴經(jīng)驗。其中感觸最深的是新教材特別關注學生的全面發(fā)展。由原來過多地關注基礎知識和技能的形成轉變?yōu)樵趯W習基礎知識和技能的同時,更加關注學生的情感,態(tài)度、價值觀。新教材的編寫無論是從內容的呈現(xiàn)方式,還是頁面的設置都十分重視和體現(xiàn)學生已有的生活經(jīng)驗和興趣特點。努力為學生提供生動活潑,主動求知的生活材料與環(huán)境。
教材內容的安排、所選素材進量符合兒童實際。從兒童的現(xiàn)實生活和童真世界出發(fā)。圖文并茂,版式多樣、風格活潑,色彩明麗,能吸引學生閱讀,激發(fā)學習興趣。因此,面對耳目一新的教材。我們當教師的就應該理解教材目標,明白把握教材編排的特點,選用恰當?shù)慕虒W手段,努力為學生創(chuàng)造一個良好的有利益學生全面發(fā)展的教學情境。從而達到激發(fā)學習興趣,使學生積極主動的參與到教學中來。那下面就根據(jù)自己對課程標準的理解談點體會。起到拋磚引玉的作用,供老師參考。
一、創(chuàng)設親身體驗情境,激發(fā)學習興趣、培養(yǎng)學習的主動性。
心理學告訴我們,學生的學習積極性,很大程度取決于學習興趣。興趣是學習的先導,是推動學生掌握知識和獲得能力的一種強烈欲望。因此,教師在教學活動中就要用各種教學手段,努力為學生創(chuàng)設一種寬松、愉快、和諧的教學情境,引發(fā)學生積極思考,主動學習。新教材中例題,習題的安排都與學生的生活實際非常接近,許多情境圖完全可以通過學生實際活動,親身體驗來表現(xiàn)。因為學生通過親身實踐體驗得到的知識,學生理解得更深刻,記得更加牢固。同時學生也會感受到學習不是枯燥的,而是有趣的。所以教學過程中教師不一定用同一種模式,同一種方法。
一定非得讓學生走看明圖意來理解知識,學懂知識。而是完全可以根據(jù)實際情況采用游戲,表演等實際活動將情景圖所提供的內容進一步動作化,情景化,使學生全身心地置身于真實的數(shù)學活動情境中,增加實際體驗,親身感受數(shù)學。例如,新教材第9頁中長短的情景圖,教學時可這樣設計,先讓學生觀察身邊的物體,感知出物體有長短,從而抽象出長短的概念。然后通過操作探究出比較長短的一般方法。最后通過游戲活動,讓學生體驗比長短的方法,讓他們比一比兩人的手掌,比比身體的某一部位。也可讓他們比一比每步有多長,誰跳的遠。
或者用日常生活中的物品比一比。使學生進一步體驗到比長短的方法,進一步加深對長短概念的理解,使學生感捂到數(shù)學與實際生活的聯(lián)系。這樣的教學效果要比觀察圖好得多。此外,教師還可用現(xiàn)代化教學手段創(chuàng)設情境,把課本中的情景圖制作成動畫課件,充分利用它的形、聲、色、動、靜等功能,使靜態(tài)的畫面動作,抽象的知識形象化,具體化、渲染氣氛,創(chuàng)設學習情境。
二、創(chuàng)設求異情境,感悟計算方法,體現(xiàn)算法多樣。
算法多樣化,就是指同一個問題從不同的方面去思考,既不限于一種思路,也不局限于既定形式,而是尋求多種解決問題的思路和方法。新教材教學思想正是體現(xiàn)了算法多樣化的教學思想。因此教師在教學中要鼓勵學生大膽思考,用同一個問題積極尋求多種不同的思路,使之有所發(fā)現(xiàn),有所創(chuàng)新。讓學生充分暴露和展示思考問題的過程,發(fā)表獨特地見解。
對于學生的不同想法,教師要及時地給予肯定和表揚,使他們享受到成功的喜悅,增強創(chuàng)造性活動的信心。如新教材在編排“9加幾”的計算時,注意體現(xiàn)新的教學理念,設計的情境有利于學生了解現(xiàn)實生活中的數(shù)學,讓學生感受到數(shù)學與現(xiàn)實生活的密切聯(lián)系。本節(jié)課共安排了兩個例題,例一為我們提供的教學資源是學校開運動會的場景,通過學生們喝了一些飲料還有多少盒?引出不同的計算方法。例2展示的是“湊十法”的計算過程和方法。
因此,教師在教學時就要給學生創(chuàng)設求異情景。先出示學校運動會的場景圖,引導學生觀察,并把觀察到的結果說給同學聽。然后在感知情景圖的基礎上,教師即使提出問題:“要算還有多少盒飲料,你會算嗎?”把學生的注意力轉移到計算方法上。由于學生生活背景和思考的角度不同,所以使用的計算方法也不同,有的用點數(shù)法,有的用接數(shù)法,有的用“湊十法”,有的甚至會想出三種以上的計算方法。但不管什么算法,教師都要給予評價和保護。
讓學生在班內交流自己的算法和想法。然后通過“9+4”重點說明“湊十”的思維過程,最后引導學生比較各種算法的特點,讓學生選擇適合自己的方法,體現(xiàn)算法的多樣化。這樣既培養(yǎng)學生從多方面,不同角度思考問題的能力,同時學生的求異思維也得到了培養(yǎng)。
學數(shù)學心得體會篇三
數(shù)學是一門需要理性思維和邏輯推理的科學,作為一名學生,在學習數(shù)學的過程中,我深感數(shù)學知識的重要性。在數(shù)學學習的道路上,我體會到了很多,也取得了一些進步。通過探索和實踐,我認識到數(shù)學不僅是一門學科,更是一種思維方式和解決問題的能力。
學習數(shù)學,理論與實踐是不可分割的兩個方面。在學習數(shù)學理論的同時,我注重將其應用于實際生活中的問題。數(shù)學知識是融貫于生活中的,運用數(shù)學思維解決日常問題能夠提高數(shù)學學習的興趣和動力。通過參加數(shù)學競賽、解決實際問題以及運用數(shù)學工具進行分析和計算等方法,我感受到了數(shù)學的實用性和魅力。
在學習數(shù)學的過程中,克服困難和挑戰(zhàn)是必然的。數(shù)學知識內容龐雜且抽象,題目也常常讓人感到棘手。然而,在這些困難之中,我學會了堅持和勇敢。通過細心觀察問題,分析解題步驟,耐心進行推理等等,我逐漸掌握了解決數(shù)學問題的方法和技巧。當我成功解出一個復雜的數(shù)學題目時,成就感和喜悅感油然而生,激勵著我繼續(xù)學習和探索數(shù)學的奧秘。
數(shù)學學習不僅培養(yǎng)了我對邏輯的思維能力,還激發(fā)了我的創(chuàng)造力。數(shù)學問題的解決往往需要強調邏輯關系和思維的嚴密性。通過解決數(shù)學問題,我學會了運用廣義的觀察、抽象和推理等多種思維方式。這些思維方式對于解決其他學科中的問題以及實際生活中的各種挑戰(zhàn)都起到了積極的推動作用。同時,在數(shù)學學習過程中,我也有機會進行創(chuàng)新和探索,提出新的問題和解法,培養(yǎng)了自己的創(chuàng)造力和獨立思考能力。
通過數(shù)學學習,我不僅增加了知識的儲備,還鍛煉了思維的能力。數(shù)學讓我以一種全新的視角看待世界,學會了用邏輯思維去解決問題。我更加堅信,數(shù)學是一門強大的科學,也是人類文明進步的基石。在今后的學習和生活中,我將會繼續(xù)努力,不斷提高數(shù)學水平,用數(shù)學的智慧開拓更廣闊的未來。
學數(shù)學心得體會篇四
學習工程數(shù)學是每位工程師都需要掌握的基本技能。盡管數(shù)學在工程中的應用可能并不像其他學科學的那么深奧,但工程數(shù)學對于解決許多重要問題至關重要。在我學習工程數(shù)學的這段時間里,我已經(jīng)學到了許多學習技巧和其它重要的知識,對此我深感受益匪淺。
第二段:重要性
首先,我深刻地認識到了工程數(shù)學的重要性。工程數(shù)學能夠幫助我們理解和求解許多實際問題,例如航空航天、土木工程、機械工程以及許多其它領域。解決工程問題需要運用許多數(shù)學工具、公式和技巧,例如微積分、矩陣、概率以及統(tǒng)計學。工程數(shù)學的重要性在于其可以使我們更好地理解問題,從而為我們提供可行的解決方案。
第三段:挑戰(zhàn)
其次,我也意識到了學習工程數(shù)學的挑戰(zhàn)。已有很多人對工程數(shù)學持有有恐懼感。對我而言,最具挑戰(zhàn)性的方面是如何運用已學內容去解決實際問題。特別是在考試中,往往需要利用已有知識解決在短時間內出現(xiàn)的嚴肅問題。為了克服這種挑戰(zhàn),我學會了利用不同的學習技巧,例如練習、記憶、總結和應用。
第四段:應用
學習工程數(shù)學讓我更好地理解了數(shù)學與工程之間的聯(lián)系。其實,數(shù)學與工程的聯(lián)系是非常密切的,數(shù)學提供了解決工程實際問題的必要工具。例如,在工程中經(jīng)常要用到微積分來解決曲面方程式的導數(shù)問題。在工程設計中,要用到矩陣和線性方程組的知識。利用概率和統(tǒng)計學,可以解決關于隨機過程的問題。學習到這些應用知識,使我更加了解工程實際應用中的數(shù)學問題。
第五段:結論
在總結中,我相信學習工程數(shù)學的過程,不僅可以幫助我們學習另一種實用型技能,同時也提高了我們解決實際問題的能力。學習工程數(shù)學要求付出艱辛和努力,并且需要持之以恒。但是,一旦我們成功地掌握了這些技巧和知識,我們就會發(fā)現(xiàn)自己可以更好地理解和應對我們所面臨的工程問題。通過學習工程數(shù)學,我已經(jīng)開始明白這一點,并且相信我會在將來的職業(yè)生涯中更好地應用這些知識和技巧。
學數(shù)學心得體會篇五
本人在高中數(shù)學新課程培訓中認真學習了新課程標準,對于新課標有一定的心得體會,現(xiàn)具體匯報如下:
高中數(shù)學課程是義務教育或普通高級中學的一門主要課程,它從國際意識,時代需求,國民素質,個性發(fā)展的高度出發(fā),是對于數(shù)學與自然界,數(shù)學與人類社會的關系,認識數(shù)學的科學價值,文化價值,提高提出問題,分析問題,解決問題的能力,形成理性思維,發(fā)展智力和創(chuàng)新意識具有基礎性的作用。它是學習高中物理,化學,技術等課程和進一步學習的基礎。同時,它也是學生的終身發(fā)展,形成科學的世界觀,價值觀奠定基礎,對提高全民族素質具有意義??傮w目標中提出的數(shù)學知識(包括數(shù)學事實,數(shù)學活動經(jīng)驗)本人認為可以簡單的這樣表述:數(shù)學知識是“數(shù)與形以及演繹”的知識,所謂數(shù)學事實指的是能運用數(shù)學及其方法去解決的現(xiàn)實世界的實際問題,數(shù)學活動經(jīng)驗則是通過數(shù)學活動逐步積累起來的。
1、基本的數(shù)學思想
基本數(shù)學思想可以概括為三個方面:即“符號與變換的思想”,“集全與對應的思想”和“公理化與結構的思想”,這三者構成了數(shù)學思想的最高層次,對中小學而言,大致可分為十個方面:即符號思想,映射思想,化歸思想,分解思想,轉換思想,參數(shù)思想,歸納思想,類比思想,演繹思想和模型思想。圣于這些基本思想,在具體的教學中要注意滲透,從低年級開始滲透,但不必要進行理論概括。而所謂數(shù)學方法則與數(shù)學思想互為表里,密切相關,兩者都以一定的知識為基礎,反過來又促進知識的深化及形成能力。方法,是實施思想的技術手段;而思想,則是對應方法的精神實質和理論根據(jù)。就中小學數(shù)學而言,大致有以下十種:變換與轉化,分解與組合,映射與反映,,模型與構造,概括與抽象,觀察與實驗,比較與分類,類比與猜想,演繹與歸納,假說與證明等。
2、重視數(shù)學思維方法
高中數(shù)學應注重提高學生的數(shù)學思維能力,這是數(shù)學教育的基本目標之一。數(shù)學思維的特性:概括性,問題性,相似性,數(shù)學思維的結構和形式:結構是一個多因素的動態(tài)關聯(lián)系統(tǒng),可分成四個方面:數(shù)學思維的內容(材料與結果),基本形式,操作手段(即思維方法)以及個性品質(包括智力與非智力因互素的臨控等);其基本形式可分為邏輯思維,形象思維和直覺思維三種類型。
數(shù)學思維的一般方法;觀察與實驗,比較,分類與系統(tǒng)化,歸納演繹與教學歸納法,分析與綜合,抽象與概括,一般化與特殊化,模型化與具體化,類比與映射,聯(lián)想與猜想等。思維品質是評價和衡量學生思維優(yōu)劣的重要標志,主要表現(xiàn)為:思維的廣闊性,深刻性,靈活性和批判性,獨創(chuàng)性。
3、應用數(shù)學的意識
這個提法是以前大綱所沒有的,這幾年頗為流行,未見專門的說明。結合當前課改的實際情況,可以理解為“理論聯(lián)系實際”在數(shù)學教學中的實踐,或者理解為新大綱理念的“在解決問題中學習”的深化。新舊教材中。都配備有所謂的應用題。有許多內容已經(jīng)很陳舊。與現(xiàn)實生活相差甚遠。結合實際重新編寫應用題只是增強應用數(shù)學的意識的一部分,而絕非全部;增強應用數(shù)學的意識主要是指在教與學觀念轉變的前提下,突出主動學習,主動探究。教師有責任拓寬學生主動學習的時空,指導學生擷取現(xiàn)實生活中有助于數(shù)學學習的花朵,啟迪學生的應用意識,而學生則能自己主動探索,自己提問題,自己想,自己做,從而靈活運用所學知識,以及數(shù)學的思想方法去解決問題。
4、注重信息技術與數(shù)學課程的整合
高中數(shù)學課程應提倡實現(xiàn)信息技術與課程內容的有機整合,整合的基本原則是有利于學生認識數(shù)學的本質。在保證筆算訓練的全體細致,盡可能的使用科學型計算器,各種數(shù)學教育技術平臺,加強數(shù)學教學與信息技術的結合,鼓勵學生運用計算機,計算器等進行探索和發(fā)現(xiàn)。
5、建立合理的科學的評價體系
高中數(shù)學課程應建立合理的科學的評價體系,包括評價理念,評價內容,評價形式評價體制等方面。既要關注學生的數(shù)學學習的結果,也要關注他們學習的過程;既要關注學生數(shù)學學習的`水平,也要關注他們在數(shù)學活動中表現(xiàn)出來的情感態(tài)度的變化,在數(shù)學教育中,評價應建立多元化的目標,關注學生個性與潛能的發(fā)展。
學數(shù)學心得體會篇六
我相信很多人聽過一個謎題,在你面前有兩個神,一個天使一個惡魔,你不知道哪個是天使哪個是惡魔,同時你面前有兩條你不知道通往何處的路,一條通往天堂,一條通往地獄。但是我們知道天使只說真話,惡魔只說假話,現(xiàn)在你只能向你面前的某一個神問一個問題,請問怎么能夠問出通往天堂的路。
只需要問其中一個神:“另一個神會說哪條路去天堂?”。
假設你問的是天使,因為惡魔會騙人指向去地獄的路,天使只說實話。所以天使會如實的指向地獄的路。
假設你問的是惡魔,天使會指向去天堂的路,但是惡魔只說謊話,所以他會指向去地獄的路。
也就是說無論是你問的是什么神,他們都會指向去地獄的那條路。事件p為真,事件q為假時,p且q為假。仔細一想,天使說的話必定為真,惡魔說的話必定為假那我們那我們把他們兩個的話取且運算,就必定為假。
我在第一次解決這個問題時有一些驚訝,很多看上去很淺顯而又比較簡單的知識在應用時,我卻沒有任何意識,這就是因為我從來沒有去理解過這些知識。
從初中開始我們對函數(shù)就耳濡目染,學習了編程之后我對函數(shù)的理解就是輸入一個值進入函數(shù),函數(shù)就返回一個值。不過現(xiàn)在對函數(shù)的理解變?yōu)榱擞成洌瘮?shù)是從某一個集合映射到另一個集合的關系。在應用時,函數(shù)需要理解的概念不多。但是我們對函數(shù)必須有一些思考,不能廉價的認為函數(shù)就是某個公式然后代入數(shù)字計算。我們將函數(shù)想象成映射或者是轉換。
可以用集合,圖,矩陣來表示二元關系
關于離散數(shù)學中的關系,會出現(xiàn)以下幾個概念,二元關系,等價關系,整除關系。
第六章“圖”和第七章“樹及其應川”可以歸為“圖論”。在剛接觸到“圖”這一章的時候我是抱著好奇之心去學習的,因為這章都足關于“圖”,想了解一下和幾何圖形的差別,所以覺得善氏幾何的我應該能夠把它學好。但足不可否認,隨著知識的深入,這一章一定會比前面的更難理解,更難學。因此,上課的時候聽得格外認真,我才真正了解到它并不足枯燥乏味的,它的用途非常廣泛.并幾應用于我們整個日常生活中。比如:怎樣布線才能使每一部電話互相連通,并幾花費最?。繌氖赘侥钢葜莞淖疃搪肪€足什么?,n項任務怎樣才能最有效地由n個人完成?管道網(wǎng)絡中從源點到集匯點的單位時間最大流是多少?一個計算機芯片需要多少層才能使得同一層的路線互不相交?怎樣安排一個體育聯(lián)盟季度賽的口程表使其在最少的周數(shù)內完成?一位流動推銷員要以怎樣的順序到達每一個城市才能使得旅行時間最短?我們能用4種顏色來為每張地圖的各個區(qū)域著色并使得相鄰的區(qū)域具有不同的顏色嗎?這些問題以及其他一些實際問題都涉及“圖論”。這里所說的圖并不是幾何學中的圖形,而足客觀世界中某些具體事物間聯(lián)系的'一個數(shù)學抽象,用頂點代表事物,用邊表示各式物間的二元關系,如果所討論的事物之問有某種二元關系,我們就把相應的項點練成一條邊。這種由頂點及連接這些頂點的邊所組成的圖就是圖論中所研究的圖。由于它關系著客觀世界的事物,所以對于解決實際問題是相當有效的。哥尼斯堡橋問題(七橋問題),這個共名的數(shù)學難題.在經(jīng)過如此漫民的時間最終還是瑞士數(shù)學家歐拉利川圖論解決它并得出沒有一種方法使得從這塊陸地中的任意一塊開始,通過每一座橋恰好一次再回到原點。
樹是指沒有回路的連通圖。它是連通圖中最簡單的一類圖,許多問題對一般連通圖未能解決或者沒有簡單的方法,而對于樹,則己圓滿解決,幾方法較為簡單。而幾在許多不同領域中有著廣泛的應川。例如家譜圖就是其中之一。如果將每個人用一個項點來表示,并幾在父子之問連一條邊,便得到一個樹狀圖。圖論中最著名的應該就是圖的染色問題。這個問題的研究來源于著名的四色問題。四色問題是圖論中也許是全部數(shù)學中最出名、最難得一個問題之一。所謂四色猜想就足在平面中任何一張地圖,總可以用至多四種顏色給每一個國家染色,使得任何相鄰岡家的顏色是不同的。四色問題粗看起來似乎與我們所討論的圖沒有什么聯(lián)系。其實也是可以轉化為圖論中的問題來討淪。首先從地圖出發(fā)來構作一個圖,讓每一個項點代表地圖的一個區(qū)域,如果兩個區(qū)域有一段公共邊界線,就在相應的頂點之間連上一條邊。由于地圖中每一塊區(qū)域對應圖的一個頂點,兩個相鄰項點對應兩個相鄰的區(qū)域。所以對地圖染色使相鄰的區(qū)域染以不同的顏色相當于對圖的每個頂點染以相應的一種顏色,使得相鄰的頂點有不同的顏色??傊?,圖淪是數(shù)學科學的一個分支,而四色問題足典型的圖論課題。通過對圖淪的初步理解和認識,我深深地認識到,圖論的概念雖然有其直觀、通俗的方面.但是這許多口常生活川語被引入圖淪后就都有廠其嚴格、確切的含義。我們既要學會通過術語的通俗含義更快、更好地理解圖淪概念,又要注意保持術語起碼的嚴格。
對于有向樹,有當略去其所有的有向邊的方向時我們可以得到的無向圖如果是樹那么它就是有向樹。一棵平凡的有向樹,如果他的結點中恰有一個是入度為0的其他的入度都是1那么它就是一個根樹,也可以叫它外向樹。入度為0的結點就是根。出度為0的結點就是葉。出度大于0的就是內點。內點和根統(tǒng)稱為分支點。從根到任意一個結點的通路長度就可以反映出它的層數(shù),所有的結點中層數(shù)最大的就叫做高,反映到實際的幾何圖形上也可以看出高的實際意義與深度比較類似。圖在家族關系的描述里有如果一個結點到另外一個結點可達那么可以叫它之前的為祖先,后面的是后代,而對于直接相連的有著父親兒子以及兄弟之間的關系描述。如果再對樹的層級進行細分又可以有兄弟的描述。這里有規(guī)定了每一個層次上的結點的次序的根樹就可以叫它有序樹。在根樹的實際應用中有著k元樹的概念。如果每個分支點最多有k個兒子那么就可以叫它為k元樹。如果每個結點都有著k個兒子。那么t就是k元完全樹。對于有序的k元完全樹,我們又可以叫它為k元有序完全樹。特殊的,在k元完全樹里取其某個分支點作為根結點以及其全體后代形成的導出子樹又可以稱為是以那個點為根結點子樹。特殊的二元有序樹的每個結點可以有左子樹與右子樹。每個結點最多有兩個子樹。利用樹的性質以及握手定理可以得出k元完全樹的公式(k-1)*i=t-1。在這里的證明題目可以有著多種的解法??梢杂枚x列式,分別對葉以及分支點用歸納法,使用握手定力以及公式。要開拓思路。森林可以生成樹,根樹可以轉化為二元樹。根樹轉化為二元樹的重點在于保留父親與左邊第一個兒子的連線,同時還要將兄弟用從左到右的有向邊進行連接。轉化的要點在于弟弟變成右兒子。在此基礎上還有森林轉化為二元樹的算法。算法是先將森林中的每一棵樹都轉化為二元樹,再將剩下的每一棵二元樹作為左邊的二元樹的根的右子樹,直到所有的二元樹都連成一顆二元樹為止。
然后是樹的遍歷。樹的遍歷中有如果對其對根的操作進行分類,有先根次序、中根次序以及后根次序。顧名思義進行調用以及理解。
通過對于這門課的學習,使我理解了數(shù)學與計算機之間的很多聯(lián)系,鍛煉我們的思維方式,對待問題要多方面考慮。離散數(shù)學也是學習數(shù)學科學中所有高級課程的必經(jīng)之路,這門課將很多東西聯(lián)系了起來,也使我對于數(shù)學有了新的認識。
學數(shù)學心得體會篇七
近年來,考研日益升溫,研究生院校的數(shù)學專業(yè)成為眾多考生追逐的夢想。然而,數(shù)學作為一門理科學科,對學生的數(shù)理基礎要求極高,學習起來也充滿了挑戰(zhàn)。在我學習考研數(shù)學的過程中,我總結了幾點心得體會,希望能給后來的考生一些借鑒。
首先,要樹立正確的學習態(tài)度。數(shù)學是一門需要耐心和毅力的科學,學習它需要付出大量的時間和精力。因此,考生首先要調整好心態(tài),面對困難和挫折時要堅持不懈,遇到困難不退縮,要相信只要努力就一定能夠取得好的成績。
其次,確定學習目標和計劃。數(shù)學的學習需要有一個明確的目標和計劃,否則學習起來會很茫然。在制定學習目標時,要考慮自己的實際情況,合理分配時間和精力;在制定學習計劃時,要將整個學習過程合理安排,分解任務,確保每天都有充足的學習時間。
第三,注重基礎知識的學習。數(shù)學考研的內容非常廣泛,但中心核心還是基礎知識。因此,考生要從基礎知識開始學習,構建起一個牢固的知識體系,才能夠更好地理解和掌握后面的知識點。對于基礎知識的學習,可以通過參考教材、習題冊和網(wǎng)絡等多種方式,做到既廣泛又系統(tǒng)地學習。
第四,梳理思路,注重方法和技巧的學習。數(shù)學考研的題目往往有一定的難度,解題方法不唯一,需要考生靈活運用數(shù)學知識來解決問題。因此,考生需要梳理思路,善于運用各種方法和技巧解決問題??梢酝ㄟ^做大量的習題來提高解題能力,培養(yǎng)自己的思維靈活性。
最后,要進行合理的復習和總結。復習是學習過程中不可或缺的一部分,通過復習可以鞏固已學的知識,找出自己的不足之處,及時糾正錯誤??偨Y是復習的重要環(huán)節(jié),通過總結可以將知識點串聯(lián)起來,思路更加清晰。因此,考生要在復習時注重對知識的回顧和總結,可以制作知識點歸納表,方便隨時溫故知新。
學習考研數(shù)學需要長期堅持和勤奮學習,沒有捷徑可走。通過樹立正確的學習態(tài)度,確定學習目標和計劃,注重基礎知識的學習,梳理思路和掌握方法技巧,進行合理復習和總結,相信每個考生都能夠取得優(yōu)異的成績。希望我的這些心得體會可以對廣大考研數(shù)學學習者有所幫助,讓更多的人能夠實現(xiàn)自己的考研夢想。
學數(shù)學心得體會篇八
自認為數(shù)學學習成績優(yōu)秀的學生,在學校里無論大小考試我都能考95分以上,同學們都說我在數(shù)學學習方面有天份,數(shù)學老師也很喜歡我,經(jīng)常讓我?guī)退鲂┦虑?。那我是不是整天埋頭苦學,到處培優(yōu)呢?不是!我的學習任務是自選的,我想要去培優(yōu),也想要多做數(shù)學作業(yè)。因為做所有的事情我都能快樂地去面對,反正是要做,干嘛不快樂地去做呢?比如說期末考試的前一天晚上,同學們都在干什么?當然,都在家認認真真地復習了!我呢?剛剛從妹妹家里玩了一趟回來,現(xiàn)正在看著電視呢,媽媽要阻止我?沒門!小考小玩,大考大玩,不考不玩!我只復習了一些平時愛粗心的問題,考試成績果然不錯!我自認為除了白羅蘭,我就是全班數(shù)學第一!白羅蘭現(xiàn)在是我的競爭對手,她比我強!重要的是她比我踏實,學習比我認真,也因為我太愛偷懶了!一道加法原理我卻用了乘法原理做,結果錯了,但我相信自己的能力,在我心中,我就是第一!我擁有了好的習慣和好的'學習方法,我什么也做得了!我不喜歡那種太過謙虛的人,因為在這里,為什么要謙虛?一定要相信自己,沒有任何困難能難住我,因為我有一套好的學習方法:小考小玩,大考大玩。不考不玩,注重平時。事情盡量,一遍做好。解答難題,公式運用。學習主動,不要被動。復雜難題,多做為妙??鞓访鎸Γ魏问虑?。相信自己,就是第一。
學數(shù)學心得體會篇九
優(yōu)秀作文推薦!在傳統(tǒng)的小學數(shù)學教學中,學生認知的建構與知識的獲取之間往往有一道不可逾越的鴻溝,學生認知過程與知識結構不能協(xié)同發(fā)展。這學期,聽了我校幾位數(shù)學教師的課,他們在課堂教學中,為學生提供自主學習空間,讓學生置身于一定的情境之中,去體驗數(shù)學知識形成過程,促進學生主動發(fā)展,讓我記憶猶新。
學數(shù)學心得體會篇十
在過去的幾個世紀中,數(shù)學一直處于各類學科之首,不斷創(chuàng)造出具有挑戰(zhàn)性、獨創(chuàng)性的成果,從而為人類的發(fā)展注入了新的活力。在我學習數(shù)學簡史這門課程中,不僅增長了對數(shù)學思想的認識,也發(fā)現(xiàn)了更深層次的數(shù)學魅力,借此機會,我想分享我對數(shù)學簡史學習的心得與體會。
第一段:學習的初衷
在大學數(shù)學教學中,我們常常重視數(shù)學的應用,對各類數(shù)學工具進行探究與運用,但卻很少有機會理性地掌握數(shù)學的本質。數(shù)學簡史一課不僅將數(shù)學的發(fā)展經(jīng)過簡略而全面地地呈現(xiàn)出來,也讓我深入了解數(shù)學思想的精髓;更有意義的是,它激發(fā)了我對于數(shù)學知識的求知欲和創(chuàng)新思維,發(fā)掘出了我對于數(shù)學的熱愛。
第二段:數(shù)學文化的由來
數(shù)學的前身可以追溯到古代的人類社會,它們早期的應用以計算糧食儲備或待交易物資的總量為主,如今的計算機編程思想也源自這一傳統(tǒng)文化。我不僅在課程中了解到了各個時期古代數(shù)學家和他們的重要成果,還能看到他們的故事和文化背景,了解他們的數(shù)學觀念和方法,感受到這些驚人成就背后的智慧支撐,這讓我對數(shù)學有了更加深入的理解和新的啟示。
第三段:歐幾里得幾何研究
數(shù)學最為典型的代表——歐幾里得幾何,是一門在歐洲和其他地區(qū)廣受歡迎的古典幾何學。這門學科由歐幾里得在其歷史名著《幾何原本》中詳細講述,其中定義了一系列重要的公理和基本概念,并進行了推論和分析, 奠定了幾何學的基礎和推動了數(shù)學的發(fā)展。歐幾里得在幾何學上的貢獻是這門學科獨特性的體現(xiàn),同時也表現(xiàn)出數(shù)學的普遍性和普通性,這讓我深切認識到數(shù)學不僅是一個精密的工具,還是一種跨界思想和跨域知識的領域。
第四段:數(shù)學變革的推動
偉大的數(shù)學家們創(chuàng)造出了一種新的思想,促進數(shù)學的發(fā)展。例如,柯西和威爾遜的貝努里數(shù)及其和與因式分解公式的介紹給予了整個數(shù)學領域更多的啟示;開普勒和牛頓的力學理論更證明了數(shù)學在自然科學研究方面的重要性;而里米曼的微積分理論和龐加萊的拓撲學發(fā)現(xiàn)則開創(chuàng)了一個新的數(shù)學時代。這些名人的創(chuàng)新突破不僅對數(shù)學學科本身產(chǎn)生了深遠的影響,同時也創(chuàng)造了更多富有創(chuàng)意和挑戰(zhàn)性的學科。通過這些數(shù)學家的故事,我看到了數(shù)學的新發(fā)現(xiàn)之路和新鮮的探究領域,也更加理解了數(shù)學是如何伴隨著人類社會發(fā)展的。
第五段:總結與感悟
數(shù)學簡史這門課程不僅讓我理解了數(shù)學領域的發(fā)展過程,還讓我感受到數(shù)學的美和榮譽。我發(fā)現(xiàn)數(shù)學是一門充滿創(chuàng)造性和探索性的學科,它不僅是學科素養(yǎng)的核心,而且是實現(xiàn)科學和技術進步的關鍵所在。每個數(shù)字、每個公式都蘊含著豐富的文化、哲學和歷史背景,讓我對數(shù)學有了更加深刻的認知,也讓我更加崇拜這門學科。雖然學習數(shù)學簡史是一門具有挑戰(zhàn)性的學科,但我推薦它不僅因為它是一門學科的延伸,更重要的是它能夠讓人理性地感受和體會到數(shù)學的奧妙和魅力。
學數(shù)學心得體會篇十一
近年來,小班學習逐漸成為一種流行的教學模式,取得了顯著的成效。作為一位學生,我有幸能夠參與小班學習數(shù)學課程,并從中獲益良多。在這篇文章中,我將分享我在小班學習數(shù)學中所得到的心得體會。
首先,小班學習數(shù)學課程給了我更多的互動和參與的機會。在傳統(tǒng)的大班授課中,學生往往只是被動地接受老師的講解,缺乏參與感和交流機會。而在小班學習中,班級的規(guī)模更小,每位學生都有更多的機會提問和發(fā)言。我發(fā)現(xiàn),與老師和同學的積極互動使我更深入地理解了數(shù)學的概念和方法,也讓我在解題中能夠更加自信地表達自己的想法。
其次,小班學習數(shù)學課程提供了個性化的教學。在大班授課中,老師只能按照統(tǒng)一的進度和教學計劃,進行教學。而在小班學習中,老師可以更好地了解每個學生的學習狀況和需求,因此可以有針對性地調整教學方法和內容。我發(fā)現(xiàn),這種個性化教學能夠更好地滿足不同學生的需求,讓每個人都能夠在自己的學習節(jié)奏下得到更好的學習效果。
第三,小班學習數(shù)學課程提供了更多的實踐機會。在大班授課中,往往由于時間和資源的限制,學生們無法親自動手進行實踐操作。而在小班學習中,由于班級規(guī)模較小,老師可以更好地組織實踐活動,讓學生們能夠進行更多的實踐操作。我發(fā)現(xiàn),通過親身實踐,我更深刻地理解了數(shù)學的概念和原理,也更好地掌握了解題方法和技巧。
第四,小班學習數(shù)學課程強調團隊合作和互助。在大班授課中,學生們往往面臨競爭和壓力,很少有機會進行合作和互助。而在小班學習中,學生們可以分成小組進行合作學習和討論,互相幫助和支持。我發(fā)現(xiàn),通過與同學們的合作,我更好地理解了數(shù)學問題的解題思路,也鍛煉了與他人合作的能力。同時,與同學們的互助也讓我感受到團隊的力量和溫暖,讓我更愿意主動幫助他人,分享我的數(shù)學知識和經(jīng)驗。
最后,小班學習數(shù)學課程能夠激發(fā)學生的學習興趣和動力。在大班授課中,由于學生人數(shù)較多,往往難以個別關注到每個學生的學習情況,容易讓學生們產(chǎn)生學習無趣的心理。而在小班學習中,老師和同學們的積極參與和互動能夠激發(fā)學生的學習興趣和動力。我發(fā)現(xiàn),通過小班學習,我對數(shù)學的興趣和熱愛不斷增強,也更加愿意主動參與到課堂的學習和討論中。
綜上所述,小班學習數(shù)學課程帶給我更多的互動和參與機會,個性化的教學和實踐機會,以及強調團隊合作和互助的氛圍。這些特點使我在學習數(shù)學中收獲頗豐,不僅提高了數(shù)學成績,也培養(yǎng)了自信和合作的能力。我相信,在小班學習的環(huán)境下,每個學生都能夠找到適合自己學習的方法和節(jié)奏,展現(xiàn)自己的潛力和才華。
學數(shù)學心得體會篇十二
學習評價的主要目的是為了全面了解學生數(shù)學學習的過程和結果,激勵學生的學習和改進教師的教學。應建立評價目標多元、評價方法多樣的評價體系。評價要關注學生學習的結果,也要關注學習的過程;要關注學生數(shù)學學習的水平,也要關注學生在數(shù)學活動中所表現(xiàn)出來的情感與態(tài)度,幫助學生認識自我,盡力信心。
【本文地址:http://mlvmservice.com/zuowen/13478566.html】