七年級數(shù)學教案湘教版(優(yōu)質(zhì)19篇)

格式:DOC 上傳日期:2023-11-19 17:14:10
七年級數(shù)學教案湘教版(優(yōu)質(zhì)19篇)
時間:2023-11-19 17:14:10     小編:溫柔雨

教案應當具備邏輯性、針對性和可操作性,便于教師實施并促進學生學習。教案的編寫可以借鑒其他教師的經(jīng)驗和教學方法,但要根據(jù)自身情況進行適當調(diào)整。教案的好壞直接影響到教學效果,以下是一些教案范文,希望能夠幫助教師們提高備課水平。

七年級數(shù)學教案湘教版篇一

1、通過豐富的實例,學生進一步認識點、線、面、體的幾何特征,感受它們之間的關系。

2、培養(yǎng)學生操作、觀察、分析、猜測和概括等能力,同時滲透轉化、化歸、變換的思想。

3、養(yǎng)成學生積極主動的學習態(tài)度和自主學習的方式。

重點:認識點、線、面、體的幾何特征,感受它們之間的關系。

難點:在實際背景中體會點的含義。

圓柱、圓錐、正方體、長方體、球、棱柱、棱錐模型。

觀察、討論.讓學生共同體會“點動成線、線動成面、面動成體。

讓學生舉出更多的“點動成線、線動成面、面動成體”的例子。

小組合作學習,學生利用學具完成教科書第114頁練習(動手轉一轉)。

設計意圖:教師利用多媒體動態(tài)演示,讓學生主動參與學習活動,觀察感受,經(jīng)歷體驗圖形的變化過程,通過合作學習,感悟知識的生成、變化、發(fā)展,激發(fā)學生的聯(lián)想與再創(chuàng)造能力。學生自己動手實踐操作,加深學生印象,化解難度。

教師展示圖片(建筑或生活的實物等),讓學生找找生活中的平面、曲面、直線、點等。

讓學生找出生活中更多的包含平面、曲面、直線、曲線、點的例子。

1、課本112頁觀察,并回答它的問題。

引導學生觀察后得出結論:面與面相交得到線,線與線相交得到點。

2、113頁練習(提供實物,議一議,動手摸一摸),思考以下問題:

讓學生自己體會并小組討論得出點、線、面、體之間的關系。

2、閱讀教科書第119頁的實驗與探究,并思考有關問題。

七年級數(shù)學教案湘教版篇二

教學目標:

1、使學生從數(shù)學的角度認識放大與縮小現(xiàn)象。

2、知道圖形按一定的比放大或縮小后,只是大小發(fā)生了變化,形狀沒變,從而體會圖形相似變化的特點。

3、能在方格紙上按一定的比將簡單圖形放大或縮小。

教學重點:

使學生知道圖形按一定的比放大或縮小后,只是大小發(fā)生了變化,形狀沒變。

教學難點:

體會圖形相似變化的特點。

教學過程:

一、導入。

1、上兩節(jié)課我們學習了比例尺,知道比例尺表示的是圖上距離和實際距離的比,是按一定的比把實際距離進行放大或縮小。請同學們觀察教科書p55的圖。

2、說說圖中反映的的是什么現(xiàn)象?哪些是將土體放大了?哪些是將物體縮小了?生活中還存在許多放大與縮小的現(xiàn)象,這節(jié)課我們就來研究“圖形的放大與縮小”。

二、新授。

1、教學例4。

(1)。

出示例4,讓學生說說題中要求的按“2∶1”放大圖形什么意思?(按2∶1放大圖形也就是圖形的各邊放大到原來的2倍)。

(2)學生嘗試著畫出正方形和長方形放大后的圖形。

(3)。

畫直角三角形時,引導學生思考:直角三角形的斜邊不能看出是多少格,怎么辦?(只要把兩直角邊放大到原來的2倍,再連成封閉圖形就可以了)畫完后通過量一量的方式,發(fā)現(xiàn)放大后的斜邊的長度也是原來的2倍。

(4)。

觀察對比原圖形和放大后的圖形,說說有什么變化?(一個圖形按2∶1的比放大后,圖形各邊的長度放大到原來的2倍,但圖形的形狀沒變)。

2、例4的延伸。

(1)如果把放大后的這組圖形的各邊再按1∶3縮小,圖形又會發(fā)生什么變化?學生討論后的出:a、圖形縮小了,但形狀不變。

b、縮小后的圖形各條邊分別縮小到原來長度的。

(2)學生獨立畫出縮小后的圖形,指名投影展示。

3、歸納小結:圖形的各邊按相同的比放大或縮小后,只是大小發(fā)生了變化,形狀沒變。

4、學生獨立完成書p57的“做一做”,交流是怎樣思考與操作的,并及時糾正錯誤。

三、鞏固練習。

1、教科書p60練習九第1題,找出圖形a放大后的圖形。

2、教科書p60練習九第2題。

四、總結。

圖形的各邊按相同的比放大或縮小后,只是大小發(fā)生了變化,形狀沒變。

七年級數(shù)學教案湘教版篇三

一、選擇題:(本題共24分,每小題3分)。

在下列各題的四個備選答案中,只有一個答案是正確的,請你把正確答案前的字母填寫在相應的括號中.

1.若一個數(shù)的倒數(shù)是7,則這個數(shù)是().

a.-7b.7c.d.

2.如果兩個等角互余,那么其中一個角的度數(shù)為().

a.30°b.45°c.60°d.不確定。

3.如果去年某廠生產(chǎn)的一種產(chǎn)品的產(chǎn)量為100a件,今年比去年增產(chǎn)了20%,那么今年的產(chǎn)量為()件.

a.20ab.80ac.100ad.120a。

4.下列各式中結果為負數(shù)的是().

a.b.c.d.

5.如圖,已知點c是線段ab的中點,點d是cb的中點,那么下列結論中錯誤的是().

a.ac=cbb.bc=2cdc.ad=2cdd.

6.下列變形中,根據(jù)等式的性質(zhì)變形正確的是().

a.由,得x=2。

b.由,得x=4。

c.由,得x=3。

d.由,得。

7.如圖,這是一個馬路上的人行橫道線,即斑馬線的示意圖,請你根據(jù)圖示判斷,在過馬路時三條線路ac、ab、ad中最短的是().

a.acb.abc.add.不確定。

8.如圖,有一塊表面刷了紅漆的立方體,長為4厘米,寬為5厘米,高為3厘米,現(xiàn)在把它切分為邊長為1厘米的小正方形,能夠切出兩面刷了紅漆的正方體有()個.

a.48b.36c.24d.12。

二、填空題:(本題共12分,每空3分)。

9.人的大腦約有100000000000個神經(jīng)元,用科學記數(shù)法表示為.

10.在鐘表的表盤上四點整時,時針與分針之間的夾角約為度.

11.一個角的補角與這個角的余角的差等于度.

12.瑞士的教師巴爾末從測量光譜的數(shù)據(jù),,,…中得到了巴爾末公式,請你按這種規(guī)律寫出第七個數(shù)據(jù),這個數(shù)據(jù)為.

三、解答題:(本題共30分,每小題5分)。

13.用計算器計算:(結果保留3個有效數(shù)字)。

14.化簡:

15.解方程。

16.如示意圖,工廠a與工廠b想在公路m旁修建一座共用的倉庫o,并且要求o到a與o到b的距離之和最短,請你在m上確定倉庫應修建的o點位置,同時說明你選擇該點的理由.

拓展知識。

七年級數(shù)學教案湘教版篇四

為了讓學生通過實例了解數(shù)軸的概念和數(shù)軸的畫法,知道如何在數(shù)軸上表示有理數(shù)。為大家分享了七年級數(shù)學數(shù)軸的課件教學,歡迎借鑒!

教學目標。

1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應關系;

3,感受在特定的條件下數(shù)與形是可以相互轉化的,體驗生活中的數(shù)學。

教學難點。

數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)。

知識重點。

教學過程(師生活動)設計理念。

設置情境引入課題。

教師通過實例、課件演示得到溫度計讀數(shù).。

(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)。

(小組討論,交流合作,動手操作)創(chuàng)設問題情境,激發(fā)學生的學習熱情,發(fā)現(xiàn)生活中的數(shù)學點表示數(shù)的感性認識。

合作交流。

探究新知教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?

從而得出數(shù)軸的三要素:原點、正方向、單位長度體驗數(shù)形結合思想;只描述數(shù)軸特征即可,不用特別強調(diào)數(shù)軸三要求。

尋找規(guī)律。

歸納結論問題3:

1,你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?

3,哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?

4,每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?

(小組討論,交流歸納)。

歸納出一般結論,教科書第12的歸納。這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。

鞏固練習。

教科書第12頁練習。

小結與作業(yè)。

課堂小結請學生。

總結。

1,數(shù)軸的三個要素;

2,數(shù)軸的作以及數(shù)與點的轉化方法。

本課作業(yè)。

1,必做題:教科書第18頁習題1.2第2題。

2,選做題:教師自行安排。

教學反思:

1,數(shù)軸是數(shù)形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。

七年級數(shù)學教案湘教版篇五

1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。

2.掌握點到直線的距離的概念,并會度量點到直線的距離。

3.掌握垂線的性質(zhì),并會利用所學知識進行簡單的推理。

[教學重點與難點]。

1.教學重點:垂線的定義及性質(zhì)。

2.教學難點:垂線的畫法。

[教學過程設計]。

一、復習提問:

1、敘述鄰補角及對頂角的定義。

2、對頂角有怎樣的.性質(zhì)。

二.新課:

引言:

前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。

(一)垂線的定義。

當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

如圖,直線ab、cd互相垂直,記作,垂足為o。

請同學舉出日常生活中,兩條直線互相垂直的實例。

注意:

1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。

2、掌握如下的推理過程:(如上圖)。

反之,

(二)垂線的畫法。

探究:

1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?

2、經(jīng)過直線l上一點a畫l的垂線,這樣的垂線能畫出幾條?

3、經(jīng)過直線l外一點b畫l的垂線,這樣的垂線能畫出幾條?

畫法:

讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經(jīng)過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。

注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。

(三)垂線的性質(zhì)。

經(jīng)過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:

性質(zhì)1過一點有且只有一條直線與已知直線垂直。

練習:教材第7頁。

探究:

如圖,連接直線l外一點p與直線l上各點o,

a,b,c,……,其中(我們稱po為點p到直線。

l的垂線段)。比較線段po、pa、pb、pc……的長短,這些線段中,哪一條最短?

性質(zhì)2連接直線外一點與直線上各點的所有線段中,垂線段最短。

簡單說成:垂線段最短。

(四)點到直線的距離。

直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

如上圖,po的長度叫做點p到直線l的距離。

七年級數(shù)學教案湘教版篇六

1、大于0的數(shù)叫做正數(shù)(positivenumber)。

2、在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)(negativenumber)。

3、整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)(rationalnumber)。

4、人們通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸(numberaxis)。

5、在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。

6、一般的,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue)。

7、由絕對值的定義可知:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

8、正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。

9、兩個負數(shù),絕對值大的反而小。

10、有理數(shù)加法法則。

(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的負號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。

(3)一個數(shù)同0相加,仍得這個數(shù)。

11、有理數(shù)的加法中,兩個數(shù)相加,交換交換加數(shù)的位置,和不變。

12、有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

13、有理數(shù)減法法則。

減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

14、有理數(shù)乘法法則。

兩數(shù)相乘,同號得正,異號得負,并把絕對值向乘。

任何數(shù)同0相乘,都得0。

15、有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。

16、一般的,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。

17、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。

18、一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

19、有理數(shù)除法法則。

除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

20、兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。

21、求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponeht)。

22、根據(jù)有理數(shù)的乘法法則可以得出。

負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。

顯然,正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。

23、做有理數(shù)混合運算時,應注意以下運算順序:

(1)先乘方,再乘除,最后加減;。

(2)同級運算,從左到右進行;。

(3)如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。

24、把一個大于10數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學計數(shù)法。

25、接近實際數(shù)字,但是與實際數(shù)字還是有差別,這個數(shù)是一個近似數(shù)(approximatenumber)。

26、從一個數(shù)的左邊的第一個非0數(shù)字起,到末尾數(shù)字止,所有的數(shù)字都是這個數(shù)的有效數(shù)字(significantdigit)。

短時間提高數(shù)學成績的方法。

1、查查在知識方面還能做那些努力。關鍵的是做好知識的準備,考前要檢查自己在初中學習的數(shù)學知識是否還有漏洞,是否有遺忘或易混的地方;其次是對解題常犯錯誤的準備,再看一下自己的錯誤筆記,如果你沒有錯題本,那可以把以前的做過的卷子找出來。翻看修改的部分,那就是出錯的地方、爭取在答卷時,不犯或少犯過去曾犯過的錯誤。也就是錯誤不二犯。

2、一定要對自己、對未來充滿信心,心態(tài)問題是影響考試的最重要的原因。走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經(jīng)讀了一千天的初中,進行了三百多天的復習,做了三千至四千道初中數(shù)學題,養(yǎng)兵千日,用兵一時,現(xiàn)在是收獲的時候,自己會取得好成績的。

3、看完書后,把課本放起來,做習題,通過做習題來再一次檢查自己哪些地方做的不夠好,如果碰到不會的地方,可以再看課本,這樣以來,相信會給你留下深刻的印象。

數(shù)學學習方法。

1、基礎很重要。

是不是感覺數(shù)學都能考滿分的同學,連書都不用看,其實數(shù)學學霸更重視基礎。,數(shù)學公式,幾何圖形的性質(zhì),函數(shù)的性質(zhì)等,都是數(shù)學學習的基礎,甚至可以說基礎的好壞,直接決定中考數(shù)學成績的高低。

李現(xiàn)良表示,班里某位同學來找自己講題,其實題目并不難,但這位同學就是因為一些最基礎的知識沒有掌握透徹,導致做題的時候沒有思路?;A不牢、地動山搖,一個小小的知識漏洞可能導致你在整一個題中都沒有思路,非常危險。

2、錯題本很重要。

在所有科目中,數(shù)學這個科目最重要錯題本學習法。李現(xiàn)良同學也特別提倡大家整理錯題,李現(xiàn)良對于錯題本有一些小竅門,那就是平時如果堅持整理錯題,最終會導致自己錯題本很多很厚,我們可以定期復習,對于一些徹底掌握的,可以做個標記,以后就不用再次復習,這樣錯題本使用起來就會效率更高。

3、做題要多反思。

數(shù)學學習要大量做題去鞏固,但做題不要只講究數(shù)量,更要講究質(zhì)量,遇到經(jīng)典題,綜合性高的題目時,每道題寫完解答過程后,需要進行分析和反思,多問幾個為什么,這樣才能把題真正做透。

4、把數(shù)學知識形成體系。

數(shù)學學霸李現(xiàn)良表示,課本上的知識都是零散的,建議大家自己畫思維導圖把知識串起來,畫思維導圖的過程,就是不斷理解,讓知識變成結構的過程。

七年級數(shù)學教案湘教版篇七

在知識與方法上類似于數(shù)系的第一次擴張。

也是后繼內(nèi)容學習的基礎。

內(nèi)容定位:了解無理數(shù)、實數(shù)概念,了解(算術)平方根的概念;會用根號表示數(shù)的(算術)平方根,會求平方根、立方根,用有理數(shù)估計一個無理數(shù)的大致范圍,實數(shù)簡單的四則運算(不要求分母有理化)。

整體設計思路:無理數(shù)的引入----無理數(shù)的表示----實數(shù)及其相關概念(包括實數(shù)運算),實數(shù)的應用貫穿于內(nèi)容的始終。

學習對象----實數(shù)概念及其運算;學習過程----通過拼圖活動引進無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進而建立實數(shù)概念;以類比,歸納探索的`方式,尋求實數(shù)的運算法則;學習方式----操作、猜測、抽象、驗證、類比、推理等。

具體過程:首先通過拼圖活動和計算器探索活動,給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。

最后教科書總結實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關概念、運算律和運算性質(zhì)等。

第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動,讓學生感受無理數(shù)產(chǎn)生的實際背景和引入的必要性;借助計算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會無限逼近的思想;會判斷一個數(shù)是有理數(shù)還是無理數(shù)。

第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術平方根、平方根、立方根等概念和開方運算。

第四節(jié):公園有多寬:在實際生活和生產(chǎn)實際中,對于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過估算比較大小,檢驗計算結果的合理性等,其目的是發(fā)展學生的數(shù)感。

第五節(jié):用計算器開方:會用計算器求平方根和立方根。

經(jīng)歷運用計算器探求數(shù)學規(guī)律的活動,發(fā)展合情推理的能力。

第六節(jié):實數(shù)。

總結實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關概念、運算律和運算性質(zhì)等。

1、注重概念的形成過程,讓學生在概念的形成的過程中,逐步理解所學的概念;關注學生對無理數(shù)和實數(shù)概念的意義理解。

2、鼓勵學生進行探索和交流,重視學生的分析、概括、交流等能力的考察。

3、注意運用類比的方法,使學生清楚新舊知識的區(qū)別和聯(lián)系。

4、淡化二次根式的概念。

七年級數(shù)學教案湘教版篇八

1.理解加減消元法.

2.用加減消元法解二元一次方程組.

【過程與方法】。

由具體的簡單的用加減消元法解二元一次方程組的例子,體驗加減消元法,在此基礎上學習加減消元法的概念,再運用加減消元法解方程組,最后使同學們認識到解二元一次方程組時,要先觀察,再選擇合適的方法解二元一次方程組.

【情感態(tài)度】。

體驗先觀察,再選擇合適的方法是做數(shù)學題的重要技巧,也是今后解決工作、科學問題的重要技巧.

【教學重點】。

加減消元法.

【教學難點】。

選擇合適的方法解二元一次方程組.

問題3_________法和_________法都是二元一次方程組的兩種解法,它們都是通過消元使方程組轉化為________方程,只是消元方法不同.解二元一次方程組時,應根據(jù)方程組的具體情況選擇更________它的解法.

【教學說明】對問題1,可鼓勵學生獨立作業(yè),但也不反對分組討論.然后交流成果,引導學生歸納加減消元法.在此基礎上可組織學生完成教材p96練習1.

對問題2,這是本節(jié)課的重點和難點,要讓學生知道本題有兩種方法:(1)用加法消元法消去y.(2)用減法消元法消去x.

對問題3,可指導學生在閱讀教材p97后填空,然后加以正確理解.

二、思考探究,獲取新知。

思考什么叫做加減消元法?

【歸納結論】兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,把這兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程,這種方法叫做加減消元法,簡稱加減法.

七年級數(shù)學教案湘教版篇九

幾何圖形大?。洪L度、面積、體積等。

位置:相交、垂直、平行等。

2幾何體也簡稱體。包圍著體的是面。

3常見的立體圖形:柱體、椎體、球體等各部分不都在一個平面內(nèi)。

4平面圖形:在一個平面內(nèi)的圖形就是平面圖形。

5展開圖:識記一些常用的展開圖。圓柱/圓錐的側面展開圖;。

6點線面體:是組成幾何圖形的基本元素。

7直線、射線、線段。

線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

連接兩點間的線段的長度,叫做這兩點的距離。

經(jīng)過兩點有一條直線,并且只有一條直線。兩點確定一條直線。

8角。

9角的比較與運算。

角的平分線:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。

余角:如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角。

補角:如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。

性質(zhì):等角(同角)的補角相等。等角(同角)的余角相等。

七年級數(shù)學教案湘教版篇十

3、在教學中適當滲透分類討論思想。

重點:有理數(shù)的加法法則。

重點:異號兩數(shù)相加的法則。

教學過程:

二、講授新課。

1、同號兩數(shù)相加的法則。

學生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)。

教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少?

學生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)。

師生共同歸納法則:同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。

2、異號兩數(shù)相加的法則。

學生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)。

師生借此結論引導學生歸納異號兩數(shù)相加的法則:異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

3、互為相反數(shù)的兩個數(shù)相加得零。

教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少?

學生回答:經(jīng)過兩次運動后,物體又回到了原點。也就是物體運動了0m。

師生共同歸納出:互為相反數(shù)的兩個數(shù)相加得零。

教師:你能用加法法則來解釋這個法則嗎?

學生回答:可用異號兩數(shù)相加的法則來解釋。

一般地,還有一個數(shù)同0相加,仍得這個數(shù)。

三、鞏固知識。

課本p18例1,例2、課本p118練習1、2題。

四、總結。

運算的關鍵:先分類,再按法則運算;。

運算的步驟:先確定符號,再計算絕對值。

注意:要借用數(shù)軸來進一步驗證有理數(shù)的加法法則;異號兩數(shù)相加,首先要確定符號,再把絕對值相加。

五、布置作業(yè)。

課本p24習題1.3第1、7題。

七年級數(shù)學教案湘教版篇十一

比較正數(shù)和負數(shù)的大小。

1、借助數(shù)軸初步學會比較正數(shù)、0和負數(shù)之間的大小。

2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結構的初步構建。

負數(shù)與負數(shù)的比較。

一、復習:

1、讀數(shù),指出哪些是正數(shù),哪些是負數(shù)?

—85。6+0。9—+0—82。

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教學例3:

1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)。

2、出示例3:

(1)提問你能在一條直線上表示他們運動后的情況嗎?

(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。

(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數(shù)表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數(shù)對應起來。

(4)學生回答,教師在相應點的下方標出對應的數(shù),再讓學生說說直線上其他幾個點代表的數(shù),讓學生對數(shù)軸上的點表示的正負數(shù)形成相對完整的認識。

(5)總結:我們可以像這樣在直線上表示出正數(shù)、0和負數(shù),像這樣的直線我們叫數(shù)軸。

(6)引導學生觀察:

a、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?

(7)練習:做一做的第1、2題。

(二)教學例4:

1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。

2、學生交流比較的方法。

3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。

4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”

5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數(shù)比較大小時,絕對值大的負數(shù)反而小。

6、總結:負數(shù)比0小,所有的負數(shù)都在0的'左邊,也就是負數(shù)都比0小,而正數(shù)比0大,負數(shù)比正數(shù)小。

7、練習:做一做第3題。

三、鞏固練習。

1、練習一第4、5題。

2、練習一第6題。

3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。

四、全課總結。

(1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。

(2)負數(shù)比0小,正數(shù)比0大,負數(shù)比正數(shù)小。

第二課教學反思:

許多教師認為“負數(shù)”這個單元的內(nèi)容很簡單,不需要花過多精力學生就能基本能掌握。可如果深入鉆研教材,其實會發(fā)現(xiàn)還有不少值得挖掘的內(nèi)容可以向學生補充介紹。

例3——兩個不同層面的拓展:

1、在數(shù)軸上表示數(shù)要求的拓展。

數(shù)軸除了可以表示整數(shù),還可以表示小數(shù)和分數(shù)。教材例3只表示出正、負整數(shù),最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發(fā)現(xiàn)兩個數(shù)離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數(shù)軸上表示分數(shù),如—1/3、—3/2等,提升學生數(shù)形結合能力,為例4的教學打下夯實的基礎。

2、滲透負數(shù)加減法。

教材中所呈現(xiàn)的數(shù)軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數(shù)軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數(shù)知識是極為有利的。

例4——薄書讀厚、厚書讀薄。

薄書讀厚——負數(shù)大小比較的三種類型(正數(shù)和負數(shù)、0和負數(shù)、負數(shù)和負數(shù))。

例4教材只提出一個大的問題“比較它們的大小”,這些數(shù)的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數(shù)軸從左到右的順序就是數(shù)從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。

將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。

無論哪種比較方法,最終都可回歸到“數(shù)軸上左邊的數(shù)比右邊的數(shù)小?!奔词褂袑W生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數(shù)軸相關。因為當絕對值越大時,表示離原點的距離越遠,那么在數(shù)軸上表示的點也就在原點左邊越遠,數(shù)也就越小。所以,抓住精髓就能以不變應萬變。

在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。

七年級數(shù)學教案湘教版篇十二

教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據(jù)學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發(fā)學生的思維,針對疑點積極引導。

非常高興,能有機會和同學們共同學習

昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現(xiàn)情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學能幫老師算出最后結果?(學生在教師引導下回答)

我們已得出了每個小組的最后分數(shù),那么哪個小組是優(yōu)勝小組?(第一小組),回去以后,老師就把小獎品發(fā)給他們,相信他們一定會很高興。

同學們,這節(jié)課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現(xiàn)得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。

希望各組同學積極思考、踴躍發(fā)言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!

我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)

以上這些算是都是什么運算?(加法),兩個加數(shù)都是什么數(shù)?(有理數(shù)),這就是我們這節(jié)課要學習的有理數(shù)的加法(板書課題)。

剛才老師說要給七年級三班的優(yōu)勝組發(fā)獎品,老師手里有12本作業(yè)本,優(yōu)勝組共6人,老師將送出的作業(yè)本數(shù)占總數(shù)的幾分之幾?(二分之一)分數(shù)最低的一組共7人,他們每人交給老師一個作業(yè)本,占總數(shù)的幾分之幾?(十二分之七)如果,老師得到的作業(yè)本記為正數(shù),送出的作業(yè)本記為負數(shù),則老師手里的作業(yè)本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)

對于有理數(shù)的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規(guī)律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數(shù)相加?(引導學生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數(shù)加法的不同情況。

前兩個算式的加數(shù)在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數(shù)相加?(同號兩數(shù)相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數(shù)相加,6、7一個數(shù)同0相加)

同學們已把這7個算式分成了三種情況,下面我們分別探討規(guī)律。

(2) 異號兩數(shù)相加,其和有何規(guī)律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規(guī)律?(引導學生得出)

(3) 一個數(shù)同0相加,其和有什么規(guī)律呢?(易得出結論)

同學們經(jīng)過積極思考,探索出了解決有理數(shù)加法的規(guī)律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規(guī)律稱為有理數(shù)的加法法則。

同學們都很聰明,積極參與探索規(guī)律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續(xù)努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)

(活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)

同學們已經(jīng)基本掌握了有理數(shù)的加法法則,并會運用它,但七年級三班有幾位同學對這一內(nèi)容掌握的不是太好,以致在作業(yè)中出了毛病,他們?yōu)榇撕芸鄲馈OM蹅兺瑢W能幫幫他們,看哪位同學能像妙手回春的神醫(yī)華佗一樣藥到病 除!(師生共同治病)

看來同學們對有理數(shù)的加法已經(jīng)掌握得很好了,大家還記得前面那個難倒我們的有理數(shù)的加法題呢?那位同學能解決這個問題呢?(學生口述 師板書)。在大家的努力下,我們終于攻破了這個難關。

通過這節(jié)課的學習,大家有什么收獲?(學生回答)同學們都有很多收獲,老師認為收獲最多的是優(yōu)勝組的同學,因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優(yōu)勝組上臺領獎,大家掌聲鼓勵!

同學們,希望你們在未來的學習和生活中都能積極進取,獲得一個又一個的勝利。

七年級數(shù)學教案湘教版篇十三

2.初步培養(yǎng)學生觀察、分析及概括的能力;。

3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

教學建議。

一、教學重點、難點。

重點:通過具體例子了解公式、應用公式.

難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

二、重點、難點分析。

人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

三、知識結構。

本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議。

1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

教學設計示例。

公式。

五、教具學具準備。

投影儀,自制膠片。

六、師生互動活動設計。

教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.

七年級數(shù)學教案湘教版篇十四

1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;。

3、體驗數(shù)學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

正確分析實際問題中的不等關系,列出不等式組。

建立不等式組解實際問題的數(shù)學模型。

出示教科書第145頁例2(略)。

問:(1)你是怎樣理解“不能完成任務”的數(shù)量含義的?

(2)你是怎樣理解“提前完成任務”的數(shù)量含義的?

(3)解決這個問題,你打算怎樣設未知數(shù)?列出怎樣的不等式?

師生一起討論解決例2.

1、教科書146頁“歸納”(略).

2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

在討論或議論的基礎上老師揭示:

步法一致(設、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

七年級數(shù)學教案湘教版篇十五

1、教學方法:引導發(fā)現(xiàn)法、探究法、講練法、

(一)重點

準確掌握積的乘方的運算性質(zhì)、

(二)難點

用數(shù)學語言概括運算性質(zhì)、

(三)解決辦法

增強對三種運算性質(zhì)的理解,并運用對比的方法強化訓練以達到準確地區(qū)分、

一課時、

投影儀或電腦、自制膠片、

3、通過舉例來說明積的乘方性質(zhì)應如何正確使用,師生共練以達到熟練掌握、

4、多種題型的設計,讓學生能從不同的角度全面準確地理解和運用該性質(zhì)、

(一)明確目標

本節(jié)課重點學習積的乘方的運算性質(zhì)及其較靈活地運用、

(二)整體感知

(三)教學過程

1、創(chuàng)設情境,復習導入

前面我們學習了同底數(shù)冪的乘法、冪的乘方這兩個寨的運算性質(zhì),請同學們通過完成一組練習,來回顧一下這兩個性質(zhì):

填空:

七年級數(shù)學教案湘教版篇十六

師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).

問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?

請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。

(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)。

學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有-的新數(shù)。

七年級數(shù)學教案湘教版篇十七

本節(jié)教學的重點是掌握解一元一次不等式的步驟.難點是必須切實注意遇到要在不等式兩邊都乘以(或除以)同一負數(shù)時,必須改變不等號的方向.掌握一元一次不等式的解法是進一步學習一元一次方程組的解法以及一元二次不等式的解法的重要基礎.

1、一元一次不等式和一元一次方程概念的異同點

相同點:二者都是只含有一個未知數(shù),未知數(shù)的次數(shù)都是1,左、右兩邊都是整式.

不同點:一元一次不等式表示不等關系,一元一次方程表示相等關系.

(3)同方程類似,我們把或叫做一元一次不等式的標準形式.

2、一元一次不等式和一元一次方程解法的異同點

相同點:步驟相同,二者都是經(jīng)過變形,把左邊變成,右邊變?yōu)橐粋€常數(shù).

注意:(1)解方程的移項法則對解不等式同樣適用.

三、教法建議

七年級數(shù)學教案湘教版篇十八

2?培養(yǎng)學生準確地運算能力,并適當?shù)貪B透特殊與一般的辨證關系的思想。

重點和難點:正確地求出代數(shù)式的值。

一、從學生原有的認識結構提出問題。

1?用代數(shù)式表示:(投影)。

(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;。

(3)a與b的和的50%?

2?用語言敘述代數(shù)式2n+10的意義?

3?對于第2題中的代數(shù)式2n+10,可否編成一道實際問題呢?(在學生回答的基礎上,教師打投影)。

若學校有15個班(即n=15),則添置排球總數(shù)為多少個?若有20個班呢?

二、師生共同研究代數(shù)式的值的意義。

2?結合上述例題,提出如下幾個問題:

(1)求代數(shù)式2x+10的值,必須給出什么條件?

(2)代數(shù)式的值是由什么值的確定而確定的?

(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應注意什么呢?

下面教師結合例題來引導學生歸納,概括出上述問題的答案?(教師板書例題時,應注意格式規(guī)范化)。

例1當x=7,y=4,z=0時,求代數(shù)式x(2x-y+3z)的值?

解:當x=7,y=4,z=0時,

x(2x-y+3z)=7×(2×7-4+3×0)。

=7×(14-4)。

=70?

注意:如果代數(shù)式中省略乘號,代入后需添上乘號。

七年級數(shù)學教案湘教版篇十九

本節(jié)教學的重點是掌握單項式與多項式相乘的法則.難點是正確、迅速地進行單項式與多項式相乘的計算.本節(jié)知識是進一步學習多項式乘法,以及乘法公式等后續(xù)知識的基礎。

1.單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,即。

其中,可以表示一個數(shù)、一個字母,也可以是一個代數(shù)式.。

2.利用法則進行單項式和多項式運算時要注意:

3根據(jù)去括號法則和多項式中每一項包含它前面的符號,來確定乘積每一項的`符號;

設m=-4x2,a=2x2,b=3x,c=-1,

∴(-4x2)·(2x2+3x-1)。

=m(a+b+c)。

=ma+mb+mc。

=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。

=-8x4-12x3+4x2.。

這樣過渡較自然,同時也滲透了一些代換的思想.。

教學設計示例。

一、教學目標。

1.理解和掌握單項式與多項式乘法法則及推導.。

2.熟練運用法則進行單項式與多項式的乘法計算.。

3.培養(yǎng)靈活運用知識的能力,通過用文字概括法則,提高學生數(shù)學表達能力.。

4.通過反饋練習,培養(yǎng)學生計算能力和綜合運用知識的能力.。

5.滲透公式恒等變形的數(shù)學美.。

二、學法引導。

1.教學方法:講授法、練習法.。

類項,故在學習中應充分利用這種方法去解題.。

三、重點·難點·疑點及解決辦法。

(一)重點。

單項式與多項式乘法法則及其應用.。

(二)難點。

單項式與多項式相乘時結果的符號的確定.。

(三)解決辦法。

復習單項式與單項式的乘法法則,并注意在解題過程中將單項式乘多項式轉化為單項。

式乘單項式后符號確定的問題.。

四、課時安排。

一課時.。

五、教具學具準備。

投影儀、膠片.。

六、師生互動活動設計。

(一)明確目標。

本節(jié)課重點學習單項式與多項式的乘法法則及其應用.。

(二)整體感知。

(三)教學過程。

1.復習導入。

復習:

(1)敘述單項式乘法法則.。

(單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.)。

(2)什么叫多項式?說出多項式的項和各項系數(shù).

2.探索新知,講授新課。

簡便計算:

由該等式,你能說出單項式與多項式相乘的法則嗎?單項式與多項式乘法法則:單項式。

與多項式相乘,就是用單項式乘多項式的每一項,再把所得的積相加.。

例1計算:

例2化簡:

練習:錯例辨析。

(2)錯在單項式與多項式的每一項相乘之后沒有添上加號,故正確答案為。

(四)總結、擴展。

(99,河北)下列運算中,不正確的為()。

a.b.。

c.d.。

八、布置作業(yè)。

參考答案:

【本文地址:http://mlvmservice.com/zuowen/13421009.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔