作為一名默默奉獻的教育工作者,通常需要用到教案來輔助教學(xué),借助教案可以讓教學(xué)工作更科學(xué)化。那么我們該如何寫一篇較為完美的教案呢?那么下面我就給大家講一講教案怎么寫才比較好,我們一起來看一看吧。
2022年等比數(shù)列的前n項和教案精選一
等差數(shù)列為人教版必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的性質(zhì)與應(yīng)用等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
對于我校的高中學(xué)生,知識經(jīng)驗比較貧乏,雖然他們的智力發(fā)展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
【知識與技能】能夠準(zhǔn)確的說出等差數(shù)列的特點;能夠推導(dǎo)出等差數(shù)列的通項公式,并可以利用等差數(shù)列解決些簡單的實際問題。
【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,鍛煉知識、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。
【情感態(tài)度價值觀】通過對等差數(shù)列的研究,激發(fā)主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。
【重點】等差數(shù)列的概念,等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
【難點】等差數(shù)列通項公式的推導(dǎo),用“數(shù)學(xué)建?!钡乃枷虢鉀Q實際問題。
數(shù)學(xué)教學(xué)是師生之間交往活動共同發(fā)展的課程,結(jié)合本節(jié)課的特點,我采取指導(dǎo)自主學(xué)習(xí)方法,并在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
(一)復(fù)習(xí)導(dǎo)入
類比函數(shù),復(fù)習(xí)提問數(shù)列的函數(shù)意義,即數(shù)列可看作是定義域為正整數(shù)對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的解析式。
設(shè)計意圖:通過復(fù)習(xí),為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備,將課堂設(shè)置成為階梯型教學(xué),消除學(xué)生的畏難情緒。
(二)新課教學(xué)
教師創(chuàng)設(shè)具體情境,從具體事例中抽象出數(shù)學(xué)概念。
1.小明目前會100個單詞,他打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92
2.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25
通過練習(xí)1和2引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認知能力。
接下來由學(xué)生嘗試總結(jié)歸納等差數(shù)列的定義:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,
這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
(三)深化概念
教師請學(xué)生深度剖析等差數(shù)列的概念,進一步強調(diào)
①“從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)”);
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:an+1-an=d(n≥1)
同時為配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。其中第一個數(shù)列公差小于0,第二個數(shù)列公差大于0,第三個數(shù)列公差等于0。由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0。
(四)歸納通項公式
在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。由學(xué)生研究,分組討論上述四個等差數(shù)列的通項公式。通過總結(jié)對比找出共同點猜想一般等差數(shù)列的通向公式應(yīng)為怎樣的形式整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。
猜想等差數(shù)列的通項公式:an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法---迭加法:
在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。
利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個等式。
對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學(xué)要求
接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2,
即an=2n-1,以此來鞏固等差數(shù)列通項公式的運用。
同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。
(五)應(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。
先讓學(xué)生求等差數(shù)列的第20項、30項等。向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
此外還可以聯(lián)系實際建模問題,如建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型-----等差數(shù)列。
設(shè)置此題的目的:
1.加強同學(xué)們對應(yīng)用題的綜合分析能力;
2.通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;
3.再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建?!钡臄?shù)學(xué)思想方法。
(六)小結(jié)作業(yè)
小結(jié):(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達式。
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)。
2.等差數(shù)列的通項公式:an=a1+(n-1),會知三求一。
3.用“數(shù)學(xué)建?!彼枷敕椒ń鉀Q實際問題
作業(yè):現(xiàn)實生活中還有哪些等差數(shù)列的實際應(yīng)用呢?根據(jù)實際問題自己編寫兩道等差數(shù)列的題目并進行求解。
激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,以及認識到學(xué)習(xí)數(shù)學(xué)的重要性,將數(shù)學(xué)知識應(yīng)用于實際問題的解決不僅回顧加深了本堂課的教學(xué)內(nèi)容,開闊學(xué)生思維,還鍛煉了學(xué)生學(xué)以致用、觀察分析問題解決問題的能力。
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。
【本文地址:http://mlvmservice.com/zuowen/133340.html】