三角函數(shù)的概念說課稿范文(14篇)

格式:DOC 上傳日期:2023-11-19 07:56:12
三角函數(shù)的概念說課稿范文(14篇)
時(shí)間:2023-11-19 07:56:12     小編:翰墨

名人名言,蘊(yùn)含著深刻的道理和智慧,是我們學(xué)習(xí)和思考的重要素材。清晰明確自己總結(jié)的對(duì)象和內(nèi)容,以便更好地組織文章結(jié)構(gòu)。如果你對(duì)總結(jié)范文感興趣,不妨來看看以下這些,或許能給你帶來一些靈感和啟發(fā)。

三角函數(shù)的概念說課稿篇一

教學(xué)目標(biāo):

1、進(jìn)一步理解的概念,能從簡單的實(shí)際事例中,抽象出關(guān)系,列出解析式;

2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.

3、會(huì)求值,并體會(huì)自變量與值間的對(duì)應(yīng)關(guān)系.

4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.

5、通過的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.

教學(xué)重點(diǎn):了解的意義,會(huì)求自變量的取值范圍及求值.

教學(xué)難點(diǎn):概念的抽象性.

教學(xué)過程:

(一)引入新課:

上一節(jié)課我們講了的概念:一般地,設(shè)在一個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的.

生活中有很多實(shí)例反映了關(guān)系,你能舉出一個(gè),并指出式中的自變量與嗎?

1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.

2、為迎接新年,班委會(huì)計(jì)劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.

解:1、y=30n。

y是,n是自變量。

2、,n是,a是自變量.

(二)講授新課。

剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).

例1、求下列中自變量x的取值范圍.。

(1)(2)。

(3)(4)。

(5)(6)。

分析:在(1)、(2)中,x取任意實(shí)數(shù),與都有意義.

(3)小題的是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.

同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.

同理,第(6)小題也是二次根式,是被開方數(shù),。

解:(1)全體實(shí)數(shù)。

(2)全體實(shí)數(shù)。

(3)。

(4)且。

(5)。

(6)。

小結(jié):從上面的例題中可以看出的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零.

注意:有些同學(xué)沒有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.

但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成或.在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.

三角函數(shù)的概念說課稿篇二

一、說課內(nèi)容:

九年級(jí)數(shù)學(xué)下冊(cè)第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。

二、教材分析:

1、教材的地位和作用。

這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的'基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

2、教學(xué)目標(biāo)和要求:

(1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。

(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.

(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

4、教學(xué)難點(diǎn):抽象出實(shí)際問題中的二次函數(shù)關(guān)系。

三、教法學(xué)法設(shè)計(jì):

1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程。

2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程。

3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。

四、教學(xué)過程:

(一)復(fù)習(xí)提問。

1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?

(一次函數(shù),正比例函數(shù),反比例函數(shù))。

2.它們的形式是怎樣的?

(y=kx+b,ky=kx,ky=,k0)。

【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

(二)引入新課。

函數(shù)是研究兩個(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。

例1、(1)圓的半徑是r(cm)時(shí),面積與半徑之間的關(guān)系是什么?

解:s=0)。

解:y=x(20/2-x)=x(10-x)=-x2+10x(0。

解:y=100(1+x)2。

=100(x2+2x+1)。

=100x2+200x+100(0。

教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

(三)講解新課。

以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

1、強(qiáng)調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r0)。

3、為什么二次函數(shù)定義中要求a?

(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)。

4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.

5、b和c是否可以為零?

由例1可知,b和c均可為零.

若b=0,則y=ax2+c;。

若c=0,則y=ax2+bx;。

若b=c=0,則y=ax2.

注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

(1)y=3(x-1)2+1(2)s=3-2t2。

(3)y=(x+3)2-x2(4)s=10r2。

(5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。

(四)鞏固練習(xí)。

1.已知一個(gè)直角三角形的兩條直角邊長的和是10cm。

(1)當(dāng)它的一條直角邊的長為4.5cm時(shí),求這個(gè)直角三角形的面積;。

(2)設(shè)這個(gè)直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。

于x的函數(shù)關(guān)系式。

【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。

2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。

(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。

(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

【設(shè)計(jì)意圖】簡單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

五、評(píng)價(jià)分析。

本節(jié)的一個(gè)知識(shí)點(diǎn)就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的有效模型,增加對(duì)二次函數(shù)的感性認(rèn)識(shí),側(cè)重點(diǎn)通過兩個(gè)實(shí)際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進(jìn)一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對(duì)于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵(lì)。

三角函數(shù)的概念說課稿篇三

教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。

二、教學(xué)目標(biāo)。

理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。

通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

三、重難點(diǎn)分析確定。

一、教學(xué)基本思路及過程。

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、學(xué)情分析。

一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。

三、教法、學(xué)法。

1、本節(jié)課采用的方法有:

直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。

2、采用這些方法的理論依據(jù):

我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。

三角函數(shù)的概念說課稿篇四

理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化.

理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會(huì)利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.

終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.

一、問題.

1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?

2、在平面直角坐標(biāo)系內(nèi)角分為哪幾類?與終邊相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實(shí)數(shù)有什么樣的關(guān)系?

4、弧度制下圓的弧長公式和扇形的面積公式是什么?

5、任意角的三角函數(shù)的定義是什么?在各象限的符號(hào)怎么確定?

6、你能在單位圓中畫出正弦、余弦和正切線嗎?

7、同角三角函數(shù)有哪些基本關(guān)系式?

二、練習(xí).

1.給出下列命題:

(1)小于的角是銳角;

(2)若是第一象限的角,則必為第一象限的角;

(3)第三象限的角必大于第二象限的角;

(4)第二象限的角是鈍角;

(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

(6)角2與角的終邊不可能相同;

2.設(shè)p點(diǎn)是角終邊上一點(diǎn),且滿足則的值是。

4.若則角的終邊在象限。

5.在直角坐標(biāo)系中,若角與角的終邊互為反向延長線,則角與角之間的關(guān)系是。

6.若是第三象限的角,則-,的終邊落在何處?

例1.如圖,分別是角的終邊.

(1)求終邊落在陰影部分(含邊界)的所有角的集合;

(2)求終邊落在陰影部分、且在上所有角的集合;

(3)求始邊在om位置,終邊在on位置的所有角的集合.

例2.

(1)已知角的終邊在直線上,求的值;

(2)已知角的終邊上有一點(diǎn)a,求的值。

例3.若,則在第象限.

1、若銳角的終邊上一點(diǎn)的坐標(biāo)為,則角的弧度數(shù)為.

2、若,又是第二,第三象限角,則的取值范圍是.

3、一個(gè)半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是弧度或角度,該扇形的面積是.

4、已知點(diǎn)p在第三象限,則角終邊在第象限.

5、設(shè)角的終邊過點(diǎn)p,則的值為.

6、已知角的終邊上一點(diǎn)p且,求和的值.

1、經(jīng)過3小時(shí)35分鐘,分針轉(zhuǎn)過的角的弧度是.時(shí)針轉(zhuǎn)過的角的弧度數(shù)是.

2、若點(diǎn)p在第一象限,則在內(nèi)的取值范圍是.

3、若點(diǎn)p從(1,0)出發(fā),沿單位圓逆時(shí)針方向運(yùn)動(dòng)弧長到達(dá)q點(diǎn),則q點(diǎn)坐標(biāo)為.

4、如果為小于360的正角,且角的7倍數(shù)的角的終邊與這個(gè)角的終邊重合,求角的值.

三角函數(shù)的概念說課稿篇五

函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。

二、教學(xué)目標(biāo)。

理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。

通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

三、重難點(diǎn)分析確定。

一、教學(xué)基本思路及過程。

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、學(xué)情分析。

一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。

三、教法、學(xué)法。

1、本節(jié)課采用的方法有:

直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。

2、采用這些方法的理論依據(jù):

我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。

三角函數(shù)的概念說課稿篇六

導(dǎo)數(shù)是研究現(xiàn)代科學(xué)技術(shù)必不可少的工具,是進(jìn)一步學(xué)習(xí)數(shù)學(xué)和其他自然科學(xué)的基礎(chǔ),在物理學(xué)、經(jīng)濟(jì)學(xué)等領(lǐng)域都有廣泛的應(yīng)用。對(duì)于中學(xué)階段而言,導(dǎo)數(shù)是研究函數(shù)的有力工具,在求函數(shù)的單調(diào)性、極值、曲線的切線以及一些優(yōu)化問題時(shí)有著廣泛的應(yīng)用,同時(shí)對(duì)研究幾何、不等式起著重要作用.導(dǎo)數(shù)的概念毫無疑問是教學(xué)的關(guān)鍵,考慮到學(xué)生的可接受性,教材中并沒有引進(jìn)極限概念,而是通過實(shí)例引導(dǎo)學(xué)生經(jīng)歷由平均變化率到瞬時(shí)變化率的過程,直至建立起導(dǎo)數(shù)的數(shù)學(xué)模型。而從平均變化率到瞬時(shí)變化率,教材中所選取的實(shí)例是曲線上一點(diǎn)處的切線和瞬時(shí)速度、瞬時(shí)加速度,筆者以為從學(xué)生的知識(shí)背景出發(fā),與其用切線來引入導(dǎo)數(shù),還不如將之視為導(dǎo)數(shù)知識(shí)的.幾何解釋,因此教學(xué)處理時(shí)采用數(shù)值逼近、幾何直觀感受、解析式抽象三種方式實(shí)現(xiàn)由平均變化率到瞬時(shí)變化率的過渡。

教學(xué)時(shí)需關(guān)注:一是邏輯主線是以問題為背景,按照“問題情境—建立模型—解釋應(yīng)用與拓展”的程序展開;二是學(xué)生極限思想的形成,需設(shè)計(jì)活動(dòng)讓學(xué)生經(jīng)歷從平均變化率到瞬時(shí)變化率的過程,先通過求物體在某一時(shí)刻的平均速度的極限去得出瞬時(shí)速度,再由此抽象出函數(shù)在某點(diǎn)的平均變化率的極限就是瞬時(shí)變化率的的模型,并將瞬時(shí)變化率定義為導(dǎo)數(shù);三是從特殊到一般,通過若干個(gè)特殊時(shí)刻的瞬時(shí)速度過渡到任意時(shí)刻的瞬時(shí)速度;從物體運(yùn)動(dòng)的平均速度的極限是瞬時(shí)速度過渡到函數(shù)的平均變化率的極限是瞬時(shí)變化率。

1、知識(shí)與技能目標(biāo):

理解并能復(fù)述導(dǎo)數(shù)的概念,掌握利用求函數(shù)在某點(diǎn)的平均變化率的極限實(shí)現(xiàn)求導(dǎo)數(shù)的基本步驟,初步學(xué)會(huì)求解簡單函數(shù)在一點(diǎn)處的切線方程。

2、過程與方法目標(biāo):

通過數(shù)值逼近計(jì)算的方法經(jīng)歷從平均變化率到瞬時(shí)變化率的過程,并在歸納抽象的過程中建構(gòu)導(dǎo)數(shù)的概念,嘗試幾何解釋的過程中領(lǐng)悟數(shù)學(xué)發(fā)現(xiàn)的全過程。

3、情感、態(tài)度、價(jià)值觀目標(biāo):

通過數(shù)學(xué)建模的過程感受數(shù)學(xué)研究方法,并在使用手持技術(shù)過程中改善學(xué)習(xí)方法,即初步形成向技術(shù)學(xué)數(shù)學(xué)的基本理念。

教學(xué)重點(diǎn)。

數(shù)值逼近法生成建構(gòu)導(dǎo)數(shù)概念及導(dǎo)數(shù)的計(jì)算。

教學(xué)難點(diǎn)。

本節(jié)課需要用到的知識(shí)儲(chǔ)備包括平均變化率、直線的斜率、物理中物體運(yùn)動(dòng)的瞬時(shí)速度、解析幾何中的切線等,而所要用到的歸納、概括、類比、抽象思維能力等也已具備,特別地實(shí)驗(yàn)班的學(xué)生均能熟練操作圖形計(jì)算器,也多次經(jīng)歷過數(shù)學(xué)再創(chuàng)造的過程,對(duì)“問題情境—建立模型—解釋應(yīng)用與拓展”這樣的學(xué)習(xí)程序并不陌生,這些都是開展本節(jié)課學(xué)習(xí)的基礎(chǔ)。

三角函數(shù)的概念說課稿篇七

函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。

本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、重難點(diǎn)分析。

根據(jù)對(duì)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。

三、學(xué)情分析。

1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。

四、目標(biāo)分析。

1、理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

2、通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。

3、通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

五、教法學(xué)法。

本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動(dòng)的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程。

學(xué)法方面,學(xué)生通過對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

六、教學(xué)過程。

(一)創(chuàng)設(shè)情景,引入新課。

情景1:提供一張表格,把上次運(yùn)動(dòng)會(huì)得分前10的情況填入表格,我報(bào)名次,學(xué)生提供分?jǐn)?shù)。

名次(得分)。

情景3:某市一天24小時(shí)內(nèi)的氣溫變化圖:(圖略)。

提問(1):這三個(gè)例子中都涉及到了幾個(gè)變化的量?(兩個(gè))。

提問(2):當(dāng)其中一個(gè)變量取值確定后,另一個(gè)變量將如何?(它的值也隨之唯一確定)。

提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題。

[設(shè)計(jì)意圖]在創(chuàng)設(shè)本課開頭情境1、2的時(shí)候,我并沒有運(yùn)用書中的前兩個(gè)例子。第一個(gè)例子我改成提供給學(xué)生一張運(yùn)動(dòng)會(huì)成績統(tǒng)計(jì)單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個(gè)例子我改成一道簡單的速度與時(shí)間問題,是因?yàn)閷W(xué)生對(duì)重力加速度的問題還不是很熟悉。同時(shí)這兩個(gè)例子并沒有改變課本用三個(gè)實(shí)例分別代表三種表示函數(shù)方法的意圖。這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點(diǎn)。

(二)探索新知,形成概念。

1、引導(dǎo)分析,探求特征。

思考:如何用集合的語言來闡述上述三個(gè)問題的共同特征?

[設(shè)計(jì)意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個(gè)角度思考問題,進(jìn)入本節(jié)課的重點(diǎn)。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時(shí)對(duì)學(xué)生進(jìn)行指引。

提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個(gè)問題都涉及到了兩個(gè)集合,具體略)。

[設(shè)計(jì)意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。

提問(5):兩個(gè)集合的元素之間具有怎樣的關(guān)系?(對(duì)應(yīng))。

及時(shí)給出單值對(duì)應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對(duì)應(yīng)。

提問(6):現(xiàn)在你能從集合角度說說這三個(gè)問題的共同點(diǎn)嗎?

[設(shè)計(jì)意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。

上述一系列問題,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng),生生互動(dòng)中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點(diǎn)。

3、探求定義,提出注意。

提問(7):你覺得這個(gè)定義中應(yīng)注意哪些問題?

[設(shè)計(jì)意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。

4、例題剖析,強(qiáng)化概念。

例1、判斷下列對(duì)應(yīng)是否為函數(shù):

[設(shè)計(jì)意圖]通過例1的教學(xué),使學(xué)生體會(huì)單值對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。

例2、(1);(2)y=x-1;(3);[設(shè)計(jì)意圖]首先對(duì)求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強(qiáng)調(diào)只有對(duì)應(yīng)法則與定義域相同的兩個(gè)函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號(hào)的本質(zhì)內(nèi)涵。

例3、試求下列函數(shù)的定義域與值域:

[設(shè)計(jì)意圖]讓學(xué)體會(huì)理解函數(shù)的三要素。

5、鞏固練習(xí),運(yùn)用概念。

書本練習(xí)p24:1,2,3,4。

6、課堂小結(jié),提升思想。

引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對(duì)本節(jié)課有一個(gè)整體把握,將對(duì)學(xué)生形成的知識(shí)系統(tǒng)產(chǎn)生積極的影響。

七、教學(xué)評(píng)價(jià)。

1、我通過對(duì)一系列問題情景的設(shè)計(jì),讓學(xué)生在問題解決的過程中體驗(yàn)成功的樂趣,實(shí)現(xiàn)對(duì)本課重難點(diǎn)的突破。

2、為使課堂形式更加豐富,也可將某些問題改成判斷題。

4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。

三角函數(shù)的概念說課稿篇八

1、教材的地位與作用:《同角三角函數(shù)的基本關(guān)系》是學(xué)習(xí)三角函數(shù)定義后安排的一節(jié)繼續(xù)深入學(xué)習(xí)的內(nèi)容,是求三角函數(shù)值,化簡三角函數(shù)式,證明三角恒等式的基本工具,是整個(gè)三角函數(shù)的基礎(chǔ),起承上啟下的作用,同時(shí),它體現(xiàn)的數(shù)學(xué)思想方法在整個(gè)中學(xué)學(xué)習(xí)中起重要作用。

2、教學(xué)目標(biāo)的確定及依據(jù)。

a、知識(shí)與技能目標(biāo):通過觀察猜想出兩個(gè)公式,運(yùn)用數(shù)形結(jié)合的思想讓學(xué)生掌握公式的推導(dǎo)過程,理解同角三角函數(shù)的基本關(guān)系式,掌握基本關(guān)系式在兩個(gè)方面的應(yīng)用:

1)已知一個(gè)角的一個(gè)三角函數(shù)值能求這個(gè)角的其他三角函數(shù)值;

2)證明簡單的三角恒等式。

b、過程與方法:培養(yǎng)學(xué)生觀察——猜想——證明的科學(xué)思維方式;通過公式的推導(dǎo)過程培養(yǎng)學(xué)生用舊知識(shí)解決新問題的思想;通過求值、證明來培養(yǎng)學(xué)生邏輯推理能力;通過例題與練習(xí)提高學(xué)生動(dòng)手能力、分析問題解決問題的能力以及其知識(shí)遷移能力。

c、情感、態(tài)度與價(jià)值觀:經(jīng)歷數(shù)學(xué)研究的過程,體驗(yàn)探索的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣。

3、教學(xué)重點(diǎn)和難點(diǎn)。

重點(diǎn):同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用。

難點(diǎn):同角三角函數(shù)函數(shù)基本關(guān)系在解題中的靈活選取及使用公式時(shí)由函數(shù)值正、負(fù)號(hào)的選取而導(dǎo)致的角的范圍的討論。

學(xué)生剛開始接觸三角函數(shù)的內(nèi)容,學(xué)習(xí)了任意角的三角函數(shù),對(duì)這一方面的內(nèi)容既感到新鮮又感到陌生,很有好奇心,躍躍欲試,學(xué)習(xí)熱情高漲。

1、教法分析:采取誘思探究性教學(xué)方法,在教學(xué)中提出問題,創(chuàng)設(shè)情景引導(dǎo)學(xué)生主動(dòng)觀察、思考、類比、討論、總結(jié)、證明,讓學(xué)生做學(xué)習(xí)的主人,在主動(dòng)探究中汲取知識(shí),提高能力。

2、學(xué)法分析:從學(xué)生原有的知識(shí)和能力出發(fā),在教師的帶領(lǐng)下,通過合作交流,共同探索,逐步解決問題.數(shù)學(xué)學(xué)習(xí)必須注重概念、原理、公式、法則的形成過程,突出數(shù)學(xué)本質(zhì)。

例2、設(shè)計(jì)意圖:

(1)分子、分母是正余弦的一次(或二次)齊次式,注意所求值式的分子、分母均為一次齊次式,把分子、分母同除以,將分子、分母轉(zhuǎn)化為的代數(shù)式;還可以利用商數(shù)關(guān)系解決。

如此設(shè)計(jì)教學(xué)過程,既復(fù)習(xí)了上一節(jié)的內(nèi)容,又充分利用舊知識(shí)帶出新知識(shí),讓學(xué)生明白到數(shù)學(xué)的知識(shí)是相互聯(lián)系的,所以每一節(jié)內(nèi)容都應(yīng)該把它牢固掌握;在公式的推導(dǎo)中,教師是用創(chuàng)設(shè)問題的形式引導(dǎo)學(xué)生去發(fā)現(xiàn)關(guān)系式,多讓學(xué)生動(dòng)手去計(jì)算,體現(xiàn)了&qut教師為引導(dǎo),學(xué)生為主體,體驗(yàn)為紅線,探索得材料,研究獲本質(zhì),思維促發(fā)展&qut的教學(xué)思想。通過兩種不同的例題的對(duì)比,讓學(xué)生能夠明白到關(guān)系式中的開方,是需要考慮正負(fù)號(hào),而正負(fù)號(hào)是與角的象限有關(guān),角的象限題目可以直接給出來,但有時(shí)是需要已知條件來推出角可能所在的象限,通過分析,把本節(jié)課的教學(xué)難點(diǎn)解決了。

由于課堂在完成例題及變式時(shí)要給予學(xué)生充分的時(shí)間思考與嘗試,故對(duì)學(xué)生的檢測只能安排在課后的作業(yè)中,作業(yè)可以檢測學(xué)生對(duì)本節(jié)課內(nèi)容掌握的'情況,能否靈活運(yùn)用知識(shí)進(jìn)行合理的遷移,可以發(fā)現(xiàn)學(xué)生在解題中存在的問題,下節(jié)課教師再根據(jù)學(xué)生完成的情況加以評(píng)講,并設(shè)計(jì)相應(yīng)的訓(xùn)練題,使學(xué)生的認(rèn)識(shí)再上一個(gè)臺(tái)階。

三角函數(shù)的概念說課稿篇九

陳老師的這節(jié)課是九年級(jí)下冊(cè)地二十八章第一節(jié)的內(nèi)容,這是一節(jié)很重要的內(nèi)容,如果學(xué)生掌握不牢固,對(duì)后面的運(yùn)用銳角三角函數(shù)解決實(shí)際問題則會(huì)遇到很大的困難。

陳老師這節(jié)課是一節(jié)成功的課,首先教學(xué)目標(biāo)明確地體現(xiàn)在每一教學(xué)環(huán)節(jié)中,教學(xué)手段緊密地圍繞目標(biāo),為實(shí)現(xiàn)目標(biāo)服務(wù)。盡快地接觸重點(diǎn)內(nèi)容,重點(diǎn)內(nèi)容的教學(xué)時(shí)間得到保證,重點(diǎn)知識(shí)和技能得到鞏固和強(qiáng)化。先是引導(dǎo)學(xué)生一起明確本節(jié)課的學(xué)習(xí)目標(biāo)、重點(diǎn)和難點(diǎn)。然后利用熟悉的情境引導(dǎo)學(xué)生小組合作探究,是學(xué)生主動(dòng)參與教學(xué)活動(dòng)。通過復(fù)習(xí)我們學(xué)過的三角函數(shù),明確這些函數(shù)中的自變量,應(yīng)變量各是什么?進(jìn)行新課的探究。

在探究sin30?=?cos30?=?tan30?=?時(shí)完全由學(xué)生小組合作討論得出,教師只是總結(jié),整個(gè)課堂收放適當(dāng),進(jìn)而利用類比的方法探究45?60?和角的三角函數(shù)值,通過探究完成表格,然后巧記。再利用知識(shí)開始習(xí)題的應(yīng)用練習(xí),加以對(duì)知識(shí)的鞏固。

1、整個(gè)教學(xué)過程思路清晰,層次分明,使不同的學(xué)生都能有所收獲。整個(gè)課堂結(jié)構(gòu)嚴(yán)謹(jǐn)、環(huán)環(huán)相扣,過渡自然,時(shí)間分配合理,密度適中,效率高。學(xué)生也很配合,整個(gè)課堂氣氛挺活躍,學(xué)生都積極地參與了問題的思考,教學(xué)效果比較高。

2、活處理教材,教法學(xué)法得當(dāng)。課程標(biāo)準(zhǔn)指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。”縱觀這節(jié)課,陳老師不是簡單的知識(shí)傳授者,而是一個(gè)組織者、引導(dǎo)者。陳老師教學(xué)時(shí)采用討論,搶答等活動(dòng)調(diào)動(dòng)了大部分學(xué)生的學(xué)習(xí)主動(dòng)性,通過學(xué)生合作、交流,使他們真正成為學(xué)習(xí)的主人,積極地參與教學(xué)的每一個(gè)環(huán)節(jié),努力地探索解決問題的方法,大膽地發(fā)表自己的見解。學(xué)生始終保持著高昂的學(xué)習(xí)情緒,感受到了學(xué)習(xí)數(shù)學(xué)的快樂,體驗(yàn)到了成功的喜悅。

3、不愧是有經(jīng)驗(yàn)的教師,不論從教學(xué)設(shè)計(jì)還是整個(gè)課堂的控制,都井然有序,板書工整,自己美觀,可以看出陳老師在每上一節(jié)課都做了充分的課前準(zhǔn)備工作,也給我啟示,好的課堂前提要有充分的課前準(zhǔn)備。

“教學(xué)是一門遺憾的藝術(shù)”。陳老師的這節(jié)課也存在一些遺憾,為此我提出個(gè)人不成熟的看法:

1.教學(xué)中可通過精煉、精彩的語言鼓勵(lì)學(xué)生、及時(shí)點(diǎn)撥學(xué)生、評(píng)價(jià)學(xué)生。

2.課堂上學(xué)生回答的錯(cuò)點(diǎn)誤點(diǎn)也是很好的教材,可加以利用突破實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型的難點(diǎn)。

教學(xué)因?qū)W生成而精彩,因缺憾而美麗。陳老師的這節(jié)課雖然也有一點(diǎn)點(diǎn)缺憾,但整體上還是較好的一堂課。

以上愚見,請(qǐng)各位老師指正。

三角函數(shù)的概念說課稿篇十

在職人才引進(jìn):

業(yè)務(wù)定義。

在職人才引進(jìn)申報(bào):符合當(dāng)在職人才引進(jìn)申報(bào)政策的人員,可辦理在職人才引進(jìn)申報(bào)。具體參看當(dāng)政策。

政策依據(jù):

深圳市人才引進(jìn)實(shí)施辦法(深府辦函[2013]37號(hào))《深圳市人才引進(jìn)綜合評(píng)價(jià)指標(biāo)及分值表》(深人社規(guī)〔2013〕5號(hào))。

在職人才引進(jìn)的條件:

(一)符合以下基本條件,且人才引進(jìn)積分分值達(dá)到100分的,可以申請(qǐng)辦理人才引進(jìn)手續(xù):

1.年齡在18周歲以上,48周歲以下;

2.身體健康;

3.已在我市辦理居住證和繳納社保;

4.符合《深圳經(jīng)濟(jì)特區(qū)人口與計(jì)劃生育條例》的規(guī)定;

5.未參加國家禁止的組織及活動(dòng),無刑事犯罪記錄。

(二)符合上款基本條件的第2、4、5項(xiàng),且符合以下條件之一,可直接申請(qǐng)辦理人才引進(jìn)手續(xù):

1.兩院院士;

6.取得《深圳市出國留學(xué)人員資格證明》,且年齡不超過48周歲的留學(xué)回國人員。

(三)根據(jù)我市戶籍遷入規(guī)定,以下人員申請(qǐng)人才引進(jìn)年齡上限可放寬:

本款第2至5項(xiàng)所規(guī)定人員,須在最近連續(xù)3個(gè)納稅內(nèi)具備與申請(qǐng)事由相適應(yīng)的身份資格;納稅額超過以上規(guī)定納稅額一倍以上的,其年齡可放寬至55周歲。

(四)市政府對(duì)高層次專業(yè)人才及其配偶、獲得特殊獎(jiǎng)項(xiàng)或表彰人員、投資納稅人員、隨軍家屬、機(jī)關(guān)事業(yè)單位或駐深單位人員等引進(jìn)另有規(guī)定的,按其規(guī)定執(zhí)行。

三角函數(shù)的概念說課稿篇十一

“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識(shí),掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進(jìn)一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進(jìn)一步學(xué)習(xí)棱臺(tái)的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時(shí),這節(jié)課也是進(jìn)一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。

本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運(yùn)用正棱錐的性質(zhì)解決有關(guān)計(jì)算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對(duì)具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會(huì)感到自然,好接受。對(duì)教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。

根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點(diǎn)和高一學(xué)生對(duì)空間圖形的認(rèn)知特點(diǎn),我把本節(jié)課的教學(xué)目的確定為:

(1)通過棱錐,正棱錐概念的教學(xué),培養(yǎng)學(xué)生知識(shí)遷移的'能力及數(shù)學(xué)表達(dá)能力;

(2)領(lǐng)會(huì)應(yīng)用正棱錐的性質(zhì)解題的一般方法,初步學(xué)會(huì)應(yīng)用性質(zhì)解決相關(guān)問題;

(4)進(jìn)行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

對(duì)于高一學(xué)生來說,空間觀念正逐步形成。而實(shí)際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點(diǎn)是通過對(duì)具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實(shí)質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點(diǎn)實(shí)現(xiàn)突破,教學(xué)的關(guān)鍵是正確認(rèn)識(shí)正棱錐的線線,線面垂直關(guān)系。

類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會(huì)應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)。

由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進(jìn)一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時(shí)機(jī),因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識(shí)關(guān)鍵點(diǎn)制成了投影片,既節(jié)省時(shí)間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時(shí)全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識(shí)點(diǎn)發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會(huì)知識(shí)發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實(shí)際問題的能力。

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點(diǎn),這節(jié)課主要是教給學(xué)生“動(dòng)手做,動(dòng)腦想;嚴(yán)格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與意識(shí),教給學(xué)生獲取知識(shí)的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會(huì)逐步感到數(shù)學(xué)美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)。

將現(xiàn)實(shí)生活的實(shí)例抽象成數(shù)學(xué)模型,獲得新的幾何體――棱錐。(板書課題)。

請(qǐng)同學(xué)們描述一下棱錐的本質(zhì)特征?(學(xué)生觀察模型,提示學(xué)生可以從底面,側(cè)面的形狀特點(diǎn)加以描述)。

結(jié)論:(1)有一個(gè)面是多邊形;

(2)其余各面是三角形且有一個(gè)公共頂點(diǎn)。

由滿足(1)、(2)的面所圍成的幾何體叫做棱錐。

(設(shè)計(jì)意圖:由觀察具體事物,經(jīng)過積極思維,歸納、抽象出事的本質(zhì)屬性,形成概念,培養(yǎng)學(xué)生抽象思維能力,提高學(xué)習(xí)效果。)。

――棱錐的頂點(diǎn)。

――棱錐的側(cè)棱。

――棱錐的底面。

棱錐的高――――。

觀察圖1:依次逐個(gè)介紹棱錐各個(gè)部分。

名稱及表示法。表示法:棱錐s-abcde。

或棱錐s-ac。與棱柱相似,棱錐可以按。

底面多邊形的邊數(shù)分為三棱錐,四棱錐、

五棱錐,···,n棱錐。

(設(shè)計(jì)意圖:從簡處理棱錐的表示法,

分類等,為后面重點(diǎn)解決正棱錐的性質(zhì)問。

題節(jié)省時(shí)間。)。

由于實(shí)際生活中,遇到的往往是一種。

特殊的棱錐――正棱錐,它的性質(zhì)用處較多。

通過對(duì)比正棱柱的定義,讓學(xué)生描述正棱錐。

(拿出各式各樣的棱錐模型讓學(xué)生辨認(rèn))。

討論:底面是正多邊形的棱錐對(duì)嗎?聯(lián)想正棱柱的定義,棱柱補(bǔ)充幾點(diǎn)后才是正棱柱?

結(jié)論:底面是正多邊形,并且頂點(diǎn)在底面射影是底面中心。為什么?

(設(shè)計(jì)意圖:采用觀察、聯(lián)想、類比、猜想、發(fā)現(xiàn)的方法引出正棱錐的定義比課本直接給出顯得自然,學(xué)生好接受)。

正棱錐的頂點(diǎn)在底面的射影是底面下多邊形中心,這是正棱錐的本質(zhì)特征。它決定了正棱錐的其他性質(zhì)。下面以正五棱錐為例,請(qǐng)同學(xué)們說出其側(cè)棱,各側(cè)面有何性質(zhì)?(將圖2出示給學(xué)生)。

結(jié)論:各棱相等,各側(cè)面是全等的等腰三角形。

為什么?

(學(xué)生口答證明)(略)。

如果我們把等腰三角形底邊上的高叫做正棱錐。

的斜高,請(qǐng)?jiān)趫D2中作出兩條斜高。(學(xué)生作出。)(略)。

結(jié)論:兩條斜高相等。為什么?(學(xué)生回答)。

想一想:正棱錐的斜高與高有什么關(guān)系?

結(jié)論:斜高大于高,為什么?(可啟發(fā)學(xué)生聯(lián)系。

垂線段,斜線段的有關(guān)知識(shí),然后回答)。

小結(jié):對(duì)于一般棱錐其側(cè)面不一定是等腰三角形。棱錐的高是指頂點(diǎn)到底面的距離,垂足可以在底面多邊形內(nèi),也可以在底面多邊形外,我們剛才所得到的性質(zhì)都是對(duì)正棱錐而言的。

(設(shè)計(jì)意圖:再次讓學(xué)生領(lǐng)會(huì)類比、觀察、猜想等合情合理得到正棱錐的性質(zhì)之一并加以證明,培養(yǎng)學(xué)生的直覺思維能力的同時(shí),訓(xùn)練學(xué)生數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。)。

三角函數(shù)的概念說課稿篇十二

地位和作用:任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對(duì)三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時(shí)它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個(gè)內(nèi)容要認(rèn)真探討教材,精心設(shè)計(jì)過程。

學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力。

1、初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識(shí)和求法。

2、我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強(qiáng)的自學(xué)能力,多數(shù)同學(xué)對(duì)數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。

針對(duì)對(duì)教材內(nèi)容重難點(diǎn)的和學(xué)生實(shí)際情況的分析我們制定教學(xué)目標(biāo)如下。

(1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號(hào),

(2)正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù);

(3)通過對(duì)定義域,三角函數(shù)值的符號(hào)的推導(dǎo),提高學(xué)生分析探究解決問題的能力。

(1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;

針對(duì)學(xué)生實(shí)際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計(jì)教學(xué)方法。

教法學(xué)法:溫故知新,逐步拓展。

(2)通過例題講解分析,逐步引出新知識(shí),完善三角定義。

運(yùn)用多媒體工具。

(1)提高直觀性增強(qiáng)趣味性。

教學(xué)過程分析。

總體來說,由舊及新,由易及難,

逐步加強(qiáng),逐步推進(jìn)。

先由初中的直角三角形中銳角三角函數(shù)的定義。

過度到直角坐標(biāo)系中銳角三角函數(shù)的定義。

給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識(shí)拓展完善定義。

具體教學(xué)過程安排。

引入:復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

由學(xué)生回答。

sina=對(duì)邊/斜邊=bc/ab。

cosa=對(duì)邊/斜邊=ac/ab。

tana=對(duì)邊/斜邊=bc/ac。

逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系,把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。

從而得到。

提醒學(xué)生思考:由于相似比相等,對(duì)于確定的角a,這三個(gè)比值的大小和p點(diǎn)在角的終邊上的位置無關(guān)。

精心設(shè)計(jì)例題,引出新內(nèi)容深化概念,完善定義。

例1已知角a的終邊經(jīng)過p(2,—3),求角a的三個(gè)三角函數(shù)值。

(此題由學(xué)生自己分析獨(dú)立動(dòng)手完成)。

例題變式1,已知角a的大小是30度,由定義求角a的三個(gè)三角函數(shù)值。

提出問題:這三個(gè)新的定義確實(shí)問是函數(shù)嗎?為什么?

從而引出函數(shù)極其定義域。

由學(xué)生分析討論,得出結(jié)論。

知識(shí)點(diǎn)二:三個(gè)三角函數(shù)的定義域。

知識(shí)點(diǎn)三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系。

由學(xué)生推出結(jié)論,教師總結(jié)符號(hào)記憶方法,便于學(xué)生記憶。

例題2:已知a在第二象限且sina=0。2求cosa,tana。

求cosa,tana。

綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)。

拓展,如果不限制a的象限呢,可以留作課外探討。

小結(jié)回顧課堂內(nèi)容。

課堂作業(yè)和課外作業(yè)以加強(qiáng)知識(shí)的記憶和理解。

課堂作業(yè)p161,2,4。

(學(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)。

課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)。

必作p231(2),5(2),6(2)(4)選作p233,4。

板書設(shè)計(jì)(見ppt)。

三角函數(shù)的概念說課稿篇十三

本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算。

1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進(jìn)行有關(guān)推理,進(jìn)一步體會(huì)三角函數(shù)的意義。

2、能夠進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算。

3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說出相應(yīng)的銳角的大小。

重點(diǎn):進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算。

難點(diǎn):記住30°、45°、60°角的三角函數(shù)值。

教師準(zhǔn)備。

預(yù)先準(zhǔn)備教材、教參以及多媒體課件。

學(xué)生準(zhǔn)備。

教材、同步練習(xí)冊(cè)、作業(yè)本、草稿紙、作圖工具等。

教學(xué)流程設(shè)計(jì)。

教師指導(dǎo)學(xué)生活動(dòng)。

1.新章節(jié)開場白.1.進(jìn)入學(xué)習(xí)狀態(tài).

2.進(jìn)行教學(xué).2.配合學(xué)習(xí).

3.總結(jié)和指導(dǎo)學(xué)生練習(xí).3記錄相關(guān)內(nèi)容,完成練習(xí).

教學(xué)過程設(shè)計(jì)。

1、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題。

2、師生共同研究形成概念。

3、隨堂練習(xí)。

4、小結(jié)。

5、作業(yè)。

板書設(shè)計(jì)。

3、例題。

本節(jié)課基本上能夠突出重點(diǎn)、弱化難點(diǎn),在時(shí)間上也能掌控得比較合理,學(xué)生也比較積極投入學(xué)習(xí)中,但是學(xué)生好像并不是掌握得很好,在今后的教學(xué)中應(yīng)該再加強(qiáng)關(guān)于這方面的學(xué)習(xí)。

三角函數(shù)的概念說課稿篇十四

本節(jié)課是第一輪初三中考總復(fù)習(xí)有關(guān)銳角三角函數(shù)的復(fù)習(xí)課,根據(jù)現(xiàn)在的中考特點(diǎn)及考綱要求,進(jìn)行相應(yīng)的復(fù)習(xí)和鞏固?,F(xiàn)就本節(jié)課的課堂教學(xué)評(píng)價(jià)如下:

1、正確分析現(xiàn)在中考命題的方向、熱點(diǎn)及考綱要求,得出有關(guān)銳角三角函數(shù)考點(diǎn)的知識(shí)要點(diǎn)及各種題型,通過課堂教學(xué)在銳角三角函數(shù)的基本概念及運(yùn)算等基礎(chǔ)知識(shí)和基本技能得到相應(yīng)的發(fā)展。

2、本節(jié)課采用分階段,分層次歸類復(fù)習(xí)。

(1)基本概念領(lǐng)會(huì)階段。學(xué)生對(duì)概念,公式,定義的理解與掌握。

(2)基本方法學(xué)習(xí)階段。使學(xué)生對(duì)有關(guān)基本技能訓(xùn)練,掌握課本例題類型,能舉一反三,觸類旁通。

(3)針對(duì)練習(xí)階段。檢查學(xué)生對(duì)基本概念,基本技能的掌握情況。

3、本節(jié)課選題方面有以下幾個(gè)特點(diǎn)。

(1)有針對(duì)性,突出重要的知識(shí)點(diǎn)和思想方法。

(2)具有一定的應(yīng)用性,即能考察學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí),又能考察學(xué)生的數(shù)學(xué)應(yīng)用能力。

(3)富有一定的思考性。有幾個(gè)例題,有分類思想方法,能鍛煉學(xué)生思維的靈活性。

(4)有計(jì)劃地設(shè)置練習(xí)中的思維障礙,使練習(xí)具有合適的梯度,提高訓(xùn)練的效率。

4、本節(jié)課教師能夠充分調(diào)動(dòng)學(xué)生上課興趣,從而使學(xué)生復(fù)習(xí)數(shù)學(xué)的積極性,主動(dòng)性發(fā)揮出來,這樣做到以學(xué)生為主,教師起主導(dǎo)作用。

陳雪君。

這是一節(jié)初三的復(fù)習(xí)課,王老師在教案中講到在近幾年中考數(shù)學(xué)試題中,在銳角三角函數(shù)這節(jié)命題多以填空題,選擇題的形式出現(xiàn),主要考察三角函數(shù)的計(jì)算,三角函數(shù)的定義,三角函數(shù)的增減性,同角三角函數(shù)關(guān)系,互余三角函數(shù)關(guān)系。圍繞著這個(gè)目標(biāo),王老師先讓學(xué)生明白他們應(yīng)該掌握什么,必須掌握什么,并精心設(shè)計(jì)了很多練習(xí),從學(xué)生的反映中來看,大多數(shù)同學(xué)都掌握的比較好,基本達(dá)到了黃老師事先所制定的教學(xué)目標(biāo)。

王老師教學(xué)基本功比較扎實(shí),板書非常清晰,教態(tài)和語言有一定的號(hào)召力。對(duì)教學(xué)內(nèi)容非常熟悉。我想如果把這節(jié)課分為兩節(jié)課,那效果會(huì)更加好。

這是一節(jié)初三總復(fù)習(xí)課,內(nèi)容是銳角三角函數(shù)。王老師以基礎(chǔ)知識(shí)的復(fù)習(xí)、基本技能的訓(xùn)練為主,緊跟教學(xué)大綱,選擇了幾個(gè)典型例題,開拓了學(xué)生的知識(shí)面,豐富了學(xué)生的題型結(jié)構(gòu)。同時(shí)向?qū)W生進(jìn)行了一題多種解法思想的滲透,這樣活躍了學(xué)生的思維,豐富了學(xué)生的知識(shí)內(nèi)涵。老師對(duì)教材,教學(xué)大綱理解得非常透徹,對(duì)課堂把握能力強(qiáng),反應(yīng)很快,能積極跟上學(xué)生的思維,因時(shí)制宜的調(diào)整教學(xué)節(jié)奏,語速快而清晰,教態(tài)、板書也能給學(xué)生有積極的影響,富有感染力。例題的選擇合理、新穎且有難度,即有常見的基本計(jì)算與證明,也有一定難度的探索型、操作型問題,更有對(duì)于知識(shí)點(diǎn)綜合應(yīng)用的綜合題,層次鮮明,滿足了不同奮斗目標(biāo)學(xué)生的不同要求。教學(xué)上多媒體的運(yùn)用,較直觀地了解題意,提高解答的準(zhǔn)確率,課堂上充分發(fā)揮了學(xué)生的主體性,以學(xué)生的發(fā)展為本,通過小組合作,增強(qiáng)了學(xué)生的合作意識(shí),又取長補(bǔ)短,互相競爭,營造了良好的教學(xué)氛圍,而教師知識(shí)組織者,只是參與、啟發(fā)、點(diǎn)撥、糾偏,培養(yǎng)了學(xué)生的創(chuàng)造能力和發(fā)散思維能力。

【本文地址:http://mlvmservice.com/zuowen/13234276.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔