圓錐的體積教學(xué)設(shè)計人教版(精選14篇)

格式:DOC 上傳日期:2023-11-19 04:48:53
圓錐的體積教學(xué)設(shè)計人教版(精選14篇)
時間:2023-11-19 04:48:53     小編:文鋒

傳統(tǒng)文化是我們民族的瑰寶,我們應(yīng)該傳承和弘揚。在寫總結(jié)時,要注意語言的準確性和規(guī)范性,避免使用模糊和不準確的詞匯。閱讀這些總結(jié)范文可以幫助我們更好地理解總結(jié)的寫作技巧和要點。

圓錐的體積教學(xué)設(shè)計人教版篇一

本節(jié)課所講的《圓錐的體積》是九年義務(wù)教育人教實驗版,第十二冊第二章第二節(jié)的內(nèi)容。

為了落實素質(zhì)教育,積極推進新改革,充分發(fā)揮學(xué)生的主體作用,甘做學(xué)生的朋友,引導(dǎo)其積極主動地進行探究性學(xué)習(xí)。通過“小組活動”、“合作探究”全面調(diào)動每一位學(xué)生的學(xué)習(xí)積極性和參與性。通過學(xué)生的自主學(xué)習(xí)、互助學(xué)習(xí),自主探究所學(xué)的內(nèi)容,完全改變過去被動的“填鴨式”的教學(xué)模式,切實提高課堂效率。

本節(jié)教材我想通過向等底等高的圓柱和圓錐中倒水或沙的實驗,得到圓錐體積的計算公式v=1/3sh.即就是等底等高的圓錐體積是圓柱體積的三分之一。例2是已知圓錐形沙堆的`底面直徑和高,求沙子的體積。這是一個簡單的實際問題,通過這個例子教學(xué)使學(xué)生初步學(xué)會解決一些與計算圓錐形物體的體積有關(guān)的實際問題。前面學(xué)生對圓錐、圓柱立體圖形的特征已進行了學(xué)習(xí),對其特征也有了較深刻的認識,可以熟練地計算圓柱的體積、表面積、側(cè)面積。這是學(xué)習(xí)本節(jié)課的基礎(chǔ)。

知識技能:理解并掌握圓錐體積的計算方法,能運用公式解決

簡單的實際問題。

過程與方法:在實踐操作中掌握圓錐體積公式的推導(dǎo)。

情感態(tài)度:培養(yǎng)學(xué)生樂于學(xué)習(xí),熱愛生活,勇于探索的精神。

進一步理解圓錐的體積公式,能運用公式進行計算,能解決

簡單的實際問題。

圓錐體積公式的推導(dǎo)。

利用多媒體、觀察法、實驗法、師生互動啟發(fā)式教學(xué)

觀察實驗—合作探究—達標反饋—歸納總結(jié)

多媒體課件、同樣的圓柱形容器若干、與圓柱等底等高的圓錐形容器若干、水和沙土。

【復(fù)習(xí)舊知】

1.課件展示圓柱和圓錐的立體圖形,并請學(xué)生說出圖形各部分的名稱。

2.圓柱的體積公式是什么?

【創(chuàng)設(shè)情境,引發(fā)猜想】

1.多媒體課件呈現(xiàn)出動畫情景故事(配音樂):

盛夏的一天,森林里悶熱極了,小動物們熱得喘不過氣來,都想吃點解暑的東西。漂亮的小白兔去冷飲店買了一塊圓柱形的冰麒麟,聰明的狐貍拿著一塊圓錐形的冰麒麟想和它交換……(多媒體課件展示兩塊冰麒麟等底等高)

2.引導(dǎo)學(xué)生圍繞問題展開討論。

問題一:小白兔上當(dāng)了嗎?

問題二:狐貍和小白兔怎樣交換才算公平?

【自主探索,動手實驗】

1.小組實驗。按照實驗程序要求和注意事項(多媒體課件展示)

每四人為一小組,各小組長帶領(lǐng)三個成員動手操作實驗,教師在教室巡回指導(dǎo)。

2.全班交流。

組織收集信息——引導(dǎo)整理信息——參與處理信息

3.引導(dǎo)反思。實驗過程讓學(xué)生積極發(fā)散思維,各抒己見。

4.公式推導(dǎo)。

全班同學(xué)集體觀看多媒體課件的實驗過程,并結(jié)合自己的實驗活動試著推導(dǎo)圓錐的體積計算公式。

圓柱的體積等于和它等底等高的圓錐體積的3倍;或者圓錐的體積等于和它等底等高的圓柱體積1/3。

用字母表示為:v=1/3sh

5.思考:如果要計算圓錐的體積,必須知道那些條件?

6.問題解決。

故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(課件出示:等底等高)

【運用公式,解決問題】

例2:建筑工地上有許多沙子,堆起來近似一個圓錐,這堆沙子大約

有多少立方米?(結(jié)果保留兩位小數(shù))

具體解題過程讓同學(xué)們自己大顯身手,個別學(xué)生可以上講臺板演,然后教師作最后講評。

【練習(xí)鞏固】課件出示,師生共同完成。

一.判斷。

1、圓柱體的體積一定比圓錐體的體積大。()

2、圓錐的體積等于和它等底等高的圓柱體的。()3、正方體、長方體、圓錐體的體積都等于底面積×高。()。

4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()

二.填表。

已知條件體積

圓錐底面半徑2厘米,高9厘米

圓錐底面直徑6厘米,高3厘米

圓錐底面周長6.28分米,高6分米

【拓展延伸】:

【質(zhì)疑問難,總結(jié)升華】

通過這節(jié)課的學(xué)習(xí),你們對圓錐的體積有哪些新的認識?請談?wù)勛约旱母邢牒褪斋@。

【作業(yè)布置】

課本25頁第3、5、8題

圓錐的體積教學(xué)設(shè)計人教版篇二

教學(xué)過程:

一、復(fù)習(xí)導(dǎo)入。

1、怎樣計算圓柱的體積?(板書公式)。

2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?

3、出示一個圓錐,請學(xué)生說說圓錐的特征。

4、導(dǎo)入:前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積應(yīng)怎樣計算呢?今天這節(jié)課我們就來研究這個問題。(板書課題)。

二、動手測量,大膽猜想。

1、動手測量,找圓錐和圓柱的底和高的關(guān)系。

2、學(xué)生動手測量,教師巡視。給予指導(dǎo)。

3、交流得出結(jié)論:圓柱和圓錐等底等高。

4、猜想等底等高的圓柱和圓錐的體積之間有什么關(guān)系?

三、實驗操作,推導(dǎo)出圓錐體積計算公式。

1、實驗操作。

師:圓錐的體積到底與等底等高的圓柱的體積之間有什么關(guān)系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。

2、學(xué)生分組實驗,教師巡視。

3、匯報交流,你們組是怎么做實驗的?通過實驗?zāi)惆l(fā)現(xiàn)了什么?

4、強調(diào)等底等高。

5小結(jié):不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結(jié)論)。

6、練習(xí)(出示)。

(1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是立方分米。

(2)一個圓錐的體積是1.8立方分米,與它等底等高的圓柱的體積是()立方分米。

三、鞏固練習(xí)。

底面積是6.28平方分米,高是9分米。

底面半徑是6厘米,高是4.5厘米。

底面直徑是4厘米,高是4.8厘米。

底面周長是12.56厘米,高是6厘米。

2、填空。

b圓柱體積的與和它()的圓錐的體積相等。

c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。

d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。

3、判斷。(用手勢表示)。

a圓柱體的體積一定比圓錐體的體積大()。

c正方體、長方體、圓錐體的體積都等于底面積×高。()。

d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()。

四、全課小結(jié)。

師:今天這結(jié)課學(xué)習(xí)了什么?通過今天的學(xué)習(xí)研究你有什么收獲?

五、解決實際問題。

在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數(shù)保留整噸數(shù))。

圓錐的體積教學(xué)設(shè)計人教版篇三

教學(xué)過程:

一、情境引入:

(1)(老師出示鉛錘):你有辦法知道這個鉛錘的體積嗎?

(2)學(xué)生發(fā)言:(把它放進盛水的量杯里,看水面升高多少……)。

(3)教師評價:這種方法可行,你利用上升的這部分水的體積就是鉛錘的體積,間接地求出了鉛錘的體積。真是一個愛動腦筋的孩子。

(4)提出疑問:是不是每一個圓錐體都可以這樣測量呢?(學(xué)生思考后發(fā)言)。

(5)引入:如果每個圓錐都這樣測,太麻煩了!類似圓錐的麥堆也能這樣測嗎?(學(xué)生發(fā)表看法),那我們今天就來共同探究解決這類問題的普遍方法。(老師板書課題)。

設(shè)計意圖:情景的創(chuàng)設(shè),激發(fā)了學(xué)生學(xué)習(xí)的興趣,使學(xué)生產(chǎn)生了自己想探索的需求,情緒高漲地積極投入到學(xué)習(xí)活動中去。

二、新課探究。

(一)、探究圓錐體積的計算公式。

1、大膽猜測:

(1)圓錐的體積該怎樣求呢?能不能通過我們已學(xué)過的圖形來求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)。

(2)圓錐和我們認識的哪種立體圖形有共同點?(學(xué)生答:圓柱)為什么?(圓柱的底面是圓,圓錐的底面也是圓……)。

(3)請你猜猜圓錐的體積和圓柱的體積有沒有關(guān)系呢?有什么關(guān)系?(學(xué)生大膽猜測后,課件出示一個圓錐與3個底、高都不同的圓柱,其中一個圓柱與圓錐等底等高),請同學(xué)們猜一猜,哪一個圓錐的體積與這個圓柱的體積關(guān)系最密切?(學(xué)生答:等底等高的)。

(4)老師拿教具演示等底等高。拿出等底等高的圓柱和圓錐各一個,通過演示,使學(xué)生發(fā)現(xiàn)“這個圓錐和圓柱是等底等高的'。”

(5)學(xué)生用上面的方法驗證自己做的圓錐與圓柱是否等底等高。(把等底等高的放在桌上備用。)。

2、試驗探究圓錐和圓柱體積之間的關(guān)系。

我們通過試驗來研究等底等高的圓錐體積和圓柱體積的關(guān)系。

(1)課件出示試驗記錄單:

a、提問:我們做幾次實驗?選擇一個圓柱和圓錐我們比較什么?

b、通過實驗,你發(fā)現(xiàn)了什么?

(2)學(xué)生分組用等底等高的圓柱圓錐試驗,做好記錄。教師在組間巡回指導(dǎo)。

(3)匯報交流:

你們的試驗結(jié)果都一樣嗎?這個試驗說明了什么?

(4)老師用等底等高的圓柱圓錐裝紅色水演示。

(教師讓學(xué)生注意記錄幾次,使學(xué)生清楚地看到倒3次正好把圓柱裝滿。)。

(5)學(xué)生拿小組內(nèi)不等底等高的圓錐,換圓錐做這個試驗幾次,看看有沒有這樣的關(guān)系?(學(xué)生匯報,有的說我用自己的圓錐裝了5次,才把圓柱裝滿;有的說,我裝了2次半……)。

(6)試驗小結(jié):上面的試驗說明了什么?(學(xué)生小組內(nèi)討論后交流)。

(這說明圓柱的體積是與它等底等高圓錐體積的3倍.也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。)。

3、公式推導(dǎo)。

(1)你能把上面的試驗結(jié)果用式子表示嗎?(學(xué)生嘗試)。

(2)老師結(jié)合學(xué)生的回答板書:

(3)在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)。

進一步強調(diào)等底等高的圓錐和圓柱才存在這種關(guān)系。

設(shè)計意圖:放手讓學(xué)生自主探究,在實踐中真正去體驗圓柱和圓錐之間的關(guān)系。

1、已知圓錐的底面積和高,求圓錐的體積。

(1)出示例2:現(xiàn)在你能求出老師手中的鉛錘的體積嗎?(已知鉛錘底面積24平方厘米,高8厘米)學(xué)生嘗試解決。

(2)提問:已知圓錐的底面積和高應(yīng)該怎樣計算?

(3)引導(dǎo)學(xué)生對照圓錐體積的計算公式代入數(shù)據(jù),然后讓學(xué)生自己進行計算。

2、已知圓錐的底面半徑和高,求圓錐的體積。

(1)出示例題:

底面半徑是3平方厘米,高12厘米的圓錐的體積。

(2)學(xué)生嘗試解答。

(3)提問:已知圓錐的底面半徑和高,可以直接利用公式。

3、已知圓錐的底面直徑和高,求圓錐的體積。

(1)出示例3:

工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))。

(2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)。

(3)題目的條件中不知道圓錐的底面積,應(yīng)該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據(jù)圓錐的體積公式求出沙堆的體積)。

(4)分析完后,指定兩名學(xué)生板演,其余學(xué)生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學(xué)生最后得數(shù)的取舍方法是否正確)。

(5)提問。

4、已知圓錐的底面直徑和高,可以直接利用公式。

v=1/3兀(d/2)2h來求圓錐的體積。

設(shè)計意圖:公式的延伸讓學(xué)生對所學(xué)知識做到靈活應(yīng)用,培養(yǎng)了學(xué)生活學(xué)活用的本領(lǐng)。

圓錐的體積教學(xué)設(shè)計人教版篇四

教學(xué)目標:

1、使學(xué)生理解求圓錐體積的計算公式.。

2、會運用公式計算圓錐的體積.。

3、培養(yǎng)學(xué)生初步的空間觀念和思維能力;讓學(xué)生認識“轉(zhuǎn)化”的思考方法。

教學(xué)重點。

圓錐體體積計算公式的推導(dǎo)過程.。

教學(xué)難點。

教學(xué)過程:

一、鋪墊孕伏。

1、提問:

(1)圓柱的體積公式是什么?

(2)投影出示圓錐體的圖形,學(xué)生指圖說出圓錐的底面、側(cè)面和高.。

2、導(dǎo)入:同學(xué)們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)。

二、探究新知。

(一)指導(dǎo)探究圓錐體積的計算公式.。

1、教師談話:

2、學(xué)生分組實驗。

學(xué)生匯報實驗結(jié)果。

……。

4、引導(dǎo)學(xué)生發(fā)現(xiàn):

板書:

5、推導(dǎo)圓錐的體積公式:用字母表示圓錐的體積公式.板書:

6、思考:要求圓錐的體積,必須知道哪兩個條件?

7、反饋練習(xí)。

圓錐的底面積是5,高是3,體積是()。

圓錐的底面積是10,高是9,體積是()。

(二)算一算。

學(xué)生獨立計算,集體訂正.。

說說解題方法。

三、全課小結(jié)。

通過本節(jié)的學(xué)習(xí),你學(xué)到了什么知識?(從兩個方面談:圓錐體體積公式的推導(dǎo)方法和公式的應(yīng)用)。

四、課后反思。

第二課時。

教學(xué)目標:

1、進一步掌握圓柱和圓錐體積的計算方法,能正確熟練地運用公式計算圓錐的體積。

2、進一步培養(yǎng)學(xué)生運用所學(xué)知識解決實際問題的能力和動手操作的能力。

教學(xué)難點:

教學(xué)重點:

教學(xué)過程:

一、基本練習(xí)。

相鄰兩個面積單位之間的進率是多少?

相鄰兩個體積單位之間的進率是多少?

二、實際應(yīng)用。

占地面積是求得什么?

三、實踐活動。

四、課后反思。

圓錐的體積教學(xué)設(shè)計人教版篇五

2、求下列各圓柱的體積。(口答)。

(1)底面積是5平方厘米,高是6厘米。

(2)底面半徑4分米,高是10分米。

(3)底面直徑2米,高是3米。

師:剛才我們復(fù)習(xí)了圓柱的體積公式并應(yīng)用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關(guān)系呢?這節(jié)課我們就來研究圓錐的體積。

師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學(xué)們自己做的圓錐講一講。

生:圓錐的底面是圓形的。

生:從圓錐的頂點到底面圓心的距離是圓錐的高。

師:你能上來指出這個圓錐的高嗎?

師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。

師:你們看到過哪些物體是圓錐形狀的?(略)。

師:對。在生活中有很多圓錐形的物體。

師:剛才我們已經(jīng)認識了圓錐?,F(xiàn)在我們再來研究圓錐的體積。請同學(xué)們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關(guān)系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導(dǎo)圓錐體的體積公式(邊說邊演示),先在圓錐內(nèi)裝滿水,然后把水倒入圓柱內(nèi),看看幾次可將圓柱倒?jié)M?,F(xiàn)在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。

出示小黑板:

1、圓錐的體積和同它等底等高的圓柱的體積有什么關(guān)系?

2、圓錐的體積怎么算?體積公式是怎樣的?

學(xué)生分組做實驗,老師巡回指導(dǎo)。

生:圓柱的體積是圓錐體積的3倍。

生:圓錐的體積是同它等底等高的圓柱體權(quán)的1/3。

板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。

師:得出這個結(jié)論的同學(xué)請舉手。(略)你們是怎么得出這個結(jié)論的呢?

生:我們先在圓錐內(nèi)裝滿沙,然后倒人圓柱內(nèi)。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。

師:說得很好。那么圓錐的體積怎么算呢?

生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。

師:老師也做了一個同樣實驗請同學(xué)認真看一看。想一想有什么話對老師說嗎?請看電視。

師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。

生:我認為”圓錐的體積v等于和它等底等高的圓柱體積的三分之一?!斑@句話很重要。

生:我認為這句話中”等底等高“和”三分之一“這幾個字特別重要。

師:大家說得很對,那么為什么這幾個字特別重要?如果底和高不相等的圓錐和圓柱有沒有三分之一這個關(guān)系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學(xué)們用剛才做實驗的方法試試看。

師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的三分之一的關(guān)鍵條件是等地等高。

師:下面我們就根據(jù)”等底等高的圓錐體積是圓柱體積的1/3“這個關(guān)系來解決下列問題。

例l:一個圓錐形零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

(兩名學(xué)生板演,老師巡視)。

師:這位同學(xué)做的對不對?

生:對!

師:和他做的一-樣的同學(xué)請舉手。(絕大多數(shù)同學(xué)舉手)。

師:那么這位同學(xué)做錯在哪里呢?(指那位做錯的同學(xué)做的)。

生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。

師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導(dǎo)出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。

三、鞏固練習(xí)。

(1)、一個圓錐的底面積是25平方分米,高是9分米,它體積是多少?

(3)、一個圓錐的底面直徑是20厘米,高是8厘米,它體積是多少?(圖)師:三題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。

2、填空。

(1)一個圓錐的體積是8立方分米,底面積是2平方分米,高()分米、。(2)圓錐形的容器高12厘米,容器中盛滿水,如將水全部倒入等底的圓柱形的器中,水面高是()厘米。

3、選擇。

(1)兩個體積相等的等底的圓柱和圓錐,圓錐的高一定是圓柱高的()。

(2)把一段圓柱形的木棒削成一個最大的圓錐,削去部分的體積是圓錐體積的()。

四、課堂總結(jié)。

師:今天,我們學(xué)習(xí)了什么內(nèi)容?怎樣計算圓錐的體積?

對,這節(jié)課我們認識了圓錐,并推導(dǎo)出了圓錐的體積計算公式。回去以后,先回憶一下今天學(xué)過的內(nèi)容,想一想,在運用v=1/3sh這個公式算圓錐體積時,要特別注意什么。

五、布置作業(yè)。

課外作業(yè):有一個高9厘米,底面積是20平方厘米的圓柱內(nèi)裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內(nèi)還剩多少水?(邊做實驗邊討論)。

圓錐的體積教學(xué)設(shè)計人教版篇六

2、求下列各圓柱的體積。(口答)

(1)底面積是5平方厘米,高是6厘米。

(2)底面半徑4分米,高是10分米。

(3)底面直徑2米,高是3米。

師:剛才我們復(fù)習(xí)了圓柱的體積公式并應(yīng)用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關(guān)系呢?這節(jié)課我們就來研究圓錐的體積。

師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學(xué)們自己做的圓錐講一講。

生:圓錐的底面是圓形的。

生:從圓錐的頂點到底面圓心的距離是圓錐的高。

師:你能上來指出這個圓錐的高嗎?

師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。

師:你們看到過哪些物體是圓錐形狀的?(略)

師:對。在生活中有很多圓錐形的物體。

師:剛才我們已經(jīng)認識了圓錐?,F(xiàn)在我們再來研究圓錐的體積。請同學(xué)們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關(guān)系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導(dǎo)圓錐體的體積公式(邊說邊演示),先在圓錐內(nèi)裝滿水,然后把水倒入圓柱內(nèi),看看幾次可將圓柱倒?jié)M。現(xiàn)在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。

出示小黑板:

1、圓錐的體積和同它等底等高的圓柱的體積有什么關(guān)系?

2、圓錐的體積怎么算?體積公式是怎樣的?

學(xué)生分組做實驗,老師巡回指導(dǎo)。

生:圓柱的體積是圓錐體積的3倍。

生:圓錐的體積是同它等底等高的圓柱體權(quán)的1/3。

板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。

師:得出這個結(jié)論的同學(xué)請舉手。(略)你們是怎么得出這個結(jié)論的呢?

生:我們先在圓錐內(nèi)裝滿沙,然后倒人圓柱內(nèi)。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。

師:說得很好。那么圓錐的體積怎么算呢?

生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。

師:誰能說說圓錐的體積公式。

生:圓錐的體積公式是v=1/3sh。

師:老師也做了一個同樣實驗請同學(xué)認真看一看。想一想有什么話對老師說嗎?請看電視。

師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。

生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。

生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。

師:大家說得很對,那么為什么這幾個字特別重要?如果底和高不相等的圓錐和圓柱有沒有三分之一這個關(guān)系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學(xué)們用剛才做實驗的方法試試看。

師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的.三分之一的關(guān)鍵條件是等地等高。

師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個關(guān)系來解決下列問題。

(兩名學(xué)生板演,老師巡視)

師:這位同學(xué)做的對不對?

生:對!

師:和他做的一-樣的同學(xué)請舉手。(絕大多數(shù)同學(xué)舉手)

師:那么這位同學(xué)做錯在哪里呢?(指那位做錯的同學(xué)做的)

生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。

師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導(dǎo)出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。

(1)、一個圓錐的底面積是25平方分米,高是9分米,它體積是多少?

(2)、求圓錐的體積(看圖)

(3)、一個圓錐的底面直徑是20厘米,高是8厘米,它體積是多少?(圖)師:三題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。

2、填空。

(1) 一個圓錐的體積是8立方分米,底面積是2平方分米,高( )分米、。(2)圓錐形的容器高12厘米,容器中盛滿水,如將水全部倒入等底的圓柱形的器中,水面高是( )厘米。

3、選擇

(1) 兩個體積相等的等底的圓柱和圓錐,圓錐的高一定是圓柱高的( ) 。

(2) 把一段圓柱形的木棒削成一個最大的圓錐,削去部分的體積是圓錐體積的( )。

師:今天,我們學(xué)習(xí)了什么內(nèi)容?怎樣計算圓錐的體積?

對,這節(jié)課我們認識了圓錐,并推導(dǎo)出了圓錐的體積計算公式?;厝ヒ院?,先回憶一下今天學(xué)過的內(nèi)容,想一想,在運用v=1/3sh這個公式算圓錐體積時,要特別注意什么。

課外作業(yè):有一個高9厘米,底面積是20平方厘米的圓柱內(nèi)裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內(nèi)還剩多少水?(邊做實驗邊討論)

1、使學(xué)生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。

2、培養(yǎng)學(xué)生初步的空間觀念、邏輯思維能力、動手操作能力。

3、向?qū)W生滲透知識間"相互轉(zhuǎn)化"的辯證唯物主義思想,在聯(lián)系實際中對學(xué)生進行學(xué)習(xí)目的方面的思想教育。

圓錐的體積計算。

圓錐的體積公式推導(dǎo)。

圓錐的體積是與它等底等高的圓柱體積的三分之一。

多媒體、等底等高的圓柱和圓錐空心實物各一個,水若干。

空心圓錐和圓柱實物各一個,沙土若干。

圓錐的體積教學(xué)設(shè)計人教版篇七

使學(xué)生初步掌握圓錐體積的計算公式。

并能運用公式正確地計算圓錐的體積,發(fā)展學(xué)生的空間觀念。

等底等高的圓柱和圓錐,水和沙,多媒體課件。

一課時。

一、復(fù)習(xí)。

1、圓錐有什么特征?(課件出示)。

使學(xué)生進一步熟悉圓錐的特征:底面,側(cè)面,高和頂點。

2、圓柱體積的計算公式是什么?

指名學(xué)生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉(zhuǎn)化方法在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。

二、導(dǎo)人新課。

我們已經(jīng)學(xué)過圓柱體積的計算公式,那么圓錐的體積是不是和圓柱體積有關(guān)呢?今天我們就來學(xué)習(xí)圓錐體積的計算。

三、新課。

1、教學(xué)圓錐體積的計算公式。

師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

指名學(xué)生敘述圓柱體積計算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長方體來求得的。

師:那么圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的圖形來求呢?

先讓學(xué)生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關(guān)系?”

學(xué)生分組實驗。

匯報實驗結(jié)果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。

多指名說。

問:把圓柱裝滿一共倒了幾次?

生:3次。

師:這說明了什么?

生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

多找?guī)酌瑢W(xué)說。

師:圓柱的體積等于什么?

生:等于“底面積×高”。

引導(dǎo)學(xué)生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

師:用字母應(yīng)該怎樣表示?

然后板書字母公式:v=1/3sh。

師:在這個公式里你覺得哪里最應(yīng)該注意?

1/3×19×12=76((立方厘米))。

答:這個零件體積是76立方厘米。

做一做:課件出示,學(xué)生回答后,教師訂正。

1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

2、已知圓錐的底面半徑r和高h,如何求體積v?

3、已知圓錐的底面直徑d和高h,如何求體積v?

4、已知圓錐的底面周長c和高h,如何求體積v?

5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?

例2:(課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)。

判斷:課件出示,學(xué)生回答后,教師訂正。

1、圓柱體的體積一定比圓錐體的體積大()。

2、圓錐的體積等于和它等底等高的圓柱體積的()。

3、正方體、長方體、圓錐體的體積都等于底面積×高。()。

4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米()。

四、教師小結(jié)。

這節(jié)課我們學(xué)習(xí)了哪些知識?你還有什么問題嗎?

五、作業(yè)。課本練習(xí)九中7、8題。

圓錐的體積教學(xué)設(shè)計人教版篇八

本節(jié)課屬于空間與圖形知識的教學(xué),是小學(xué)階段幾何知識的重難點部分,是小學(xué)學(xué)習(xí)立體圖形體積計算的飛躍,通過這部分知識的教學(xué),可以發(fā)展學(xué)生的空間觀念、想象能力,較深入地理解幾何體體積推導(dǎo)方法的新領(lǐng)域,為學(xué)生進一步學(xué)習(xí)幾何知識奠定良好的基礎(chǔ)。

本節(jié)內(nèi)容是在學(xué)生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎(chǔ)上進行教學(xué)的,教材重視類比,轉(zhuǎn)化思想的滲透,直觀引導(dǎo)學(xué)生經(jīng)歷“猜測、類比、觀察、實驗、探究、推理、總結(jié)”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學(xué)生建立空間觀念,還能培養(yǎng)學(xué)生抽象的邏輯思維能力,激發(fā)學(xué)生的想象力.

數(shù)學(xué)課程標準中指出:應(yīng)放手讓學(xué)生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結(jié)過程中掌握知識、發(fā)展空間觀念,從而提高學(xué)生自主解決問題的能力。

1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。

2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結(jié)論——實踐運用”探索過程,獲得圓錐體積的推導(dǎo)過程和學(xué)習(xí)的方法。

3、情感、態(tài)度與價值觀:培養(yǎng)學(xué)生勇于探索的求知精神,感受到數(shù)學(xué)來源于生活,能積極參與數(shù)學(xué)活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習(xí)慣。

圓錐體積公式的理解,并能運用公式求圓錐的體積。

圓錐體積公式的推導(dǎo)

學(xué)生已學(xué)習(xí)了圓柱的體積計算,在教學(xué)中采用放手讓學(xué)生操作、小組合作探討的形式,讓學(xué)生在研討中自主探索,發(fā)現(xiàn)問題并運用學(xué)過的圓柱知識遷移到圓錐,得出結(jié)論。所以對 于新的知識教學(xué),他們一定能表現(xiàn)出極大的熱情。

試驗探究法 小組合作學(xué)習(xí)法

多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)

1課時

一、回顧舊知識

1、你能計算哪些規(guī)則物體的體積?

2、你能說出圓錐各部分的名稱嗎?

設(shè)計意圖通過對舊知識的回顧,進一步為學(xué)習(xí)新知識作好鋪墊。

二、創(chuàng)設(shè)情景 激發(fā)激情

展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?

設(shè)計意圖以生活中的數(shù)學(xué)的形式進行設(shè)置情景,引疑激趣遷移,激發(fā)學(xué)生好奇心和求知欲。(揭示課題:圓錐的體積)

三、試驗探究 合作學(xué)習(xí)(探討圓柱與圓錐體積之間的關(guān)系)

探究一:(分組試驗)圓柱與圓錐的底和高各有什么關(guān)系?

1、猜想:猜想它們的底、高之間各有什么關(guān)系?

2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結(jié)果;

3、小組匯報試驗結(jié)論,集體評議:(注意匯報出試驗步驟和結(jié)論)

4、教師介紹數(shù)學(xué)專用名詞:等底 等高

設(shè)計意圖通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。

探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關(guān)系?

1、大膽猜想:等底等高圓柱與圓錐體積之間的關(guān)系

2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關(guān)系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導(dǎo)每組的試驗)

3、小組匯報試驗結(jié)論(提醒學(xué)生匯報出試驗步驟)

(1)圓椎的體積是圓柱體積的3倍;

(2)圓錐的體積是圓柱體積的三分之一;

(3)當(dāng)?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。

4、通過學(xué)生匯報的試驗結(jié)論,分析歸納總結(jié)試驗結(jié)論。

5、你能用字母表示出它們的關(guān)系嗎?要求圓錐的體積必須知道什么條件呢?(學(xué)生反復(fù)朗讀公式)

通過學(xué)生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結(jié)論的過程,充分調(diào)動學(xué)生主動探索的意識,激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的動手能力,突破了本課的難點,突出了教學(xué)的重點。

探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關(guān)系。

1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關(guān)系?

3、學(xué)生通過觀看試驗匯報結(jié)論。

4、教師引導(dǎo)學(xué)生分析歸納總結(jié)圓錐體積是圓柱體積的三分之一所存在的條件。

5、結(jié)合探究二和探究三,進一步引導(dǎo)學(xué)生掌握圓錐的體積公式。

通過教師課件演示試驗,進一步讓學(xué)生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學(xué)生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學(xué)生的觀察能,分析能力,邏輯思維能力等,進一步讓學(xué)生從感性認識上升到了理性認識。

四、實踐運用 提升技能

2、口答題:題目內(nèi)容見多媒體展示獨立思考---抽生匯報---學(xué)生評議

設(shè)計意圖通過判斷題、口答題題型的訓(xùn)練,及時檢查學(xué)生對所學(xué)知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學(xué)生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。

五、談?wù)勈斋@:這節(jié)課你學(xué)到了什么呢?

六、課堂作業(yè):

1、做在書上作業(yè):練習(xí)四 第4、7題

2、坐在作業(yè)本上作業(yè):練習(xí)四 第3題

圓錐的體積教學(xué)設(shè)計人教版篇九

本節(jié)課的教學(xué)內(nèi)容是圓錐體積公式的推導(dǎo),是一節(jié)幾何課,新課程標準指出:教學(xué)的任務(wù)是引導(dǎo)和幫助學(xué)生主動去從事觀察、猜想、實驗、驗證、推理與交流等數(shù)學(xué)活動,從而使學(xué)生形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)策略。因此,在設(shè)計本節(jié)課時,我力求為學(xué)生創(chuàng)造一個自主探索與合作交流的環(huán)境,使學(xué)生能夠從情境中發(fā)現(xiàn)數(shù)學(xué)問題,學(xué)生會產(chǎn)生探究問題的需要,然后再通過自己的探索去發(fā)現(xiàn)和歸納公式,體驗過程。

(一)教學(xué)內(nèi)容分析:

1、教材內(nèi)容:

本節(jié)教材是在學(xué)生已經(jīng)掌握了圓柱體體積計算及其應(yīng)用和認識了圓錐的基本特征的基礎(chǔ)上學(xué)習(xí)的,是小學(xué)階段學(xué)習(xí)幾何知識的最后一課時內(nèi)容。讓學(xué)生學(xué)好這一部分內(nèi)容,有利于進一步發(fā)展學(xué)生的空間觀念,為進一步解決一些實際問題打下基礎(chǔ)。教材按照實驗、觀察、推導(dǎo)、歸納、實際應(yīng)用的程序進行安排。

2、研讀完教材后,自己的幾個問題:

(2)學(xué)生對三分之一好理解,怎樣去認識是等底等高的柱、錐。

(4)本節(jié)課的教學(xué)內(nèi)容只能挖掘到圓錐的體積嗎?能不能再深入一些?

3、自己的創(chuàng)新認識:

首先,研讀教材后,我認為這幾個問題的根本是一致的都是要把握住“誰在學(xué)?怎么學(xué)?”首先,在設(shè)計本節(jié)課時我想不只是讓學(xué)生學(xué)會一個公式,而是學(xué)會一種數(shù)學(xué)學(xué)習(xí)的方式,一種數(shù)學(xué)學(xué)習(xí)的思想,體驗一種數(shù)學(xué)學(xué)習(xí)的過程。

其次,是要提供給同學(xué)們一個可操作的空間。

(二)學(xué)情分析:

1、學(xué)生在前面的學(xué)習(xí)中對點、線、面、體有一定的基礎(chǔ)知識,同時也獲得了轉(zhuǎn)化、對應(yīng)、比較等數(shù)學(xué)思想。尤其是對于高年級段的同學(xué)來講他們獲取知識的渠道十分豐富,自己又有一定探究能力,對于圓錐體積的知識相信是有一定認識的,在進行教學(xué)設(shè)計前我們應(yīng)該了解到他們認識到哪兒了?了解學(xué)生的起點,為制定教學(xué)目標和選擇教學(xué)策略做好準備。

2、自己的認識:(結(jié)合自己在講課時發(fā)現(xiàn)的問題而談)

學(xué)生能夠根據(jù)以前的學(xué)習(xí)經(jīng)驗圓柱和圓錐的底面都是圓形認識到二者之間存在一定聯(lián)系,而且又是剛學(xué)完圓柱學(xué)生認識到這一點看來并不難,難的是等底等高。因此,在教學(xué)設(shè)計過程中要注意柱、錐間聯(lián)系的設(shè)計,突破學(xué)生對“圓錐的體積是與它等底等高的圓柱體積的三分之一”中的“等底等高”。

(三)教學(xué)方式與教學(xué)手段分析:

根據(jù)本節(jié)課的教學(xué)內(nèi)容及特點,在教學(xué)設(shè)計過程中我選擇了 “操作——實驗”的學(xué)習(xí)方式。學(xué)習(xí)任何知識的最佳途徑是由自已去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系。”我認為這也正是我在設(shè)計這節(jié)課中所要體現(xiàn)的核心內(nèi)容。第一次學(xué)習(xí)方式的指導(dǎo):體現(xiàn)在出示生活情境后,先讓學(xué)生進行大膽猜測“買哪個蛋糕更劃算”。本次學(xué)習(xí)方式的指導(dǎo)是通過學(xué)生對生活問題進行猜想,使學(xué)生認識到其中所包含的數(shù)學(xué)問題,并由此引導(dǎo)學(xué)生再想一想你有什么解決方法。

(四)技術(shù)準備與教學(xué)媒體:

在創(chuàng)設(shè)情境中利用多媒體出示主題圖,然后要從圖中剝離出圖形來,并演示整個實驗過程。

(一)教學(xué)目標:

1、使學(xué)生掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。

2、通過操作——實驗的學(xué)習(xí)方式,使學(xué)生體驗圓錐體積公式的推導(dǎo)過程,對實驗過程進行正確歸納得到圓錐的體積公式,能利用公式正確計算,并會解決簡單的實際問題。

3、培養(yǎng)學(xué)生的觀察、分析的綜合能力。

(二)教學(xué)重點:理解圓錐體積的計算公式并能運用圓錐體積公式正確地計算圓錐的體積

(三)教學(xué)難點:通過實驗的方法,得到計算圓錐體積的公式。

圓錐的體積教學(xué)設(shè)計人教版篇十

并能運用公式正確地計算圓錐的體積,發(fā)展學(xué)生的空間觀念。

教學(xué)難點:圓錐的體積應(yīng)用。

學(xué)具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件。

教學(xué)時間:一課時。

教學(xué)過程:。

一、復(fù)習(xí)。

1、圓錐有什么特征?(課件出示)。

使學(xué)生進一步熟悉圓錐的特征:底面,側(cè)面,高和頂點。

2、圓柱體積的計算公式是什么?

指名學(xué)生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉(zhuǎn)化方法在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。

二、導(dǎo)人新課。

出示一個圓錐形的谷堆,給出底面直徑和高,讓學(xué)生思考如何求它的體積。

三、新課。

師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

指名學(xué)生敘述圓柱體積計算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長方體來求得的。

師:那么圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的.圖形來求呢?

先讓學(xué)生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關(guān)系?”

學(xué)生分組實驗。

匯報實驗結(jié)果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。

多指名說。

問:把圓柱裝滿一共倒了幾次?

生:3次。

師:這說明了什么?

生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

多找?guī)酌瑢W(xué)說。

師:圓柱的體積等于什么?

生:等于“底面積×高”。

引導(dǎo)學(xué)生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

板書:圓錐的體積=1/3×底面積×高。

師:用字母應(yīng)該怎樣表示?

然后板書字母公式:v=1/3sh。

師:在這個公式里你覺得哪里最應(yīng)該注意?

1/3×19×12=76((立方厘米))。

答:這個零件體積是76立方厘米。

做一做:課件出示,學(xué)生回答后,教師訂正。

1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

2、已知圓錐的底面半徑r和高h,如何求體積v?

3、已知圓錐的底面直徑d和高h,如何求體積v?

4、已知圓錐的底面周長c和高h,如何求體積v?

5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?

例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)。

判斷:課件出示,學(xué)生回答后,教師訂正。

1、圓柱體的體積一定比圓錐體的體積大()。

2、圓錐的體積等于和它等底等高的圓柱體積的()。

3、正方體、長方體、圓錐體的體積都等于底面積×高。()。

4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米()。

四、教師小結(jié)。

這節(jié)課我們學(xué)習(xí)了哪些知識?你還有什么問題嗎?

五、作業(yè)。課本練習(xí)。

圓錐的體積教學(xué)設(shè)計人教版篇十一

1、通過分小組倒沙的實驗,使學(xué)生自主探索圓錐體積和圓柱體積之間的關(guān)系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關(guān)圓錐體積計算的簡單問題。

2、借助已有的生活和學(xué)習(xí)經(jīng)驗,在小組活動過程中,培養(yǎng)學(xué)生的動手操作能力和自主探索能力。

3、通過小組活動,實驗操作,巧妙設(shè)置探索障礙,激發(fā)學(xué)生的自主探索意識,發(fā)展學(xué)生的空間觀念。

掌握圓錐體積的計算公式。

1、理解圓錐體積公式的'推導(dǎo)過程;

2、掌握圓錐體積計算方法并能運用解決簡單的實際問題。

1、學(xué)生預(yù)習(xí)教材;

2、教師準備等底等高的圓柱和圓錐形容器若干個,沙土,直尺,平板。

一、復(fù)習(xí)

1、圓柱的體積公式是什么?(學(xué)生交流后做幻燈片中的練習(xí)題)

2、說一說圓錐有哪些特征。

a、出示實物圖,學(xué)生說一說生活中的圓錐形物體

b、總結(jié)圓錐的特征,學(xué)生齊讀。

二、導(dǎo)入新課

1、幻燈出示一圓錐形沙堆

2、師:操場上,同學(xué)們要計算這堆沙子的體積,怎么計算呢?

引出課題:這就是這節(jié)課我們要探索的問題

3、板書課題

三、探索新知

1、學(xué)習(xí)圓錐體積的推導(dǎo)公式

(1)思考:圓柱的體積公式是怎樣推導(dǎo)出來的?(學(xué)生交流討論,教師及時鼓勵學(xué)生回答)

(2)師:我們能不能也通過已學(xué)過圖形來求圓錐的體積呢?

學(xué)生小組討論交流

(3)師:有的同學(xué)提出了做實驗的方法,那么需要哪些器材呢?

學(xué)生交流后,幻燈出示實驗器材

(4)師:用這些器材怎樣做實驗?zāi)兀?/p>

學(xué)生小組討論后,教師:下面,我們就來試一試這種方法

(5)學(xué)生做實驗

a、觀察自己手中的圓柱與圓錐,討論他們的共同點。(等底等高)

師:下面的時間,請同學(xué)們按照實驗報告單的步驟做實驗,并將結(jié)果填入實驗報告單中。(教師巡視指導(dǎo))

b、集體交流實驗結(jié)論,大屏幕演示結(jié)果

c、想一想:通過實驗?zāi)惆l(fā)現(xiàn)了什么?

要求一個圓錐的體積,必須具備哪兩個條件?

明確:求圓錐的體積,圓錐的底面積和高是必備的直接條件。

(6)練習(xí)

2、拓展內(nèi)容

(2)學(xué)生分小組討論,填寫表格。(教師巡視指導(dǎo))

(3)集體交流,大屏幕展示結(jié)果

(4)練習(xí):

3、鞏固練習(xí)

三、拓展知識

1、出示幾組不同的情況,指定每組完成一項

2、展示結(jié)果

3、練習(xí)

四、小結(jié)

師:同學(xué)們,今天這節(jié)課你都學(xué)會了什么?

學(xué)生交流回答,教師板書

五、作業(yè)設(shè)計

六、板書設(shè)計

圓錐的體積

等底等高的圓錐和圓柱,

圓錐的體積是圓柱體積的

圓錐的體積教學(xué)設(shè)計人教版篇十二

一、復(fù)習(xí)導(dǎo)入。

1、怎樣計算圓柱的體積?(板書公式)

2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?

3、出示一個圓錐,請學(xué)生說說圓錐的特征。

4、導(dǎo)入:前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積應(yīng)怎樣計算呢?今天這節(jié)課我們就來研究這個問題。(板書課題)

二、動手測量,大膽猜想。

1、動手測量,找圓錐和圓柱的底和高的關(guān)系。

2、學(xué)生動手測量,教師巡視。給予指導(dǎo)。

3、交流得出結(jié)論:圓柱和圓錐等底等高。

4、猜想等底等高的圓柱和圓錐的體積之間有什么關(guān)系?

三、實驗操作,推導(dǎo)出圓錐體積計算公式。

1、實驗操作。

師:圓錐的體積到底與等底等高的圓柱的體積之間有什么關(guān)系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。

2、學(xué)生分組實驗,教師巡視。

3、匯報交流,你們組是怎么做實驗的?通過實驗?zāi)惆l(fā)現(xiàn)了什么?

4、強調(diào)等底等高。

5小結(jié):不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結(jié)論)

6、練習(xí)(出示)

(1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是()立方分米。

(2)一個圓錐的體積是1.8立方分米,與它等底等高的圓柱的體積是()立方分米。

7、得出圓錐的體積計算公式。

8、用字母表示圓錐的體積計算公式。

三、鞏固練習(xí)。

1、計算下面圓錐的體積。(只列式不計算)

底面積是6.28平方分米,高是9分米。

底面半徑是6厘米,高是4.5厘米。

底面直徑是4厘米,高是4.8厘米。

底面周長是12.56厘米,高是6厘米。

2、填空。

a圓錐的體積=(),用字母表示是()。

b圓柱體積的與和它()的圓錐的體積相等。

c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。

d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。

3、判斷。(用手勢表示)

a圓柱體的體積一定比圓錐體的體積大()

b圓錐的體積等于和它等底等高的圓柱體的()

c正方體、長方體、圓錐體的體積都等于底面積×高。()

d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()

四、全課小結(jié)。

師:今天這結(jié)課學(xué)習(xí)了什么?通過今天的學(xué)習(xí)研究你有什么收獲?

五、解決實際問題。

在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數(shù)保留整噸數(shù))

圓錐的體積教學(xué)設(shè)計人教版篇十三

并能運用公式正確地計算圓錐的體積,發(fā)展學(xué)生的空間觀念。

教學(xué)難點:圓錐的體積應(yīng)用

學(xué)具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件

教學(xué)時間:一課時

教學(xué)過程:

一、復(fù)習(xí)

1、圓錐有什么特征?(課件出示)

使學(xué)生進一步熟悉圓錐的特征:底面,側(cè)面,高和頂點。

2、圓柱體積的計算公式是什么?

指名學(xué)生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉(zhuǎn)化方法在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。

二、導(dǎo)人新課

出示一個圓錐形的谷堆,給出底面直徑和高,讓學(xué)生思考如何求它的體積。

板書課題:圓錐的體積

三、新課

1、教學(xué)圓錐體積的計算公式。

師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

指名學(xué)生敘述圓柱體積計算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長方體來求得的。

師:那么圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的圖形來求呢?

先讓學(xué)生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關(guān)系?”

學(xué)生分組實驗。

匯報實驗結(jié)果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。

多指名說

問:把圓柱裝滿一共倒了幾次?

生:3次。

師:這說明了什么?

生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

多找?guī)酌瑢W(xué)說。

板書:圓錐的體積=1/3 ×圓柱體積

師:圓柱的體積等于什么?

生:等于“底面積×高”。

師:那么,圓錐的體積可以怎樣表示呢?

引導(dǎo)學(xué)生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

板書:圓錐的體積= 1/3 ×底面積×高

師:用字母應(yīng)該怎樣表示?

然后板書字母公式:v=1/3 sh

師:在這個公式里你覺得哪里最應(yīng)該注意?

1/3×19×12=76((立方厘米))

答:這個零件體積是76立方厘米。

做一做:課件出示,學(xué)生回答后,教師訂正。

1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

2、已知圓錐的底面半徑r和高h,如何求體積v?

3、已知圓錐的底面直徑d和高h,如何求體積v?

4、已知圓錐的底面周長c和高h,如何求體積v?

5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?

例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)

判斷:課件出示,學(xué)生回答后,教師訂正。

1、圓柱體的體積一定比圓錐體的體積大( )

2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。

3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )

4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )

四、教師小結(jié)。

這節(jié)課我們學(xué)習(xí)了哪些知識?你還有什么問題嗎?

五、作業(yè)。課本練習(xí)

圓錐的體積教學(xué)設(shè)計人教版篇十四

人教版九年義務(wù)教育小學(xué)數(shù)學(xué)教科書第十二冊。

這部分知識是學(xué)生在有了圓錐的認識和圓柱體積相關(guān)知識的基礎(chǔ)上進行教學(xué)的。在知識與技能上,通過對圓錐體的研究,經(jīng)歷并理解圓錐體積公式的推導(dǎo)過程,會計算圓錐的體積;在方法的選擇上,抓住新舊知識間的聯(lián)系,通過猜想、課件演示、實踐操作,從經(jīng)歷和體驗中驗證,讓學(xué)生在自主探索與合作交流過程中真正理解和掌握基本的數(shù)學(xué)知識與技能,數(shù)學(xué)思想和方法,使學(xué)生真正成為學(xué)習(xí)的主人。

1、使學(xué)生掌握圓錐體積的計算公式,會用公式計算圓錐的體積,解決日常生活中有關(guān)簡單的實際問題。

2、讓學(xué)生經(jīng)歷猜想——驗證,合作——探究的教學(xué)過程,理解圓錐體積公式的推導(dǎo)過程,體驗轉(zhuǎn)化的思想。

3、培養(yǎng)學(xué)生動手操作、觀察、分析、推理能力,發(fā)展空間觀念,滲透事物是普遍聯(lián)系的唯物辯證思想。

[點評:知識與技能目標的設(shè)計全面、具體、有針對性。不但使學(xué)生掌握圓錐體積的計算公式,而且培養(yǎng)了學(xué)生運用圓錐體積公式解決生活中的實際問題的能力,使學(xué)生體會到數(shù)學(xué)與生活的密切聯(lián)系注。并注重對學(xué)生“猜想——————驗證”、“合作——————探究”等學(xué)習(xí)方式的培養(yǎng)及“轉(zhuǎn)化”數(shù)學(xué)思想方法的滲透;同時關(guān)注學(xué)生空間觀念的培養(yǎng)及唯物辯證思想的滲透。

掌握圓錐體積的計算公式,并能靈活利用公式求圓錐的體積。

理解圓錐體積公式的推導(dǎo)過程及解決生活中的實際問題。

一、 創(chuàng)設(shè)情境導(dǎo)入新課。

2、引導(dǎo)學(xué)生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學(xué)可以同桌交流,共同研究。(組織學(xué)生先獨立思考,然后同桌討論交流,最后匯報自己的想法。)

3、教師出示一個圓錐體的木塊引導(dǎo)學(xué)生明確前面所想的方法太麻繁、不實用。并鼓勵學(xué)生研究出一種簡便快捷的方法來求圓錐的體積。

二、經(jīng)歷體驗,探究新知

(一)滲透轉(zhuǎn)化,幫助猜想

1、先組織學(xué)生自由暢談圓錐的體積可能會與誰有關(guān)(圓柱)。先給學(xué)生獨立思考的時間,然后匯報。匯報時要闡述自己的理由。教師引導(dǎo)學(xué)生回憶圓柱體積公式的推導(dǎo)過程。

2、組織學(xué)生拿出準備好的圓柱體鉛筆和轉(zhuǎn)筆刀來削鉛筆,同時教師也隨著學(xué)生一起來做。教師做好后要及時巡視,直到學(xué)生將鉛筆削得尖尖的為止。然后引導(dǎo)學(xué)生認真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學(xué)生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關(guān)系。(削好后的圓柱與圓錐等底不等高,體積無關(guān)。)此時,教師要參與到小組討論中,及時引導(dǎo)學(xué)生發(fā)現(xiàn)削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關(guān)。組織學(xué)生自己的話來總結(jié)。最后,將自己的發(fā)現(xiàn)進行匯報。

(二)小組合作,實驗驗證。

1、教師發(fā)給每組學(xué)生一個準備好的等底等高的圓柱和圓錐、沙了,組織學(xué)生拿出等底等高的圓柱和圓錐進行實驗。實驗前小組成員進行組內(nèi)分工,有的進行操作,有的記錄……實驗中教師要及時巡視指導(dǎo)并參與到小組實驗中去及時了解學(xué)生實驗的進展情況。并指導(dǎo)幫助學(xué)生順利完成實驗。

2、實驗后組內(nèi)成員進行交流。交流的過程中,要引導(dǎo)學(xué)生注重傾聽別人的想法,并說出自己不同的見解。

3、首先各小組派代表進行匯報,其它小組可以補充。然后全班進行交流實驗結(jié)果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導(dǎo)出圓錐的體積公式。預(yù)設(shè)板書如下:

概括板書:

等底到高

v圓柱=sh v圓錐= 1/3sh

4、深化公式。組織學(xué)生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預(yù)設(shè)板書如下:

v =1/3πr2h v =1/3(c/2π)2h v =1/3(d/2)2h

5、教師組織學(xué)生獨立完成書中例題后集體訂正。

(三)看書質(zhì)疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。

三、鞏固新知,拓展應(yīng)用。

1、判斷并說明理由

(1)圓柱體積是圓錐體積的3倍( )

(2)一個圓錐的高不變,底面積越大,體積越大。( )

(3)一個圓錐體的高是3分米,底面積10平方分米,它的體積是30立方分米。( )

組織學(xué)生打手勢判斷后說明理由,并強調(diào)圓錐的體積是圓柱體積的1/3是以等底等高為前提的。

2、求下列圓錐的體積(口答,只列式,不計算)

s=4平方米,h=2平方米

r=2分米,h=3分米

d=6厘米,h=5厘米

組織學(xué)生根據(jù)圓錐體積公式解答。

3、實踐與應(yīng)用:

學(xué)校操場有一堆圓錐沙子,求它的體積需要什么條件,你有什么好辦法?

組織學(xué)生進行討論,求圓錐體的沙堆的體積需要什么條件后并談如何來測量這些所需條件,有條件的可領(lǐng)學(xué)生實地操作一下。再求體積。

四、課后總結(jié),感情升華。

這節(jié)課你有什么收獲?你是怎樣獲得的?

[總評:

1、鉆研教材,創(chuàng)造性地使用教材。

教師在充分了解學(xué)生、把握課程標準、教學(xué)目標、教材編寫意圖的基礎(chǔ)上,根據(jù)學(xué)生生活實際和學(xué)習(xí)實際,有目的地對教材內(nèi)容進行改編和加工。如學(xué)生削鉛筆這一活動的設(shè)計,學(xué)生從“削”的過程中體驗到圓柱與圓錐的聯(lián)系;再如動手實驗這一環(huán)節(jié)的設(shè)計,使學(xué)生在觀察、比較、動手操作,合作交流中理解掌握新知。創(chuàng)造性地融入一些生活素材,加強了數(shù)學(xué)與生活的密切聯(lián)系。

2、注重數(shù)學(xué)思想方法的滲透。

數(shù)學(xué)思想方法是數(shù)學(xué)知識的精髓,又是知識轉(zhuǎn)化為能力的橋梁。新課伊始,便讓學(xué)生自己想辦法求圓錐的體積,此時學(xué)生便想辦法將圓錐體的容器裝滿水后倒入圓柱或長(正)方體的容器中,從而求出圓錐的體積。這一過程潛移默化地滲透“轉(zhuǎn)化”的數(shù)學(xué)思想方法。再如:讓學(xué)生將圓柱體的鉛筆削成圓錐體的這一活動,也同樣滲透了轉(zhuǎn)化的思想方法。

3、猜想—————驗證、合作交流等學(xué)習(xí)方式體現(xiàn)了學(xué)生的主體地位。

【本文地址:http://mlvmservice.com/zuowen/13173810.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔