教案可以幫助教師明確教學(xué)目標(biāo)、選擇適當(dāng)?shù)慕虒W(xué)方法和資源、組織課堂教學(xué)活動(dòng)。教案的編寫(xiě)應(yīng)根據(jù)學(xué)生的認(rèn)知特點(diǎn)和發(fā)展需求。這些教案范例還反映了教師們對(duì)學(xué)生學(xué)習(xí)特點(diǎn)的深入研究和理解。
高一數(shù)學(xué)不等式教案篇一
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來(lái)公民所必要的數(shù)學(xué)素養(yǎng),以滿(mǎn)足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過(guò)不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(a版)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2.問(wèn)題性:以恰時(shí)恰點(diǎn)的問(wèn)題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問(wèn)題意識(shí),孕育創(chuàng)新精神。
3.科學(xué)性與思想性:通過(guò)不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問(wèn)題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2. 通過(guò)觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3. 在教學(xué)中強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
兩個(gè)班一個(gè)普高一個(gè)職高,學(xué)習(xí)情況良好,但學(xué)生自覺(jué)性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺(jué)性。班級(jí)存在的最大問(wèn)題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話(huà)等途徑樹(shù)立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的`知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
俗話(huà)說(shuō)的好,好的教學(xué)計(jì)劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計(jì)劃很有必要。
總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!
高一數(shù)學(xué)不等式教案篇二
本節(jié)的重點(diǎn)是二次根式的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而二次根式的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過(guò)的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類(lèi)討論.
本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對(duì)學(xué)生來(lái)說(shuō),比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計(jì)問(wèn)題引導(dǎo)啟發(fā):由設(shè)計(jì)的問(wèn)題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
(1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類(lèi)型不同的題進(jìn)行比較;
(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
(第1課時(shí))
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式
3.通過(guò)本節(jié)的學(xué)習(xí)滲透分類(lèi)討論的數(shù)學(xué)思想和方法
對(duì)比、歸納、總結(jié)
1.重點(diǎn):理解并掌握二次根式的性質(zhì)
2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.
1課時(shí)
五、教b具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
一、導(dǎo)入新課
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
問(wèn):式子的意義是什么?被開(kāi)方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
二、新課
計(jì)算下列各題,并回答以下問(wèn)題:
(1);(2);(3);
1.各小題中被開(kāi)方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開(kāi)方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開(kāi)方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語(yǔ)言敘述你的結(jié)論.
高一數(shù)學(xué)不等式教案篇三
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系。
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。
3、了解集合元素個(gè)數(shù)問(wèn)題的討論說(shuō)明。
通過(guò)提問(wèn)匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法。
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀。
[教學(xué)方法]:講練結(jié)合法。
[授課類(lèi)型]:復(fù)習(xí)課。
[課時(shí)安排]:1課時(shí)。
[教學(xué)過(guò)程]:集合部分匯總。
本單元主要介紹了以下三個(gè)問(wèn)題:
1,集合的含義與特征。
2,集合的表示與轉(zhuǎn)化。
3,集合的基本運(yùn)算。
一,集合的含義與表示(含分類(lèi))。
1,具有共同特征的對(duì)象的全體,稱(chēng)一個(gè)集合。
2,集合按元素的個(gè)數(shù)分為:有限集和無(wú)窮集兩類(lèi)。
高一數(shù)學(xué)不等式教案篇四
(3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;
(4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;
(5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;
(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.。
重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.。
1.新課導(dǎo)入。
初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)。
(從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)。
學(xué)生舉例:平行四邊形的對(duì)角線(xiàn)互相平.……(1)。
兩直線(xiàn)平行,同位角相等.…………(2)。
教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)。
(同學(xué)議論結(jié)果,答案是肯定的.)。
教師提問(wèn):什么是命題?
(學(xué)生進(jìn)行回憶、思考.)。
概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.。
(教師肯定了同學(xué)的回答,并作板書(shū).)。
(教師利用投影片,和學(xué)生討論以下問(wèn)題.)。
例1判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:
2.講授新課。
(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)。
(1)什么叫做命題?
可以判斷真假的語(yǔ)句叫做命題.。
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。
命題可分為簡(jiǎn)單命題和復(fù)合命題.。
(4)命題的表示:用p,q,r,s,……來(lái)表示.。
(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)。
對(duì)于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。
3.鞏固新課。
(1)5;
(2)0.5非整數(shù);
(3)內(nèi)錯(cuò)角相等,兩直線(xiàn)平行;
(4)菱形的對(duì)角線(xiàn)互相垂直且平分;
(5)平行線(xiàn)不相交;
(6)若ab=0,則a=0.。
(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
高一數(shù)學(xué)不等式教案篇五
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱(chēng):
(1)仰角與俯角:均是指視線(xiàn)與水平線(xiàn)所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線(xiàn)的夾角;
(3)方向角:常見(jiàn)的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱(chēng):
(1)仰角與俯角:均是指視線(xiàn)與水平線(xiàn)所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線(xiàn)的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
一、知識(shí)歸納
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱(chēng):
(1)仰角與俯角:均是指視線(xiàn)與水平線(xiàn)所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線(xiàn)的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測(cè)量角度問(wèn)題
例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以?xún)?nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測(cè)站a.某時(shí)刻測(cè)得一艘勻速直線(xiàn)行駛的船只位于點(diǎn)a北偏東。
高一數(shù)學(xué)不等式教案篇六
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.
2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱(chēng)的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱(chēng)性,同時(shí)還可以借助圖象說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱(chēng)只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高一數(shù)學(xué)不等式教案篇七
(1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類(lèi)。
(3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類(lèi)。
(1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周?chē)?,增?qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀四、教學(xué)思路。
1、教師提出問(wèn)題:在我們生活周?chē)杏胁簧儆刑厣慕ㄖ铮隳芘e出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類(lèi)嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類(lèi),分辯棱柱、圓柱、棱錐。
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類(lèi)?
6、以類(lèi)似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類(lèi)以及表示。
7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類(lèi)似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱(chēng)為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱(chēng)為臺(tái)體,圓錐與棱錐統(tǒng)稱(chēng)為錐體。
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)。
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、課本p8,習(xí)題1.1a組第1題。
5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
高一數(shù)學(xué)不等式教案篇八
1、掌握雙曲線(xiàn)的范圍、對(duì)稱(chēng)性、頂點(diǎn)、漸近線(xiàn)、離心率等幾何性質(zhì)。
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線(xiàn)的草圖以及解決簡(jiǎn)單的實(shí)際問(wèn)題。
1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線(xiàn)方程為的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為、
3、雙曲線(xiàn)的漸進(jìn)線(xiàn)方程為、
探究1、類(lèi)比橢圓的幾何性質(zhì)寫(xiě)出雙曲線(xiàn)的幾何性質(zhì),畫(huà)出草圖并,說(shuō)出它們的不同、
探究2、雙曲線(xiàn)與其漸近線(xiàn)具有怎樣的關(guān)系、
例1根據(jù)以下條件,分別求出雙曲線(xiàn)的標(biāo)準(zhǔn)方程、
(1)過(guò)點(diǎn),離心率、
(2)、是雙曲線(xiàn)的左、右焦點(diǎn),是雙曲線(xiàn)上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過(guò)點(diǎn)的雙曲線(xiàn)標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線(xiàn)的離心率為、
3、雙曲線(xiàn)的漸進(jìn)線(xiàn)方程是,則雙曲線(xiàn)的離心率等于=、
高一數(shù)學(xué)不等式教案篇九
用“”或“”號(hào)表示大小關(guān)系的式子叫做不等式。
使不等式成立的未知數(shù)的值叫做不等式的解。
能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡(jiǎn)稱(chēng)解集。
含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
不等式有以下性質(zhì):
不等式的性質(zhì)1不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。
不等式的性質(zhì)2不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。
不等式的性質(zhì)3不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa)的形式。
把兩個(gè)不等式合起來(lái),就組成了一個(gè)一元一次不等式組。
幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對(duì)于具有多種不等關(guān)系的問(wèn)題,可通過(guò)不等式組解決。解一元一次不等式組時(shí)。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。
高一數(shù)學(xué)不等式教案篇十
教學(xué)目標(biāo)。
1.掌握分析法證明不等式;
2.理解分析法實(shí)質(zhì)――執(zhí)果索因;
3.提高證明不等式證法靈活性.
教學(xué)重點(diǎn)分析法。
教學(xué)難點(diǎn)分析法實(shí)質(zhì)的理解。
教學(xué)方法啟發(fā)引導(dǎo)式。
教學(xué)活動(dòng)。
(一)導(dǎo)入新課。
(教師活動(dòng))教師提出問(wèn)題,待學(xué)生回答和思考后點(diǎn)評(píng).。
(學(xué)生活動(dòng))回答和思考教師提出的問(wèn)題.。
[問(wèn)題1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?
[問(wèn)題2]能否用比較法或綜合法證明不等式:
[點(diǎn)評(píng)]在證明不等式時(shí),若用比較法或綜合法難以下手時(shí),可采用另一種證明方法:分析法.(板書(shū)課題)。
設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)證明不等式的方法.指出用比較法和綜合法證明不等式的不足之處,
(二)新課講授。
【嘗試探索、建立新知】。
[問(wèn)題2]當(dāng)我們尋找的充分條件已經(jīng)是成立的不等式時(shí),說(shuō)明了什么呢?
[問(wèn)題3]說(shuō)明要證明的不等式成立的理由是什么呢?
【例題示范、學(xué)會(huì)應(yīng)用】。
(學(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問(wèn)題,與教師一道完成問(wèn)題的論證.。
高一數(shù)學(xué)不等式教案篇十一
證明推論2證明例4練習(xí)。
探究活動(dòng)。
能得到什么結(jié)論。
題目已知且,你能夠推出什么結(jié)論?
分析與解:由條件推出結(jié)論,我們可以考慮把已知條件的變量范圍擴(kuò)大,對(duì)已知變量作運(yùn)算,運(yùn)用不等式的性質(zhì),或者跳出不等式去考慮一般的數(shù)學(xué)表達(dá)式。
思路一:改變的范圍,可得:
1.且;
2.且;
思路二:由已知變量作運(yùn)算,可得:
3.且;
4.且;
5.且;
6.且;
7.且;
思路三:考慮含有的數(shù)學(xué)表達(dá)式具有的性質(zhì),可得:
8.(其中為實(shí)常數(shù))是三次方程;
9.(其中為常數(shù))的圖象不可能表示直線(xiàn)。
探究關(guān)系式是否成立的問(wèn)題。
題目當(dāng)成立時(shí),關(guān)系式是否成立?若成立,加以證明;若不成立,說(shuō)明理由。
解:因?yàn)?,所以,所以?/p>
所以,
所以或。
所以或。
所以或。
所以不可能成立。
說(shuō)明:像本例這樣的探索題,題目的結(jié)論是“兩可”(即兩種可能性)情形,而我們知道,說(shuō)明結(jié)論不成立可像例1那樣舉一個(gè)反例就可以了。不過(guò)像本例的執(zhí)果索因的分析,不僅說(shuō)明結(jié)論不成立,而且得出,必須同時(shí)大于1或同時(shí)小于1的結(jié)論。
探討增加什么條件使命題成立。
例適當(dāng)增加條件,使下列命題各命題成立:
(1)若,則;
(2)若,則;
(3)若,,則;
(4)若,則。
思路分析:本例為條件型開(kāi)放題,需要依據(jù)不等式的性質(zhì),尋找使結(jié)論成立時(shí)所缺少的一個(gè)條件。
解:(1)。
(2)。當(dāng)時(shí),
當(dāng)時(shí),
(3)。
(4)。
引申發(fā)散對(duì)命題(3),能否增加條件,或,,使其成立?請(qǐng)闡述你的理由。
高一數(shù)學(xué)不等式教案篇十二
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過(guò)程。編輯老師編輯了:數(shù)列,希望對(duì)您有所幫助!
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出該數(shù)列的一個(gè)通項(xiàng)公式.
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫(xiě)出數(shù)列的前幾項(xiàng).
2.通過(guò)對(duì)一列數(shù)的觀察、歸納,寫(xiě)出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過(guò)由求的過(guò)程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類(lèi)似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫(xiě)通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫(xiě)通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等.如果學(xué)生一時(shí)不能寫(xiě)出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對(duì)每個(gè)數(shù)列都有求和問(wèn)題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問(wèn)題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!
高一數(shù)學(xué)不等式教案篇十三
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語(yǔ)。
教學(xué)過(guò)程:
一、閱讀下列語(yǔ)句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線(xiàn)上所有的點(diǎn)。
4)今年本校高一(1)(或(2))班的全體學(xué)生。
5)本校實(shí)驗(yàn)室的所有天平。
6)本班級(jí)全體高個(gè)子同學(xué)。
7)著名的科學(xué)家。
上述每組語(yǔ)句所描述的對(duì)象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________。
三、集合中元素的'三個(gè)性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________。
五、特殊數(shù)集專(zhuān)用記號(hào):
4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____。
六、集合的表示方法:
1)。
2)。
3)。
七、例題講解:
例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長(zhǎng),那么此三角形一定不是()。
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑?,然后說(shuō)出它們是有限集還是無(wú)限集?
1)地球上的四大洋構(gòu)成的集合;。
2)函數(shù)的全體值的集合;。
3)函數(shù)的全體自變量的集合;。
4)方程組解的集合;。
5)方程解的集合;。
6)不等式的解的集合;。
7)所有大于0且小于10的奇數(shù)組成的集合;。
8)所有正偶數(shù)組成的集合;。
例3、用符號(hào)或填空:
1)______q,0_____n,_____z,0_____。
2)______,_____。
3)3_____,
4)設(shè),,則。
例4、用列舉法表示下列集合;。
1.
2.
3.
4.
例5、用描述法表示下列集合。
1.所有被3整除的數(shù)。
2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合。
課堂練習(xí):。
例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
思考題:數(shù)集a滿(mǎn)足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級(jí)姓名學(xué)號(hào)。
1.下列集合中,表示同一個(gè)集合的是()。
a.m=,n=b.m=,n=。
c.m=,n=d.m=,n=。
2.m=,x=,y=,,.則()。
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個(gè)數(shù)是____________.
6.設(shè),則集合中所有元素的和為。
7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為。
8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
若a=,試用列舉法表示集合b=。
9.把下列集合用另一種方法表示出來(lái):
(1)(2)。
(3)(4)。
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說(shuō)明理由。
11.已知集合a=。
(1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;。
(2)若a中至多只有一個(gè)元素,求a的取值集合。
12.若-3,求實(shí)數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來(lái),新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來(lái)幫助!
高一數(shù)學(xué)不等式教案篇十四
課前復(fù)習(xí)提問(wèn)時(shí),給學(xué)生的復(fù)習(xí)思考時(shí)間太短,開(kāi)始問(wèn)了幾個(gè)學(xué)生不等式的三個(gè)基本性質(zhì),有的答不出來(lái),有的答對(duì)一點(diǎn)但不完整。在很多學(xué)生沒(méi)有作好充分準(zhǔn)備時(shí)問(wèn)到這個(gè)問(wèn)題有點(diǎn)慌亂,我覺(jué)得更好的辦法是先讓學(xué)生看一下書(shū)復(fù)習(xí)一下不等式的三個(gè)基本性質(zhì),然后合起書(shū)再叫同學(xué)來(lái)說(shuō)效果會(huì)更好。
例2學(xué)生對(duì)實(shí)際問(wèn)題中的字母取值范圍考慮不全,在講解這個(gè)問(wèn)題時(shí)帶有點(diǎn)填壓式,告訴學(xué)生字母的取值要大于或等于0,講過(guò)之后可能學(xué)生印象還是不深。我覺(jué)得應(yīng)先舉一些實(shí)際生活中常見(jiàn)的例子,比如在數(shù)人的個(gè)數(shù)時(shí)字母應(yīng)取什么值等,多列舉一些例子讓學(xué)生感性上認(rèn)識(shí),從而引導(dǎo)學(xué)生思考例2的字母的.取值范圍。
例3學(xué)生根據(jù)三邊關(guān)系往往只列出一個(gè)不等式,在教學(xué)時(shí)我先采取了提問(wèn)的方式,給出了三個(gè)問(wèn)題,引出三個(gè)不等式,然后讓學(xué)生移項(xiàng)變形,又得出三個(gè)不等式,對(duì)總結(jié)三角形任意兩邊之差小于第三邊做了輔墊。教學(xué)效果較好。
學(xué)生在回答問(wèn)題的過(guò)程中,為了更快的得到自己預(yù)期的答案,往往打斷學(xué)生的回答,剝奪了學(xué)生的主動(dòng)權(quán);比如學(xué)生在總結(jié)不等式性質(zhì)3時(shí),總怕他們出錯(cuò)所以老師急于公布結(jié)論。有時(shí)在學(xué)生思考問(wèn)題時(shí)做一些補(bǔ)充打斷學(xué)生的思路,這樣對(duì)學(xué)生思考問(wèn)題又帶來(lái)一定影響;課堂小結(jié)中學(xué)生的體會(huì)與收獲談的不是很好。
高一數(shù)學(xué)不等式教案篇十五
教法與學(xué)法:
1.教學(xué)理念:“人人學(xué)有用的數(shù)學(xué)”
2.教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.。
3.教學(xué)手段:多媒體應(yīng)用教學(xué)。
4.學(xué)法指導(dǎo):嘗試,猜想,歸納,總結(jié)。
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,教材和學(xué)生的特點(diǎn),我制定了以下四個(gè)教學(xué)環(huán)節(jié)。
下面我將具體的教學(xué)過(guò)程闡述一下:
一、創(chuàng)設(shè)情境,導(dǎo)入新課。
上課伊始,我將用一個(gè)公園買(mǎi)門(mén)票如何才劃算的例子導(dǎo)入課題。
(此處學(xué)生是很容易得出買(mǎi)30張門(mén)票需要4x30=120(元),買(mǎi)27張門(mén)票需要5x27=135(元),由于120〈135,所以買(mǎi)30張門(mén)票比買(mǎi)27張還要?jiǎng)澦?。由此建立了一個(gè)數(shù)與數(shù)之間的不等關(guān)系式)。
緊接著進(jìn)一步提問(wèn):若人數(shù)是x時(shí),又當(dāng)如何買(mǎi)票劃算?
二、探求新知,講授新課。
引例列出了數(shù)與數(shù)之間的不等關(guān)系和含有未知量1205x的不等關(guān)系。那么在不等式概念提出之前,先讓學(xué)生回顧等式的概念,“類(lèi)比”等式的概念,嘗試著去總結(jié)歸納出不等式的概念。使學(xué)生從一個(gè)低起點(diǎn),通過(guò)獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)應(yīng)用數(shù)學(xué)的自信心,為下面的學(xué)習(xí)調(diào)動(dòng)了積極。
接下來(lái)我用一組例題來(lái)鞏固一下對(duì)不等式概念的認(rèn)知,把表示不等量關(guān)系的常用關(guān)鍵詞提出。
(1)a是負(fù)數(shù);
(2)a是非負(fù)數(shù);
(3)a與b的和小于5;
(4)x與2的差大于-1;
(5)x的4倍不大于7;
(6)的一半不小于3。
關(guān)鍵詞:非負(fù)數(shù),非正數(shù),不大于,不小于,不超過(guò),至少。
難點(diǎn)突破:通過(guò)上面三組算式,學(xué)生已經(jīng)嘗試著歸納出不等式的三條基本性質(zhì)了。不等式性質(zhì)3是本節(jié)的難點(diǎn)。在不等式性質(zhì)3用數(shù)探討出以后,換一個(gè)角度讓學(xué)生想一想,是否能在數(shù)軸上任取兩個(gè)點(diǎn),用相反數(shù)的相關(guān)知識(shí)挖掘一下,乘以或除以一個(gè)負(fù)數(shù)時(shí),任意兩個(gè)數(shù)比較是否性質(zhì)3都成立。通過(guò)“數(shù)形結(jié)合”的思想,使數(shù)的取值從特殊化到一般化,從對(duì)具體數(shù)的感知完成到字母代替數(shù)的升華。讓學(xué)生用實(shí)例對(duì)一些數(shù)學(xué)猜想作出檢驗(yàn),從而增加猜想的可信程度。同時(shí),讓學(xué)生嘗試從不同角度尋求解決問(wèn)題的方法并能有效地解決問(wèn)題。
反饋練習(xí):用一個(gè)小練習(xí)鞏固三條性質(zhì)。
如果ab,那么。
(1)a-3b-3(2)2a2b(3)-3a-3b。
提出疑問(wèn),我們討論性質(zhì)2,3是好象遺忘了一個(gè)數(shù)0。
引出讓學(xué)生歸納,等式與不等式的區(qū)別與聯(lián)系。
三、拓展訓(xùn)練。
根據(jù)不等式基本性質(zhì),將下列不等式化為“”或“”的形式。
再次回到開(kāi)頭的門(mén)票問(wèn)題,讓學(xué)生解出相應(yīng)的x的取值范圍。
四、小結(jié)。
1.新知識(shí)。
2.與舊知識(shí)的聯(lián)系。
五、作業(yè)的布置。
以上是我對(duì)這節(jié)課的教學(xué)的看法,希望各位專(zhuān)家指正。謝謝!
“讓學(xué)生主動(dòng)參與數(shù)學(xué)教學(xué)的全過(guò)程,真正成為學(xué)習(xí)的主人”
高一數(shù)學(xué)不等式教案篇十六
1、使學(xué)生熟練掌握一元一次不等式的解法,初步認(rèn)識(shí)一元一次不等式的應(yīng)用價(jià)值;。
3、讓學(xué)生在分組活動(dòng)和班級(jí)交流的過(guò)程中,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)并感受成功的喜悅,從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。
教學(xué)難點(diǎn)。
熟練并準(zhǔn)確地解一元一次不等式。
知識(shí)重點(diǎn)。
熟練并準(zhǔn)確地解一元一次不等式。
教學(xué)過(guò)程。
(師生活動(dòng))設(shè)計(jì)理念。
你會(huì)運(yùn)用已學(xué)知識(shí)解這個(gè)不等式嗎?請(qǐng)你說(shuō)說(shuō)解這個(gè)不等式的過(guò)程.以學(xué)生身邊的事例為背景,突出不等式與現(xiàn)實(shí)的聯(lián)系,這個(gè)問(wèn)題為契機(jī)引入新課,可以激發(fā)學(xué)生的學(xué)習(xí)興趣。
探究新知。
1、在學(xué)生充分發(fā)表意見(jiàn)的基礎(chǔ)上,師生共同歸納出這個(gè)不等式的解法.教師規(guī)范地板書(shū)解的過(guò)程.
2、例題.
解下列不等式,并在數(shù)軸上表示解集:
(1)x50(2)-4x3。
(3)7-3x10(4)2x-33x+1。
分組活動(dòng).先獨(dú)立思考,然后請(qǐng)4名學(xué)生上來(lái)板演,其余同學(xué)組內(nèi)相互交流,作出記錄,最后各組選派代表發(fā)言,點(diǎn)評(píng)板演情況.教師作總結(jié)講評(píng)并示范解題格式.
3、教師提問(wèn):從以上的求解過(guò)程中,你比較出它與解方程有什么異同?
立解決;還有一些學(xué)生雖不能解答,但在老師的引導(dǎo)下也能受到啟發(fā),這比單純的教師講解更能調(diào)動(dòng)學(xué)習(xí)的積極性.另外,由學(xué)生自己來(lái)糾錯(cuò),可培養(yǎng)他們的批判性思維和語(yǔ)言表達(dá)能力.
比較不等式與解方程的異同中滲透著類(lèi)比思想.
鞏固新知。
1、解下列不等式,并在數(shù)軸上表示解集:
(1)(2)-8x10。
2、用不等式表示下列語(yǔ)句并寫(xiě)出解集:
(1)x的3倍大于或等于1;(2)y的的差不大于-2.
解決問(wèn)題。
測(cè)量一棵樹(shù)的樹(shù)圍(樹(shù)干的周長(zhǎng))可以計(jì)算它的樹(shù)齡一般規(guī)定以樹(shù)干離地面1.5m的地方作為測(cè)量部位.某樹(shù)栽種時(shí)的樹(shù)圍為5cm,以后樹(shù)圍每年增加約3cm.這棵樹(shù)至少生一長(zhǎng)多少年,其樹(shù)圍才能超過(guò)2.4m?讓學(xué)生在解決問(wèn)題的過(guò)程中深刻感悟數(shù)學(xué)來(lái)源于實(shí)踐,又服務(wù)于實(shí)踐,以培養(yǎng)他們的數(shù)學(xué)應(yīng)用意識(shí)。
總結(jié)歸納圍繞以下幾個(gè)問(wèn)題:
1、這節(jié)課的主要內(nèi)容是什么?
2、通過(guò)學(xué)習(xí),我取得了哪些收獲?
3、還有哪些問(wèn)題需要注意?
讓學(xué)生自己歸納,教師僅做必要的補(bǔ)充和點(diǎn)撥.讓學(xué)生自己歸納小結(jié),給學(xué)生創(chuàng)造自我評(píng)價(jià)和自我表現(xiàn)的機(jī)會(huì),以達(dá)到激發(fā)興趣、鞏固知識(shí)的目的。
小結(jié)與作業(yè)。
布置作業(yè)。
1、必做題:教科書(shū)第134~135頁(yè)習(xí)題9.1第6題(3)(4)第10題。
2、選做題:教科書(shū)第135頁(yè)習(xí)題9、12題.
本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。
通過(guò)創(chuàng)設(shè)與學(xué)生實(shí)際生活密切聯(lián)系的向題情境,并由學(xué)生根據(jù)自己掌握的知識(shí)與經(jīng)驗(yàn)列出不等式,探究它的解法,可以激發(fā)學(xué)生的學(xué)習(xí)動(dòng)力,喚起他們的求知欲望,促使學(xué)生動(dòng)腦、動(dòng)手、動(dòng)口,積極參與教學(xué)的.整個(gè)過(guò)程,在教師的指導(dǎo)下,主動(dòng)地、生動(dòng)活潑地、富有個(gè)性地學(xué)習(xí).
新課程理念要求教師向?qū)W生提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì).本課教學(xué)過(guò)程中貫穿了嘗試引導(dǎo)示范歸納練習(xí)點(diǎn)評(píng)等一系列環(huán)節(jié),旨在改變學(xué)生的學(xué)習(xí)方式,將被動(dòng)的、接受式的學(xué)習(xí)方式轉(zhuǎn)變?yōu)閯?dòng)手實(shí)踐、自主探索和合作交流等方式.教師的組織者、引導(dǎo)者與合作者的角色在這節(jié)課中得到了充分的演繹.教師要尊重學(xué)生的個(gè)體差異,滿(mǎn)足多樣化學(xué)習(xí)的需求.對(duì)學(xué)習(xí)確實(shí)有困難的學(xué)生,要及時(shí)給予關(guān)心和幫助,鼓勵(lì)他們主動(dòng)參與數(shù)學(xué)學(xué)習(xí)活動(dòng),嘗試著用自己的方式去解決問(wèn)題,勇于發(fā)表自己的觀點(diǎn).除了演好組織者、引導(dǎo)者的角色外,教師還應(yīng)爭(zhēng)當(dāng)伯樂(lè)和雷鋒,多給學(xué)生以贊許、鼓勵(lì)、關(guān)愛(ài)和幫助,讓他們?cè)诜e極愉悅的氛圍中努力學(xué)習(xí).
高一數(shù)學(xué)不等式教案篇十七
目的:以不等式的等價(jià)命題為依據(jù),揭示不等式的常用證明方法之一——比較法,要求學(xué)生能教熟練地運(yùn)用作差、作商比較法證明不等式。
過(guò)程:
一、復(fù)習(xí):
2.比較法之一(作差法)步驟:作差——變形——判斷——結(jié)論。
二、作差法:(p13—14)。
甲乙兩人同時(shí)同地沿同一路線(xiàn)走到同一地點(diǎn),甲有一半時(shí)間以速度。
m
行走,另一半時(shí)間以速度。
n
行走;有一半路程乙以速度。
m
行走,另一半路。
將本文的word文檔下載到電腦,方便收藏和打印。
高一數(shù)學(xué)不等式教案篇十八
(2)理解任意角的三角函數(shù)不同的定義方法;。
(4)掌握并能初步運(yùn)用公式一;。
(5)樹(shù)立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).
初中學(xué)過(guò):銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過(guò)單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號(hào).最后主要是借助有向線(xiàn)段進(jìn)一步認(rèn)識(shí)三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過(guò)去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來(lái)定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對(duì)準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對(duì)應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對(duì)應(yīng)關(guān)系有沖突,而且“比值”需要通過(guò)運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對(duì)三角函數(shù)概念的理解.
本節(jié)利用單位圓上點(diǎn)的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對(duì)應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系.
教學(xué)重難點(diǎn)。
重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).
難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線(xiàn)的正確理解.
高一數(shù)學(xué)不等式教案篇十九
填空:
教師追問(wèn):第三題()里可以填多少個(gè)數(shù)?第4題呢?
為什么3、4題()里可以填無(wú)數(shù)個(gè)數(shù)?
()里填任何數(shù)都行嗎?哪個(gè)數(shù)不行?(板書(shū):零除外)。
這里為什么必須“零除外”?
(板書(shū)課題:分?jǐn)?shù)基本性質(zhì))。
4.深入理解分?jǐn)?shù)基本性質(zhì).。
教師提問(wèn):分?jǐn)?shù)的基本性質(zhì)里哪幾個(gè)詞比較重要?
為什么“都”和“相同”很重要?
為什么“分?jǐn)?shù)大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習(xí).。
1.用直線(xiàn)把相等的分?jǐn)?shù)連接起來(lái).。
2.把下列分?jǐn)?shù)按要求分類(lèi).。
和相等的分?jǐn)?shù):
和相等的分?jǐn)?shù):
3.判斷下列各題的對(duì)錯(cuò),并說(shuō)明理由.。
4.填空并說(shuō)出理由.。
5.集體練習(xí).。
四、照應(yīng)課前談話(huà).。
問(wèn):現(xiàn)在誰(shuí)知道哥哥、姐姐、弟弟三個(gè)人,誰(shuí)吃的西瓜多呢?
板書(shū):
五、課堂小結(jié).。
這節(jié)課你有什么收獲?
六、布置作業(yè).。
1.指出下面每組中的兩個(gè)分?jǐn)?shù)是相等的還是不相等的.。
2.在下面的括號(hào)里填上適當(dāng)?shù)臄?shù).。
將本文的word文檔下載到電腦,方便收藏和打印。
高一數(shù)學(xué)不等式教案篇二十
3.能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線(xiàn)的草圖以及解決簡(jiǎn)單的實(shí)際問(wèn)題。
一、預(yù)習(xí)檢查。
1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為.
2、頂點(diǎn)間的距離為6,漸近線(xiàn)方程為的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為.
3、雙曲線(xiàn)的漸進(jìn)線(xiàn)方程為.
4、設(shè)分別是雙曲線(xiàn)的半焦距和離心率,則雙曲線(xiàn)的一個(gè)頂點(diǎn)到它的一條漸近線(xiàn)的距離是.
二、問(wèn)題探究。
探究1、類(lèi)比橢圓的幾何性質(zhì)寫(xiě)出雙曲線(xiàn)的幾何性質(zhì),畫(huà)出草圖并,說(shuō)出它們的不同.
探究2、雙曲線(xiàn)與其漸近線(xiàn)具有怎樣的關(guān)系.
練習(xí):已知雙曲線(xiàn)經(jīng)過(guò),且與另一雙曲線(xiàn),有共同的漸近線(xiàn),則此雙曲線(xiàn)的標(biāo)準(zhǔn)方程是.
例1根據(jù)以下條件,分別求出雙曲線(xiàn)的標(biāo)準(zhǔn)方程.
(1)過(guò)點(diǎn),離心率.
(2)、是雙曲線(xiàn)的左、右焦點(diǎn),是雙曲線(xiàn)上一點(diǎn),且,,離心率為.
例2已知雙曲線(xiàn),直線(xiàn)過(guò)點(diǎn),左焦點(diǎn)到直線(xiàn)的距離等于該雙曲線(xiàn)的虛軸長(zhǎng)的,求雙曲線(xiàn)的離心率.
例3(理)求離心率為,且過(guò)點(diǎn)的雙曲線(xiàn)標(biāo)準(zhǔn)方程.
三、思維訓(xùn)練。
1、已知雙曲線(xiàn)方程為,經(jīng)過(guò)它的右焦點(diǎn),作一條直線(xiàn),使直線(xiàn)與雙曲線(xiàn)恰好有一個(gè)交點(diǎn),則設(shè)直線(xiàn)的斜率是.
2、橢圓的離心率為,則雙曲線(xiàn)的離心率為.
3、雙曲線(xiàn)的漸進(jìn)線(xiàn)方程是,則雙曲線(xiàn)的離心率等于=.
4、(理)設(shè)是雙曲線(xiàn)上一點(diǎn),雙曲線(xiàn)的一條漸近線(xiàn)方程為、分別是雙曲線(xiàn)的左、右焦點(diǎn),若,則.
四、知識(shí)鞏固。
1、已知雙曲線(xiàn)方程為,過(guò)一點(diǎn)(0,1),作一直線(xiàn),使與雙曲線(xiàn)無(wú)交點(diǎn),則直線(xiàn)的斜率的集合是.
2、設(shè)雙曲線(xiàn)的一條準(zhǔn)線(xiàn)與兩條漸近線(xiàn)交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過(guò)點(diǎn),則離心率為.
3、已知雙曲線(xiàn)的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線(xiàn)的右支上,且,則雙曲線(xiàn)的離心率的值為.
4、設(shè)雙曲線(xiàn)的半焦距為,直線(xiàn)過(guò)、兩點(diǎn),且原點(diǎn)到直線(xiàn)的距離為,求雙曲線(xiàn)的離心率.
5、(理)雙曲線(xiàn)的焦距為,直線(xiàn)過(guò)點(diǎn)和,且點(diǎn)(1,0)到直線(xiàn)的距離與點(diǎn)(-1,0)到直線(xiàn)的距離之和.求雙曲線(xiàn)的離心率的取值范圍.
【本文地址:http://mlvmservice.com/zuowen/13161870.html】