最簡二次根式教學(xué)設(shè)計(匯總14篇)

格式:DOC 上傳日期:2023-11-18 15:11:20
最簡二次根式教學(xué)設(shè)計(匯總14篇)
時間:2023-11-18 15:11:20     小編:文鋒

大家可以嘗試一些有趣的活動,比如讀書、旅游、參加社交活動等,以充實自己的生活??偨Y(jié)可以通過提出問題和解決問題的方式展開。通過閱讀總結(jié)范文,我們可以提升自己的寫作水平和思維能力。

最簡二次根式教學(xué)設(shè)計篇一

1、通過二次根式混合運算的學(xué)習(xí),進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。

2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認真仔細的學(xué)習(xí)品質(zhì),進一步提高運算能力。

教學(xué)難點:類比整式運算準(zhǔn)確快速的進行二次根式的混合運算。

教學(xué)過程:

(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)。

1、學(xué)生匯報解題過程,生說師寫;。

2、發(fā)動其他學(xué)生評價補充完善;。

3、師畫龍點睛強調(diào):。

(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。

(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。

(先讓學(xué)生獨立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問題的學(xué)生匯報展示,發(fā)動學(xué)生評價完善,老師強調(diào)關(guān)鍵地方,總結(jié)思想方法。)。

本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補充。)。

最簡二次根式教學(xué)設(shè)計篇二

2.較熟練地掌握把一個式子化為最簡二次根式的方法.

重點和難點。

重點:較熟練地把二次根式化為最簡二次根式.

難點:把被開方數(shù)是多項式和分式的二次根式化為最簡二次根式.

過程設(shè)計。

請說出第(3),(4)題的解題過程.

答:第(3)題的被開方數(shù)是一個多項式,先把它分解因式,再運用積的算術(shù)平方根的性質(zhì),把根號中的平方式及平方數(shù)開出來,運算結(jié)果應(yīng)化為最簡二次根式.

理化.

請說出各題的特點和解題思路.

答:(1)題的被開方數(shù)及(2)題的被開方數(shù)的分子是多項式,應(yīng)化成因式積的形式,可以先分解因式,再化簡.

(3)題的被開方數(shù)的分母是兩個數(shù)的平方差,先利用平方差公式把它化為乘積形式,再根據(jù)商的算術(shù)平方根和積的算術(shù)平方根的性質(zhì)及分母有理化的方法,使運算結(jié)果為最簡二次根式.

計算:

依據(jù)二次根式的乘除法的法則進行計算,最后要把計算結(jié)果化成最簡二次根式.

1.選擇題:

(7)下列化簡中,正確的是[]。

(8)下列化簡中,錯誤的是[]。

3.計算:

答案:

1.把一個式子化為最簡二次根式時,如果被開方數(shù)是多項式,應(yīng)把它化成積的形式,一般可考慮先分解因式,然后再化簡.

2.如果一個式子的被開方數(shù)的分母是一個多項式,而這個多項式又不能分解因式(如課堂練習(xí)2(2)),在分母有理化時,把分子分母同乘以這個多項式.

3.二次根式的乘除法運算,運算結(jié)果一定要化為最簡二次根式.

2.計算:

答案:

最簡二次根式分二課時進行.設(shè)計中首先安排討論二次根式的被開方數(shù)是單項式以及被開方數(shù)的分母是單項式的情況,然后再討論被開方數(shù)是多項式和分母是多項式的情況.通過5個例題及課堂練習(xí),最后達到使學(xué)生比較深刻地理解最簡二次根式的概念,達到熟練地掌握把二次根式化為最簡二次根式的目標(biāo).

最簡二次根式教學(xué)設(shè)計篇三

2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

1.把下列各根式化簡,并說出化簡的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡前后的根式,被開方數(shù)有什么不同?

化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

3.啟發(fā)學(xué)生回答:

二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

4.總結(jié)。

把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

當(dāng)被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。

字).

最簡二次根式教學(xué)設(shè)計篇四

1、通過二次根式混合運算的學(xué)習(xí),進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。

2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認真仔細的學(xué)習(xí)品質(zhì),進一步提高運算能力。

教學(xué)難點:類比整式運算準(zhǔn)確快速的進行二次根式的混合運算。

教學(xué)過程:

一、情境誘導(dǎo)。

二、練習(xí)指導(dǎo)。

(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)。

三、展示歸納。

1、學(xué)生匯報解題過程,生說師寫;。

2、發(fā)動其他學(xué)生評價補充完善;。

3、師畫龍點睛強調(diào):。

(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。

(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。

四、變式練習(xí)。

(先讓學(xué)生獨立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問題的學(xué)生匯報展示,發(fā)動學(xué)生評價完善,老師強調(diào)關(guān)鍵地方,總結(jié)思想方法。)。

五、小結(jié)。

本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補充。)。

六、布置作業(yè)。

最簡二次根式教學(xué)設(shè)計篇五

2.掌握把二次根式化為最簡二次根式的方法。

重點和難點。

過程設(shè)計。

計算:

我們再看下面的問題:

簡,得到。

從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便。

答:

1.被開方數(shù)的因數(shù)是整數(shù)或整式;

2.被開方數(shù)中不含能開得盡方的因數(shù)或因式。

滿足上面兩個條件的二次根式叫做最簡二次根式。

(l)不是最簡二次根式。因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。

整數(shù)。

(3)是最簡二次根式。因為被開方數(shù)的因式x2+y2開不盡方,而且是整式。

(4)是最簡二次根式。因為被開方數(shù)的因式a-b開不盡方,而且是整式。

(5)是最簡二次根式。因為被開方數(shù)的因式5x開不盡方,而且是整式。

(6)不是最簡二次根式。因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.

指出:從(1),(2),(6)題可以看到如下兩個結(jié)論。

1.在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;

2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。

分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。

分析:題(l)的被開方數(shù)是帶分數(shù),應(yīng)把它變成假分數(shù),然后將分母有理化,把原式化成最簡二次根式。

題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。

通過例2、例3,請同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法。

答:如果被開方數(shù)是分式或分數(shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡。

如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。

a.2b.3。

c.1d.0。

3.把下列各式化成最簡二次根式:

答案:

1.b。

2.b。

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。

2.把一個式子化為最簡二次根式的方法是:

(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號。

1.把下列各式化成最簡二次根式:

2.把下列各式化成最簡二次根式:

答案:

最簡二次根式教學(xué)設(shè)計篇六

(2)會進行簡單的二次根式的除法運算;。

本節(jié)內(nèi)容主要是在做二次根式的`除法運算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算。教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運算過程,估計運算結(jié)果,明確運算方向。

重點:二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).。

難點:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4。1第一學(xué)時。

問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

師生活動學(xué)生回答。

【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.。

2.觀察思考,理解法則。

問題2教材第8頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?

師生活動學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動學(xué)生思考,回答。學(xué)生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了。

【設(shè)計意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運算時出現(xiàn)錯誤。

問題4對例題的運算你有什么看法?是如何進行的?

師生活動學(xué)生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。

【設(shè)計意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進行簡單的運算。

問題5對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進行二次根式的化簡。

問題2教材第8頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?

師生活動學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動學(xué)生思考,回答。學(xué)生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了。

【設(shè)計意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運算時出現(xiàn)錯誤。

問題4對例題的運算你有什么看法?是如何進行的?

師生活動學(xué)生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。

【設(shè)計意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進行簡單的運算。

問題5對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進行二次根式的化簡。

例1計算:(1);(2);(3)。

師生活動提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?

【設(shè)計意圖】通過具體問題,讓學(xué)生在實際運算中培養(yǎng)運算能力,訓(xùn)練運算技能,

問題5你能從例題的解答過程中,總結(jié)一下二次根式的運算結(jié)果有什么特征嗎?

師生活動學(xué)生總結(jié),師生共同補充、完善。要總結(jié)出:

(1)這些根式的被開方數(shù)都不含分母;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;

(3)分母中不含根號;

【設(shè)計意圖】引導(dǎo)學(xué)生及時總結(jié),提出最簡二次根式的概念,要強調(diào),在二次根式的運算中,一般要把最后結(jié)果化為最簡二次根式。

問題6課件展示一組二次根式的計算、化簡題。

【設(shè)計意圖】讓學(xué)生用總結(jié)出的結(jié)論進行二次根式的運算。

例2教材第9頁例7。

再提問章引言中的問題現(xiàn)在能解決了嗎?

【設(shè)計意圖】鞏固性練習(xí),同時培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運算法則解決實際問題的能力。

1.在、、中,最簡二次根式為。

【設(shè)計意圖】考查對最簡二次根式的概念的理解。

2.化簡下列各式為最簡二次根式:;。

【設(shè)計意圖】復(fù)習(xí)二次根式的運算法則和運算性質(zhì)。鼓勵學(xué)生用不同方法進行計算。對于分母含二次根式的處理,要結(jié)合整式的乘法公式進行計算。

3.化簡:(1);(2)。

【設(shè)計意圖】綜合運用二次根式的概念、性質(zhì)和運算法則進行二次根式的運算。

教科書第10頁練習(xí)第1,2,3題;

教科書習(xí)題16。2第10,11題。

最簡二次根式教學(xué)設(shè)計篇七

一、案例背景:

本節(jié)是九年級上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對代數(shù)式的進一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內(nèi)字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎(chǔ)。

二、案例描述:

1、學(xué)習(xí)任務(wù)分析:

通過對數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵學(xué)生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉(zhuǎn)化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學(xué)活動經(jīng)驗。比如求二次根式根號內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學(xué)生數(shù)學(xué)書寫格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過的知識導(dǎo)入新課。設(shè)計合作學(xué)習(xí)活動,引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實際問題的過程,真正把學(xué)生放到主體位置。

2、學(xué)生的認知起點分析:

學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準(zhǔn)備。另外,學(xué)生對數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過程,引導(dǎo)學(xué)生對二次根式概念的理解。

案例反思:

以往對這類問題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來。采取的措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。

2.合作活動:

第一位同學(xué)——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學(xué);

第二位同學(xué)——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學(xué);

第四位同學(xué)——復(fù)查者:請你一定要把好關(guān)哦!

出題者姓名:解題者姓名:

第一個二次根式:1.要使式子的值為實數(shù),求x的取值范圍.2.寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。3.寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。

第二個二次根式:1.要使式子的值為實數(shù),求x的取值范圍。2.寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。3.寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。

批改者姓名:復(fù)查者姓名:

《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位--學(xué)生是學(xué)習(xí)的主人,同時,教師的地位、角色發(fā)生了變化,從“主導(dǎo)”變成了“學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者和合作者”。合作活動的安排就是對這一課程標(biāo)準(zhǔn)的體現(xiàn)。

最簡二次根式教學(xué)設(shè)計篇八

2.掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;。

3.掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;。

4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;。

5.通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

二、教學(xué)重點和難點。

重點:(1)二次根的意義;(2)二次根式中字母的取值范圍。

難點:確定二次根式中字母的取值范圍。

三、教學(xué)方法。

啟發(fā)式、講練結(jié)合。

四、教學(xué)過程。

(一)復(fù)習(xí)提問。

1.什么叫平方根、算術(shù)平方根?

2.說出下列各式的意義,并計算:

通過練習(xí)使學(xué)生進一步理解平方根、算術(shù)平方根的概念。

觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,表示的是算術(shù)平方根。

我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

定義:式子叫做二次根式。

對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

(1)式子只有在條件a0時才叫二次根式,是二次根式嗎?

若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次。

根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。

最簡二次根式教學(xué)設(shè)計篇九

(2)會用公式化簡二次根式。

(1)學(xué)生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內(nèi)容;

(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式。

教學(xué)問題診斷分析。

本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運算感到困難、運算習(xí)慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣、,培養(yǎng)學(xué)生良好的運算習(xí)慣。

在教學(xué)時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分數(shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡。

本節(jié)課的教學(xué)難點為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡。

1、復(fù)習(xí)引入,探究新知。

問題1什么叫二次根式?二次根式有哪些性質(zhì)?

師生活動學(xué)生回答。

【設(shè)計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質(zhì)。

問題2教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?

師生活動學(xué)生計算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容。

2、觀察比較,理解法則。

問題3簡單的根式運算。

師生活動學(xué)生動手操作,教師檢驗。

問題4二次根式的乘除成立的條件是什么?等式反過來有什么價值?

師生活動學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì)。

【設(shè)計意圖】讓學(xué)生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況、乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的算術(shù)平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運算能力。

3、例題示范,學(xué)會應(yīng)用。

例1化簡:(1)二次根式的乘除;(2)二次根式的乘除。

師生活動提問:你是怎么理解例(1)的?

師生合作回答上述問題、對于根式運算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外、。

再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

例2計算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。

師生活動學(xué)生計算,教師檢驗。

(3)例(3)的運算是選學(xué)內(nèi)容、讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運算、本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外、。

【設(shè)計意圖】引導(dǎo)學(xué)生及時總結(jié),強調(diào)利用運算律進行運算,利用乘法公式簡化運算、讓學(xué)生認識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關(guān)于整式運算的公式和方法也適用。

教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強調(diào),看到根號就要注意被開方數(shù)的符號、可以根據(jù)二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題。

4、鞏固概念,學(xué)以致用。

練習(xí):教科書第7頁練習(xí)第1題、第10頁習(xí)題16、2第1題。

【設(shè)計意圖】鞏固性練習(xí),同時檢驗乘法法則的掌握情況。

5、歸納小結(jié),反思提高。

師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:

(1)你能說明二次根式的乘法法則是如何得出的嗎?

(2)你能說明乘法法則逆用的意義嗎?

(3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

6、布置作業(yè):教科書第7頁第2、3題、習(xí)題16、2第1,6題。

1、下列各式中,一定能成立的是()。

【設(shè)計意圖】考查二次根式的概念和性質(zhì),這是進行二次根式的乘法運算的基礎(chǔ)。

2、化簡二次根式的乘除______________________________。

【設(shè)計意圖】二次根式是特殊的實數(shù),實數(shù)的相關(guān)運算法則也適用于二次根式。

3、已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是()。

【設(shè)計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式。

最簡二次根式教學(xué)設(shè)計篇十

難點:把被開方數(shù)是多項式和分式的二次根式化為最簡二次根式.

請說出第(3),(4)題的解題過程.

答:第(3)題的被開方數(shù)是一個多項式,先把它分解因式,再運用積的算術(shù)平方根的性質(zhì),把根號中的平方式及平方數(shù)開出來,運算結(jié)果應(yīng)化為最簡二次根式.

理化.

請說出各題的特點和解題思路.

答:(1)題的被開方數(shù)及(2)題的被開方數(shù)的分子是多項式,應(yīng)化成因式積的形式,可以先分解因式,再化簡.

(3)題的被開方數(shù)的分母是兩個數(shù)的平方差,先利用平方差公式把它化為乘積形式,再根據(jù)商的算術(shù)平方根和積的算術(shù)平方根的性質(zhì)及分母有理化的方法,使運算結(jié)果為最簡二次根式.

計算:

依據(jù)二次根式的乘除法的法則進行計算,最后要把計算結(jié)果化成最簡二次根式.

1.選擇題:

(7)下列化簡中,正確的是[]。

(8)下列化簡中,錯誤的是[]。

3.計算:

答案:

1.把一個式子化為最簡二次根式時,如果被開方數(shù)是多項式,應(yīng)把它化成積的形式,一般可考慮先分解因式,然后再化簡.

2.如果一個式子的被開方數(shù)的分母是一個多項式,而這個多項式又不能分解因式(如課堂練習(xí)2(2)),在分母有理化時,把分子分母同乘以這個多項式.

3.二次根式的乘除法運算,運算結(jié)果一定要化為最簡二次根式.

2.計算:

答案:

最簡二次根式教學(xué)分二課時進行.教學(xué)設(shè)計中首先安排討論二次根式的被開方數(shù)是單項式以及被開方數(shù)的分母是單項式的情況,然后再討論被開方數(shù)是多項式和分母是多項式的情況.通過5個例題及課堂練習(xí),最后達到使學(xué)生比較深刻地理解最簡二次根式的概念,達到熟練地掌握把二次根式化為最簡二次根式的教學(xué)目標(biāo)?.

最簡二次根式教學(xué)設(shè)計篇十一

教學(xué)過程。

一、復(fù)習(xí)引入。

1.把下列各根式化簡,并說出化簡的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡前后的根式,被開方數(shù)有什么不同?

化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

3.啟發(fā)學(xué)生回答:

二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

二、講解新課。

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

4.總結(jié)。

把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

當(dāng)被開方數(shù)是分數(shù)或分式時,根據(jù)分式的'基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

三、鞏固練習(xí)。

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

四、小結(jié)。

本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。

五、布置作業(yè)。

最簡二次根式教學(xué)設(shè)計篇十二

要判斷幾個根式是不是同類二次根式,須先化簡根號里面的數(shù),把非最簡二次根式化成最簡二次根式,然后判斷。判斷兩個最簡二次根式是否為同類二次根式,其依據(jù)是“被開方數(shù)是否相同”,與根號外的因式無關(guān)。

1、被開方數(shù)中不含能開得盡方的.因數(shù)或因式;

2、被開方數(shù)的因數(shù)是整數(shù),因式是整式。

最簡二次根式教學(xué)設(shè)計篇十三

2學(xué)情分析。

本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算。教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運算過程,估計運算結(jié)果,明確運算方向。

3重點難點。

重點:二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).。

難點:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4教學(xué)過程。

4。1第一學(xué)時。

教學(xué)活動。

活動1【導(dǎo)入】復(fù)習(xí)提問,探究規(guī)律。

師生活動學(xué)生回答。

最簡二次根式教學(xué)設(shè)計篇十四

2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式,數(shù)學(xué)教案-最簡二次根式 教學(xué)設(shè)計示例2。

最簡二次根式的定義。

一個二次根式化成最簡二次根式的方法。

1.把下列各根式化簡,并說出化簡的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡前后的根式,被開方數(shù)有什么不同?

化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

3.啟發(fā)學(xué)生回答:

二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡的'因數(shù)或因式,初中數(shù)學(xué)教案《數(shù)學(xué)教案-最簡二次根式 教學(xué)設(shè)計示例2》。

最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

例1 把下列各式化成最簡二次根式:

例2 把下列各式化成最簡二次根式:

把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

當(dāng)被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

1.把下列各式化成最簡二次根式:

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

【本文地址:http://mlvmservice.com/zuowen/13087829.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔