數(shù)學說課教案高中(熱門15篇)

格式:DOC 上傳日期:2023-11-18 03:53:15
數(shù)學說課教案高中(熱門15篇)
時間:2023-11-18 03:53:15     小編:QJ墨客

教案需要圍繞教學內(nèi)容、教學方法、教學手段等方面進行設計。在編寫教案時應充分考慮學生的實際情況和學習能力。以下是幾篇經(jīng)典的教案設計,希望對大家了解教案的編寫和優(yōu)化有所幫助。

數(shù)學說課教案高中篇一

高中數(shù)學趣味競賽題(共10題)

5個高中生有,她們面對學校的新聞采訪說了如下的話:

愛:“我還沒有談過戀愛?!?靜香:“愛撒謊了?!?/p>

瑪麗:“我曾經(jīng)去過昆明?!?惠美:“瑪麗在撒謊?!?/p>

千葉子:“瑪麗和惠美都在撒謊。” 那么,這5個人之中到底有幾個人在撒謊呢?

有天使、惡魔、人三者,天使時刻都說真話,惡魔時時刻刻都說假話,人呢,有時候說真話,有時候說假話。

聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家??墒牵皇O?只小貓了。

一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當然,沒有數(shù)字的部分它沒有吃(因為沒有墨水)。

那么,請問原來的算式是什么樣子的呢?

用16根火柴擺成5個正方形。請移動2根火柴,

使

正形變成4。

把正三角形的紙如圖那樣折過來時,角?的度數(shù)是多少度?

求星形尖端的角度之和。

丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財產(chǎn)的 2/3 、如果生的是女孩就給他財產(chǎn)的 2/5 、剩下的給妻子。

結(jié)果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個人怎么分財產(chǎn)好呢?

用折紙做成45度很簡單是吧。那么,請折成15度,你會嗎?

數(shù)學說課教案高中篇二

了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質(zhì)。

漸近線方程是,離心率,若點是雙曲線上的點,則,。

2、又曲線的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是

3、經(jīng)過兩點的雙曲線的標準方程是。

4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。

5、與雙曲線有公共的漸近線,且經(jīng)過點的雙曲線的方程為

1、雙曲線的離心率等于,且與橢圓有公共焦點,求該雙曲線的方程。

2、已知橢圓具有性質(zhì):若是橢圓上關于原點對稱的兩個點,點是橢圓上任意一點,當直線的斜率都存在,并記為時,那么之積是與點位置無關的定值,試對雙曲線寫出具有類似特性的性質(zhì),并加以證明。

3、設雙曲線的半焦距為,直線過兩點,已知原點到直線的距離為,求雙曲線的離心率。

1、雙曲線上一點到一個焦點的距離為,則它到另一個焦點的距離為。

2、與雙曲線有共同的漸近線,且經(jīng)過點的雙曲線的一個焦點到一條漸近線的距離是。

3、若雙曲線上一點到它的右焦點的距離是,則點到軸的距離是

4、過雙曲線的左焦點的直線交雙曲線于兩點,若。則這樣的'直線一共有條。

1、已知雙曲線的焦點到漸近線的距離是其頂點到漸近線距離的2倍,則該雙曲線的離心率

2、已知雙曲線的焦點為,點在雙曲線上,且,則點到軸的距離為。

3、雙曲線的焦距為

4、已知雙曲線的一個頂點到它的一條漸近線的距離為,則

5、設是等腰三角形,,則以為焦點且過點的雙曲線的離心率為。

數(shù)學說課教案高中篇三

·充分條件與必要條件·四種命題·邏輯聯(lián)結(jié)詞。

·等差數(shù)列的前n項和·等差數(shù)列·數(shù)列。

·函數(shù)的應用舉例·對數(shù)函數(shù)·對數(shù)·指數(shù)函數(shù)·指數(shù)。

·橢圓及其標準方程1·圓的方程·曲線和方程。

·研究性課題與實習作業(yè):線性規(guī)劃的實際應用·簡單的線性規(guī)劃。

(二)·簡單的線性規(guī)劃。

(一)·兩條直線的位置關系·直線的方程。

·直線的傾斜角和斜率·含有絕對值的不等式·不等式的解法舉例·不等式的證明。

(三)·不等式的證明。

(二)·不等式的證明(一)。

·算術平均數(shù)與幾何平均數(shù)。

(二)·算術平均數(shù)與幾何平均數(shù)。

(一)·不等式的性質(zhì)。

(三)·不等式的性質(zhì)。

(二)。

·不等式的性質(zhì)(一)。

·算術平均數(shù)與幾何平均數(shù)--探究活動·算術平均數(shù)與幾何平均數(shù)。

(二)·算術平均數(shù)與幾何平均數(shù)。

(一)·不等式的性質(zhì)2·不等式的性質(zhì)1。

·組合·排列。

數(shù)學說課教案高中篇四

:計算機

:啟發(fā)引導法,討論法

下面給出教學實施過程設計的簡要思路:

(一)引入的設計

前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是 ,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.

肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:

問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?

啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:

【問題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節(jié)主體內(nèi)容教學的設計

學生或獨立研究,或合作研究,教師巡視指導.

經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

思路一:…

思路二:…

……

教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

綜合兩種情況,我們得出如下結(jié)論:

同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

學生們不難得出:二者可以概括為統(tǒng)一的形式.

這樣上邊的結(jié)論可以表述如下:

啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

師生共同討論,評價不同思路,達成共識:

(1)當 時,方程可化為

這是表示斜率為 、在 軸上的截距為 的直線.

(2)當 時,由于 、 不同時為0,必有 ,方程可化為

這表示一條與 軸垂直的直線.

因此,得到結(jié)論:

為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

【動畫演示】

演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.

(三)練習鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設計

數(shù)學說課教案高中篇五

各位同仁,各位專家:

教學內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

地位和作用:任意角的三角函數(shù)是本章教學內(nèi)容的基本概念對三角內(nèi)容的整體學習至關重要。同時它又為平面向量、解析幾何等內(nèi)容的學習作必要的準備,通過這部分內(nèi)容的學習,又可以幫助學生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認真探討教材,精心設計過程。

教學重點:任意角三角函數(shù)的定義。

學生已經(jīng)掌握的內(nèi)容,學生學習能力。

1。初中學生已經(jīng)學習了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

2。我們南山區(qū)經(jīng)過多年的初中課改,學生已經(jīng)具備較強的自學能力,多數(shù)同學對數(shù)學的學習有相當?shù)呐d趣和積極性。

針對對教材內(nèi)容重難點的和學生實際情況的分析我們制定教學目標如下。

(1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

(1)理解并掌握任意角的三角函數(shù)的定義;

(2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

(3)通過對定義域,三角函數(shù)值的符號的推導,提高學生分析探究解決問題的能力。

(1)學習轉(zhuǎn)化的思想,(2)培養(yǎng)學生嚴謹治學、一絲不茍的科學精神;

針對學生實際情況為達到教學目標須精心設計教學方法。

教法學法:溫故知新,逐步拓展。

(2)通過例題講解分析,逐步引出新知識,完善三角定義。

運用多媒體工具。

(1)提高直觀性增強趣味性。

教學過程分析。

總體來說,由舊及新,由易及難,

逐步加強,逐步推進。

先由初中的直角三角形中銳角三角函數(shù)的定義。

過度到直角坐標系中銳角三角函數(shù)的定義。

再發(fā)展到直角坐標系中任意角三角函數(shù)的定義。

給定定義后通過應用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

具體教學過程安排。

引入:復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

由學生回答。

sina=對邊/斜邊=bc/ab。

cosa=對邊/斜邊=ac/ab。

tana=對邊/斜邊=bc/ac。

逐步拓展:在高中我們已經(jīng)建立了直角坐標系,把“定義媒介”從直角三角形改為平面直角坐標系。

從而得到。

知識點一:任意一個角的三角函數(shù)的定義。

提醒學生思考:由于相似比相等,對于確定的角a,這三個比值的大小和p點在角的終邊上的位置無關。

精心設計例題,引出新內(nèi)容深化概念,完善定義。

例1已知角a的終邊經(jīng)過p(2,—3),求角a的三個三角函數(shù)值。

(此題由學生自己分析獨立動手完成)。

例題變式1,已知角a的大小是30度,由定義求角a的三個三角函數(shù)值。

提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

從而引出函數(shù)極其定義域。

由學生分析討論,得出結(jié)論。

知識點二:三個三角函數(shù)的定義域。

知識點三:三角函數(shù)值的正負與角所在象限的關系。

由學生推出結(jié)論,教師總結(jié)符號記憶方法,便于學生記憶。

例題2:已知a在第二象限且sina=0。2求cosa,tana。

求cosa,tana。

綜合練習鞏固提高,更為下節(jié)的同角關系式打下基礎。

拓展,如果不限制a的象限呢,可以留作課外探討。

小結(jié)回顧課堂內(nèi)容。

課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解。

課堂作業(yè)p161,2,4。

(學生演板,后集體討論修訂答案同桌討論,由學生回答答案)。

課后分層作業(yè)(有利于全體學生的發(fā)展)。

必作p231(2),5(2),6(2)(4)選作p233,4。

板書設計(見ppt)。

數(shù)學說課教案高中篇六

在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。

【過程與方法】。

通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。

【情感態(tài)度與價值觀】。

滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學思想方法,提高學生的整體素質(zhì),激勵學生創(chuàng)新,勇于探索。

二、教學重難點。

【重點】。

掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

【難點】。

二元二次方程與圓的一般方程及標準圓方程的關系。

三、教學過程。

(一)復習舊知,引出課題。

1、復習圓的標準方程,圓心、半徑。

2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

數(shù)學說課教案高中篇七

掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【過程與方法】

經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。

【情感態(tài)度價值觀】

在猜想計算的過程中,提高學習數(shù)學的興趣。

【教學重點】

三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【教學難點】

探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。

(一)引入新課

提出問題:如何研究三角函數(shù)的單調(diào)性

(四)小結(jié)作業(yè)

提問:今天學習了什么?

引導學生回顧:基本不等式以及推導證明過程。

課后作業(yè):

思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

數(shù)學說課教案高中篇八

(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復合命題;

(4)能識別復合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

(5)會用真值表判斷相應的復合命題的真假;

(6)在知識學習的基礎上,培養(yǎng)學生簡單推理的技能.

重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.

1.新課導入

在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調(diào)邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識.

初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)

(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)

學生舉例:平行四邊形的對角線互相平. ……(1)

兩直線平行,同位角相等.…………(2)

教師提問:“……相等的角是對頂角”是不是命題?……(3)

(同學議論結(jié)果,答案是肯定的)

教師提問:什么是命題?

(學生進行回憶、思考.)

概念總結(jié):對一件事情作出了判斷的語句叫做命題.

(教師肯定了同學的回答,并作板書.)

由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

(教師利用投影片,和學生討論以下問題.)

例1 判斷以下各語句是不是命題,若是,判斷其真假:

命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識.

2.講授新課

(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)

(1)什么叫做命題?

可以判斷真假的語句叫做命題.

判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.

對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.

對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應于集合 ,則命題非 就對應著集合 在全集 中的補集 .

命題可分為簡單命題和復合命題.

不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復合命題.

(4)命題的表示:用 , , , ,……來表示.

(教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復合命題的概念作出分析和展開.)

我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.

給出一個含有“或”、“且”、“非”的復合命題,應能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復合命題.

對于給出“若 則 ”形式的復合命題,應能找到條件 和結(jié)論 .

在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復合命題.

3.鞏固新課

例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.

(1) ;

(2)0.5非整數(shù);

(3)內(nèi)錯角相等,兩直線平行;

(4)菱形的對角線互相垂直且平分;

(5)平行線不相交;

(6)若 ,則 .

(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)

例3 寫出下表中各給定語的否定語(用課件打出來).

若給定語為

等于

大于

都是

至多有一個

至少有一個

至多有個

其否定語分別為

分析:“等于”的否定語是“不等于”;

“大于”的否定語是“小于或者等于”;

“是”的否定語是“不是”;

“都是”的否定語是“不都是”;

“至多有一個”的否定語是“至少有兩個”;

“至少有一個”的否定語是“一個都沒有”;

“至多有 個”的否定語是“至少有 個”.

(如果時間寬裕,可讓學生討論后得出結(jié)論.)

置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當?shù)谋嫖雠c展開.)

4.課堂練習:第26頁練習1

5.課外作業(yè):第29頁習題1.6

數(shù)學說課教案高中篇九

掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。

向量的性質(zhì)及相關知識的綜合應用。

(一)主要知識:

1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的`有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略。

1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。

數(shù)學說課教案高中篇十

集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。

教學重點.難點。

重點:集合的含義與表示方法.

難點:表示法的恰當選擇.

教學目標。

1.知識與技能。

(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

(2)知道常用數(shù)集及其專用記號;

(3)了解集合中元素的確定性.互異性.無序性;

(4)會用集合語言表示有關數(shù)學對象;

2.過程與方法。

(1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

(2)讓學生歸納整理本節(jié)所學知識.

3.情感.態(tài)度與價值觀。

使學生感受到學習集合的必要性,增強學習的積極性.

1.教學方法:學生通過閱讀教材,自主學習、思考、交流、討論和概括,從而更好地完成本節(jié)課的教學目標。

2.教學手段:在教學中使用投影儀來輔助教學。

(一)創(chuàng)設情景,揭示課題。

1.教師首先提出問題:

(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。

(2)問題:像“家庭”、“學?!?、“班級”等,有什么共同特征?

引導學生互相交流.與此同時,教師對學生的活動給予評價。

2.活動:

(1)列舉生活中的集合的例子;

(2)分析、概括各實例的共同特征。

由此引出這節(jié)要學的內(nèi)容。

設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊。

(二)研探新知,建構(gòu)概念。

1.教師利用多媒體設備向?qū)W生投影出下面7個實例:

(1)1—20以內(nèi)的所有質(zhì)數(shù);

(2)我國古代的四大發(fā)明;

(3)所有的安理會常任理事國;

(4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交橋;

(6)到一個角的兩邊距離相等的所有的點;

(7)國興中學2004年9月入學的高一學生的全體.

2.教師組織學生分組討論:這7個實例的共同特征是什么?

3.每個小組選出——位同學發(fā)表本組的討論結(jié)果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義。一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

4.教師指出:集合常用大寫字母a,b,c,d表示,元素常用小寫字母a,b,c,d表示.

設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神。

(三)質(zhì)疑答辯,發(fā)展思維。

1.教師引導學生閱讀教材中的相關內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性、互異性和無序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。

2.教師組織引導學生思考以下問題:

判斷以下元素的全體是否組成集合,并說明理由:

(1)大于3小于11的偶數(shù);

(2)我國的小河流.讓學生充分發(fā)表自己的建解。

3.讓學生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價。

4.教師提出問題,讓學生思考。

b是(1)如果用a表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,高一(4)班的一位同學,那么a,b與集合a分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于。

如果a是集合a的元素,就說a屬于集合a。

如果a不是集合a的元素,就說a不屬于集合a。

(2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關系分別是什么?請用數(shù)學符號分別表示.

(3)讓學生完成教材第6頁練習第1題.

5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學生完成習題1.1a組第1題.

6.教師引導學生閱讀教材中的相關內(nèi)容,并思考.討論下列問題:

(1)要表示一個集合共有幾種方式?

(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?

(3)如何根據(jù)問題選擇適當?shù)募媳硎痉ǎ?/p>

使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。

設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。

(四)鞏固深化,反饋矯正。

教師投影學習。

(1)用自然語言描述集合{1,3,5,7,9};

(2)用例舉法表示集合a。

(3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.

設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象。

(五)歸納小結(jié),布置作業(yè)。

1.小結(jié):在師生互動中,讓學生了解或體會下例問題:

本節(jié)課我們學習了哪些知識內(nèi)容?

2.你認為學習集合有什么意義?

3.選擇集合的表示法時應注意些什么?

設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

作業(yè):

1.課后書面作業(yè):第13頁習題1.1a組第4題。

數(shù)學說課教案高中篇十一

數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。

(1)、基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;。

1、教學重點。

理解并掌握誘導公式、

2、教學難點。

正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式、

1、教法。

2、學法。

3、預期效果。

(一)創(chuàng)設情景。

1、復習銳角300,450,600的三角函數(shù)值;。

2、復習任意角的三角函數(shù)定義;。

3、問題:由,你能否知道sin2100的值嗎?引如新課、

數(shù)學說課教案高中篇十二

知識與技能。

在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的.圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。

過程與方法。

通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。

情感態(tài)度與價值觀。

滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學思想方法,提高學生的整體素質(zhì),激勵學生創(chuàng)新,勇于探索。

重點。

掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

難點。

二元二次方程與圓的一般方程及標準圓方程的關系。

(一)復習舊知,引出課題。

1、復習圓的標準方程,圓心、半徑。

2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

數(shù)學說課教案高中篇十三

2、能識別和理解簡單的框圖的功能。

3。、能運用三種基本邏輯結(jié)構(gòu)設計流程圖以解決簡單的問題。

1。、通過模仿、操作、探索,經(jīng)歷設計流程圖表達求解問題的過程,加深對流程圖的感知。

2。、在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu)。

一、問題情境。

1、情境:

某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為x。

其中(單位:)為行李的重量.。

試給出計算費用(單位:元)的一個算法,并畫出流程圖。

二、學生活動。

學生討論,教師引導學生進行表達。

解算法為:

輸入行李的重量;

如果,那么,

否則;

輸出行李的重量和運費.。

上述算法可以用流程圖表示為:

教師邊講解邊畫出第10頁圖1—2—6.。

在上述計費過程中,第二步進行了判斷.。

1、選擇結(jié)構(gòu)的概念:

先根據(jù)條件作出判斷,再決定執(zhí)行哪一種操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu)。

(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和兩個退出點。

3、思考:教材第7頁圖所示的算法中,哪一步進行了判斷?

數(shù)學說課教案高中篇十四

(2)進一步理解曲線的方程和方程的曲線。

(3)初步掌握求曲線方程的方法。

(4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力。

求曲線的方程。

計算機。

啟發(fā)引導法,討論法。

【引入】。

1.提問:什么是曲線的方程和方程的曲線。

學生思考并回答,教師強調(diào)。

2.坐標法和解析幾何的意義、基本問題。

對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何,解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程。

(2)通過方程,研究平面曲線的性質(zhì)。

【問題】。

如何根據(jù)已知條件,求出曲線的方程。

【概括總結(jié)】通過學生討論,師生共同總結(jié):

分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

(1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如表示曲線上任意一點的坐標;

(2)寫出適合條件的點的集合;

(3)用坐標表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正。

下面再看一個問題:

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

【作業(yè)】課本第72頁練習1,2,3;

數(shù)學說課教案高中篇十五

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象.恰當?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學會利用圓錐曲線定義來熟練的解題”。

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率.

1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3.借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣.

教學重點。

1.對圓錐曲線定義的理解。

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程。

教學難點:。

巧用圓錐曲線定義解題。

【設計思路】。

(一)開門見山,提出問題。

一上課,我就直截了當?shù)亟o出——。

例題1:(1)已知a(-2,0),b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是()。

(a)橢圓(b)雙曲線(c)線段(d)不存在。

(2)已知動點m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是()。

(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線。

【設計意圖】。

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的.認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

【學情預設】。

入手,考慮通過適當?shù)淖冃?,轉(zhuǎn)化為學生們熟知的兩個距離公式。

在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

(二)理解定義、解決問題。

【本文地址:http://mlvmservice.com/zuowen/12873674.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔