二次函數(shù)課件教案(熱門22篇)

格式:DOC 上傳日期:2023-11-17 19:52:18
二次函數(shù)課件教案(熱門22篇)
時間:2023-11-17 19:52:18     小編:MJ筆神

編寫教案時可以借鑒一些優(yōu)秀的教學案例,融入自己的教學理念和特點。為了編寫一份完美的教案,教師應(yīng)該事先明確教學目標和要求。以下教案范文選自不同年級和不同學科,供廣大教師參考。

二次函數(shù)課件教案篇一

本節(jié)內(nèi)容是人民教育出版社出版的九年級《數(shù)學》下第26章第一節(jié)第二課時的內(nèi)容。在此之前,學生已學習了二次函數(shù)的概念,對于函數(shù)的積累知識有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質(zhì)的學習,是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學教學的重點和難點之一,更為高中學習一元二次不等式和圓錐曲線奠定基礎(chǔ)。

本節(jié)課中的教學重點利用描點法畫出二次函數(shù)的圖像,建構(gòu)符合學生認知結(jié)構(gòu)的知識體系,教學難點是運用數(shù)形結(jié)合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開口方向、對稱軸、頂點坐標?;谝陨蠈滩牡恼J識,根據(jù)數(shù)學課程標準,考慮到學生已有的認知結(jié)構(gòu)與心理特征,制定如下的教學目標。

【知識與能力】:

會用描點法畫出函數(shù)y=ax2的圖象。

知道拋物線的有關(guān)概念。

會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸以及拋物線與坐標軸的交點坐標。

【過程與方法】:

1、通過二次函數(shù)的教學進一步體會研究函數(shù)的一般方法,加深對于數(shù)形結(jié)合思想的認識。

2.綜合運用所學知識、方法去解決數(shù)學問題,培養(yǎng)學生提出、分析、解決、歸納問題的數(shù)學能力,改善學生的數(shù)學思維品質(zhì)。

【情感與態(tài)度目標】:

在數(shù)學教學中滲透美的教育,讓學生感受二次函數(shù)圖像的對2。

稱之美,激發(fā)學生的學習興趣。認識到數(shù)學源于生活,用于生活的辯證觀點。

教法選擇與教學手段:基于本節(jié)課的特點是學習新知及其綜合運用,應(yīng)著重采用復習與總結(jié)的教學方法與手段,先從一次函數(shù)、反比例函數(shù)的圖像復習入手,通過提問思考、歸納總結(jié)、綜合運用等形式對二次函數(shù)圖像及其性質(zhì)進行有針對性的、系統(tǒng)性的教學。教學的模式為學生思考,討論,教師分析,演示、師生共同總結(jié)歸納。

利用白板的動態(tài)畫板功能,畫出不同的二次函數(shù)圖像,進行分析比較和歸納。

學法指導:讓學生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

最后,我來具體談一談本節(jié)課的教學過程。

(一)為對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行重構(gòu)做準備。通過回憶復習一次函數(shù)和反比例函數(shù)圖像及其性質(zhì)等相關(guān)知識引入新課。利用描點法畫出二次函數(shù)的圖象,總結(jié)規(guī)律,會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸。說出a為何值時y隨x增大而增大(增大而減?。?,引導學生掌握用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質(zhì)。運用聯(lián)想、概括方法對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行梳理,領(lǐng)悟數(shù)形結(jié)合的思想方法,發(fā)展學生的化歸遷移的數(shù)學思維,培養(yǎng)學生的轉(zhuǎn)化能力。

(二)通過對二次函數(shù)圖像及其性質(zhì)的學習,采用學生思考,教師分析,解題小結(jié)三個環(huán)節(jié)構(gòu)成的練習題講解模式,鞏固二次函數(shù)圖像及其性質(zhì)的基本題目的一般解題方法,并進一步研究二次函數(shù)圖像及其性質(zhì)的應(yīng)用。

(三)反思概括,方法總結(jié)。

總結(jié)本節(jié)課的知識點、重點和難點,著重理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法,領(lǐng)悟數(shù)形結(jié)合的數(shù)學思想方法,學會用化歸思想,解決實際問題。培養(yǎng)學生由題及法,由法及類的數(shù)學總結(jié)歸納方法。

(四)作業(yè)。

課后通過練習來鞏固本節(jié)課所復習的知識點、重點和難點,強化教學目標。

各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂上是千變?nèi)f化的,會隨著學生和教師的靈性發(fā)揮而隨機生成的,預(yù)設(shè)效果如何,最終還有待于課堂教學實踐的檢驗。本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!

二次函數(shù)課件教案篇二

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

1.體會方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

1.探索方程與函數(shù)之間關(guān)系的過程。

2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

啟發(fā)引導 合作交流

課件

計算機、實物投影。

檢查預(yù)習 引出課題

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

教師展示預(yù)習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。

學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

這兩道預(yù)習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。

二次函數(shù)課件教案篇三

讓學生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。

:各種隱含條件的挖掘。

:引導發(fā)現(xiàn)法。

(一)診斷補償,情景引入:

(先讓學生復習,然后提問,并做進一步診斷)。

(二)問題導航,探究釋疑:

(三)精講提煉,揭示本質(zhì):

分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關(guān)系式。

解由題意,得點b的坐標為(0。8,-2。4),

又因為點b在拋物線上,將它的坐標代入,得所以因此,函數(shù)關(guān)系式是。

例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。

(1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);

(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);

(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);

(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。

分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。

解這個方程組,得a=2,b=-1。

(2)因為拋物線的頂點為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。

(3)因為拋物線與x軸交于點m(-3,0)、(5,0),

所以設(shè)二此函數(shù)的關(guān)系式為。

又由于拋物線與y軸交于點(0,3),可以得到解得。

(4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學們自己完成。

(四)題組訓練,拓展遷移:

1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。

(1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);

(2)已知拋物線的頂點為(-1,2),且過點(2,1);

(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。

2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點的縱坐標是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關(guān)系式。

(五)交流評價,深化知識:

確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點坐標可利用此式來求。

(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。

(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。

本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),

(2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點坐標和對稱軸。

二次函數(shù)課件教案篇四

在整個中學數(shù)學知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學的重要考點,也是線性數(shù)學知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學二次函數(shù)教案教學方法。

一、重視每一堂復習課數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。

四、要多了解學生。你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。

二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。

三、教師在設(shè)計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.

四、激發(fā)興趣,提高質(zhì)量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復習的同時,也要關(guān)注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.

1.質(zhì)疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學生的主體意識,必須鼓勵學生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。

2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學模型。

3.學生有疑而問、質(zhì)疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。

4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。

1.教學案例、教學設(shè)計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設(shè)計)是事先設(shè)想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預(yù)期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結(jié)果。

2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。

4.教學案例必須從教學任務(wù)分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。

二次函數(shù)課件教案篇五

學習目標:

1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對函數(shù)性質(zhì)進行研究。

3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學生的運用能力。

學習重點:

能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進行研究。

學習難點:

能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

學習過程:

一、學前準備。

函數(shù)的三種表示方式,即表格、表達式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價與購買數(shù)量之間的關(guān)系如下:

x(千克)00。511。522。53。

y(元)0123456。

二、探究活動。

(一)合作探究:

交流完成:

(1)一邊長為xcm,則另一邊長為cm,所以面積為:用函數(shù)表達式表示:=________________________________。

(2)表格表示:

123456789。

10—。

(3)畫出圖象。

(二)議一議。

(1)在上述問題中,自變量x的取值范圍是什么?

(2)當x取何值時,長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請你描述一下y隨x的變化而變化的情況。

點撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請大家互相交流。

(1)因為x是邊長,所以x應(yīng)取數(shù),即x0,又另一邊長(10—x)也應(yīng)大于,即10—x0,所以x10,這兩個條件應(yīng)該同時滿足,所以x的取值范圍是。

(2)當x取何值時,長方形的面積最大,就是求自變量取何值時,函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點式。當x=—時,函數(shù)y有最大值y最大=。當x=時,長方形的面積最大,最大面積是25cm2。

可以通過觀察圖象得知。也可以代入頂點坐標公式中求得。。

(三)做一做:學生獨立思考完成p62,p63的函數(shù)表達式,表格,圖象問題。

(1)用函數(shù)表達式表示:y=________。

(2)用表格表示:

(3)用圖象表示:

三、學習體會。

本節(jié)課你有哪些收獲?你還有哪些疑問?

四、自我測試。

1、把長1。6米的鐵絲圍成長方形abcd,設(shè)寬為x(m),面積為y(m2)。則當最大時,所取的值是()。

a0。5b0。4c0。3d0。6。

2、兩個數(shù)的和為6,這兩個數(shù)的積最大可能達到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。

二次函數(shù)課件教案篇六

(二)能力訓練要求。

1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神、

3、通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識、

(三)情感與價值觀要求。

2、具有初步的創(chuàng)新精神和實踐能力、

二次函數(shù)課件教案篇七

1、教材所處的地位:

2、教學目的要求:

(2)讓學生學習了二次函數(shù)的定義后,能夠表示簡單變量之間的二次函數(shù)關(guān)系;

(3)知道實際問題中存在的二次函數(shù)關(guān)系中,多自變量的取值范圍的要求。

(4)把數(shù)學問題和實際問題相聯(lián)系,使學生初步體會數(shù)學與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用。

3、教學重點和難點。

本著課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學重點、難點:

重點:

(2)能夠表示簡單變量之間的二次函數(shù)關(guān)系.。

難點:

具體的分析、確定實際問題中函數(shù)關(guān)系式。

下面,為了講清重點、難點,使學生能達到本節(jié)設(shè)定的教學目標,我再從教法和學法上談?wù)劊?/p>

1、教法研究。

教學中教師應(yīng)當暴露概念的再創(chuàng)造過程,鼓勵學生不但要動口、動腦,而且要動手,學生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗、猜想,產(chǎn)生對結(jié)論的感知,這不僅讓學生對所學內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學生學習的熱情,讓學生學會主動學習,學會研究問題的方法,培養(yǎng)學生的能力。本節(jié)課的設(shè)計堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生們大膽猜想,小心求證的科學研究的思想。

2、學法研究。

初中學生的思維方式往往還是比較具象的,要讓他們在問題的探究過程中充分體驗問題的發(fā)現(xiàn)、解決及最終表述的方式方法,遇到困難可以和同伴、老師進行交流甚至爭論,這樣既可以加深學生對問題的理解又可以讓學生體驗獲得學習的快樂。

3、教學方式。

(1)由于本節(jié)課的內(nèi)容是學生在學習了《一次函數(shù)》和《正比例函數(shù)》的基礎(chǔ)上的加深,所以可以利用學生已有的知識在問題一、二中放手讓學生先去探究探究兩個問題中的變量之間的關(guān)系,在得到具體的關(guān)系式后,再引導學生觀察關(guān)系式都有著什么樣的特點,可以和多項式中的二次三項式或一元二次方程比較認識,并最終得出二次函數(shù)的一般式及二次項系數(shù)的取值為什么不為零的道理。

(2)要特別提醒學生注意:二次函數(shù)是解決實際生活生產(chǎn)的一個很有效的模板,因而對二次函數(shù)解析式中自變量的取值范圍一定要從理論上和實際中加以綜合討論和認定。

(3)可以多讓學生解決實際生活中的一些具有二次函數(shù)關(guān)系的實例來加深和提高學生對這一關(guān)系模型的理解。

這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。

1、溫故知新—揭示課題。

由回顧所學過的正比例函數(shù),一次函數(shù)入手,引入函數(shù)大家庭中還會認識那一種函數(shù)呢?再由例子打籃球投籃時籃球運動的軌跡如何?何時達到最高點?引入二次函數(shù)。

2、自我嘗試、合作探究—探求新知。

通過學生自己獨立解決運用函數(shù)知識表述變量間關(guān)系,即自我探討環(huán)節(jié);合作探究環(huán)節(jié),學生間互動,集群體力量,共破難關(guān),來自主探究新知,從而通過觀察,歸納得到二次函數(shù)的解析式,獲取新知。

3、小試身手—循序漸進。

本組題目是對新學的直接應(yīng)用,目的在于使學生能辨認二次函數(shù),準確指出a、b、c,并應(yīng)用其定義求字母系數(shù)的值,能應(yīng)用二次函數(shù)準確表示具體問題中的變量間關(guān)系。本組題目的解決以學生快速解答為主,重點對第2題分析解決方法。這一環(huán)節(jié)主要由學生處理解決,以檢查學生的掌握程度。

4、課堂回眸—歸納提高。

本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學生學知識,用知識是有很大的促進的。方法以學生暢談收獲為主。

5、課堂檢測—測評反饋。

共有6個題目,由學生獨自處理第1、2、3、4、5小題,再發(fā)表自己的看法,第6小題可由學生或獨自或同組交流均可。教師多以巡視為主,注意掌握學生對本節(jié)的掌握情況。

6、作業(yè)布置。

作業(yè)我選擇“同步作業(yè)”里的題目,其中基礎(chǔ)訓練為必做題,全員均做;綜合應(yīng)用為選做題,可供學有余力的學生能力提升用。

通過引入實例,豐富學生認識,理解新知識的意義,進而擺脫其原型,從而進行更深層次的研究,這種“數(shù)學化”的方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質(zhì)的形成有重要作用,對于學生的終身發(fā)展也有一定的作用。

二次函數(shù)課件教案篇八

《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標準試驗教科書《數(shù)學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。

本節(jié)教學時間安排1課時。

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.

2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.

3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想。

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性。

2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關(guān)系,提高估算能力。

1.從學生感興趣的問題入手,讓學生親自體會學習數(shù)學的價值,從而提高學生學習數(shù)學的好奇心和求知欲。

2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。

1.體會方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

1.探索方程與函數(shù)之間關(guān)系的過程。

2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

預(yù)習作業(yè):

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

師生行為:教師展示預(yù)習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。

教師重點關(guān)注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

設(shè)計意圖:這兩道預(yù)習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。

問題。

1.課本p94問題.

3.結(jié)合預(yù)習題1,完成課本p94觀察中的題目。

師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結(jié)歸納出正確結(jié)論。

1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;。

2.學生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;。

3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。

設(shè)計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設(shè)熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關(guān)系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。

[活動3]例題學習鞏固提高。

問題。

例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).

師生行為:教師提出問題,引導學生根據(jù)預(yù)習題2獨立完成,師生互相訂正。

教師關(guān)注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。

設(shè)計意圖:通過預(yù)習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。

[活動4]練習反饋鞏固新知。

二次函數(shù)課件教案篇九

摘要:水彩畫在中學美術(shù)教育中占據(jù)著重要的地位,它不僅可以提升中學生的造型能力、色彩能力,同時也可以強化他們的審美素養(yǎng)。這里,筆者將結(jié)合自己的教學經(jīng)驗,來談一談水彩畫技法教學的一點心得,以期大方之家給予批評指正。

關(guān)鍵詞:中學美術(shù)課;水彩畫;技法教學。

一、水彩畫技法指導。

學生在畫水彩畫之前需要有這樣的理念:從整體著眼,從局部入手。在腦海中必須有畫面的整體構(gòu)思與布局,在這個大前提下,再將畫面有效地分成若干個小部分,逐一完成。具體過程下面將分條闡述。

(一)畫面勾勒輪廓階段。

第一步就是教師指導學生先勾勒出素描稿,整體與局部的分配情況需要合理、恰切。為了提升上色的準確性、恰切性,整個過程需要運用鉛筆來完成,并且在素描的過程中,需要有效地表現(xiàn)反光、高光、投影以及明暗交界線等。其中投影、暗部需要淡淡地用鉛筆進行標記。這個素描過程至關(guān)重要,成為關(guān)鍵的開端。

(二)畫面著色階段。

接下來就需要用刷子蘸上清水,在畫紙上刷一遍,讓水完全浸濕畫紙。吃水飽和的畫紙,在短時間內(nèi),就不會立刻干燥,在這種情況下,才有助于具體干濕畫法的實踐、運用。

水彩的透明特點需要被全面地觀照、審視,主要著色程序是由淺至深,特定物體的受光面需要先畫出來,緊接著再對其背光面進行繪畫。只有這樣才能夠有效地表現(xiàn)水彩畫的明調(diào)與暗調(diào)。最后,將特定物體顏色最深的細部完成??梢哉f水彩的表現(xiàn)方法,通常來說,主要分為干畫法、濕畫法以及干濕并用法。在中學美術(shù)教學中,我們提倡采用干濕并用法,即有的地方使用干畫法,而有的地方則采用濕畫法。這種方法易于被中學生接受,并且表現(xiàn)力相對較強。再者,我們可以有效利用濕畫法來繪畫每一個客觀物象。

最后就是畫面的整理、完善環(huán)節(jié)。局部獨立物象的逐一繪畫,這種羅列可能會導致整個畫面的融合程度不足,進而容易產(chǎn)生層次方面的誤差感,給觀賞者一種拼湊的印象。鑒于此,教師必須指導學生進行畫面的整體處理,旨在讓每一個局部都被統(tǒng)攝到整個畫面中去,成為一個部分分割的成分。例如前景特定物象應(yīng)該是實的,需要在這個物象的主要部位,將輪廓線凸顯。而后面的特定物象應(yīng)該是虛的。較之前者,后者需要淡化其色彩和形體方面的處理,只有這樣才能夠創(chuàng)設(shè)出層次分明、立體感較強的畫面效果。如果整個畫面色彩顯得有些亂,就應(yīng)該在基調(diào)的范圍內(nèi)進行有效整理。如果整個畫面較為單調(diào)的話,就應(yīng)該將環(huán)境色恰當?shù)厝谌肫渲校M而色彩的豐富感就可以被提升。

二、重要注意事項強調(diào)。

在學生對范畫的欣賞、感悟過程中,教師需要對每一張畫,它的具體畫法、運用色彩等方面進行全面而細致地解讀,這樣才能使得學生對水彩畫的特點、畫法有一個整體的了解和體認。同時,需要提醒學生:如果調(diào)色過多,就可能喪失水彩畫明快、透明的風格特征。而且涂色需要爭取一次性完成,至多不可以超過三次,涂色越多,整個畫面就會變得更為臟亂。鑒于此,在涂色之前,教師必須講清楚調(diào)色與控制畫筆中水分的具體措施,并且讓學生全面把握繪畫所要使用的工具,只有充分熟悉工具的使用方法,才能談及具體涂色過程的開展。

需要強化實踐教學,即可以將學生帶到大自然中去繪畫。教師可以一邊繪畫,一邊講解,在此過程中,將特定物象的具體畫法,普遍存在的問題以及解決問題的辦法,一一告訴學生。教師的這種示范教學,不僅可以給予學生直觀的感受,同時也讓學生了解了具體的繪畫方法,如何規(guī)避不該出現(xiàn)的失誤。另外,對于學生的作品不足之處,教師需要給予親自改正,這種教學方法會讓學生的繪畫技巧迅速提升的。

另外,教師也可以將水彩畫的繪畫技巧編成一系列的口訣,這樣,學生記憶與掌握水彩畫相關(guān)技法將會變得事半而功倍。

三、水彩畫技法教學示例。

這里以水彩風景寫生為示例對象。在寫生的起初,需要力求一次性完成天空的繪畫,當整體基調(diào)確定之后,余下的景物色彩需要與之協(xié)調(diào)搭配。當天空的繪畫尚未“風干”之前,需要立刻將遠山,抑或者是遠樹勾畫出來。這樣就會使得它與天空疊加的部分自然融合,避免了分離之感的產(chǎn)生。這樣就契合了遠虛近實的繪畫要求。

畫每一個特定物象之時,需要從左到右刷一遍清水,因為室外的空氣是比較干燥的,這樣的環(huán)境下,如果不刷水,濕畫法則難以為繼。倒映在水中的樹木和房屋需要在畫紙濕條件下,立刻涂色,進而產(chǎn)生朦朦朧朧的倒影效果。待畫面干了之后,在使用干畫法,小心翼翼地在水面上畫出幾道波紋來,這樣房屋和樹木的倒影就顯得愈加真實生動了。同時,水岸上的物象,需要使用干畫法進行繪畫,這樣就會使得這些物象更為實在、凸顯。進而與水中倒影構(gòu)成鮮明的對比。

畫面的主體部分需要著力進行刻畫,進而讓整個畫面具有凝聚力。在讓學生充分領(lǐng)悟水彩畫技法的同時,還需要讓學生懂得藝術(shù)地處理畫面的空間。最后,也就是對整個畫面進行整理,濕畫法的缺陷在于使得畫面顯得很“碎”,因此需要在畫面的色彩和層次方面進行整體的調(diào)整,這樣,整個畫面就會變得和諧統(tǒng)一了。

參考文獻。

二次函數(shù)課件教案篇十

在整個中學數(shù)學知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學的重要考點,也是線性數(shù)學知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學二次函數(shù)教案教學方法。

一、重視每一堂復習課數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。

四、要多了解學生。你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。

將本文的word文檔下載到電腦,方便收藏和打印。

二次函數(shù)課件教案篇十一

學習難點:二次函數(shù)的性質(zhì)與圖像的應(yīng)用;

圖象a0a0。

性質(zhì)。

例2:

(1)已知函數(shù)n在區(qū)間上為增函數(shù),求a的范圍;

(2)已知函數(shù)n的單調(diào)區(qū)間是(0,1),求a;

例3:求二次函數(shù)n在區(qū)間[0,3]上的最大值和最小值;

變式:

(1)已知m在[t,t+1]上的最小值為g(t),求g(t)的表達式。

(2)已知m在區(qū)間[0,1]內(nèi)有最大值-5,求a。

(略)。

二次函數(shù)課件教案篇十二

二次函數(shù)的復習我分為兩部分:第一部分為基礎(chǔ)的復習,第二部分為綜合知識的復習?;A(chǔ)知識的復習思路還是比較傳統(tǒng):二次函數(shù)圖象和性質(zhì)--實踐(方法的選擇)--應(yīng)用(方法的融合),基礎(chǔ)知識的復習我沒有把書上的公式再一一講解,而是采用給出例題,在具體的題目中讓學生回答它的開口方向、對稱軸、頂點坐標圖象與x,y軸的交點,這樣學習起來不枯燥??傊?,整個過程主要是采用學生做、學生講、學生補充,注重突出學生的數(shù)學活動,變“教學”為“導學”。綜合知識的復習我放在第二課時,采用循序漸進的方法來復習,在習題的選擇上我注意了廣度與前后知識的聯(lián)系,但深度和綜合性還不夠。這兩節(jié)復習課不僅僅是對知識的復習,而且也讓學生學會對所學知識進行歸納總結(jié),同時回用所學知識解決相關(guān)的實際問題。

上完這堂課我首先感受到了集體備課的好處,可以取長補短,整堂課也具有連貫性,而不是以前的講到哪兒算哪兒。課前的精心備課也讓我整個課堂比較流暢、緊湊容量大。總的來說要上好一堂復習課應(yīng)該注意以下幾點:

1、課前精心備課,加強備課組的聯(lián)系。

2、重視課本,夯實基礎(chǔ)。

3、復習不要只講究快,而要注意前后的聯(lián)系,尤其是初三的知識要注意隨時滲透。

總的來說,用好教材是我們面臨的最重要的問題,教材改變了傳統(tǒng)的教學大綱對教學內(nèi)容的輕能力重知識的要求,出現(xiàn)了許多新的教育思想把教材的內(nèi)容分解成一個一個的小步子,一會兒幾何知識,一會兒代數(shù)知識,作為教師就是要讓學生自己去探究,教會學生學習的方法。通過幾年的教學實踐探究,使我清楚地認識到,必須要改變以往的以教師為中心,學生機械模仿教師的解題過程,死記硬背,這種方法已在教臺站不著腳。同時,新教材還有獨特的一面,那就是緊密結(jié)合學生的生活實際,從學生的心理和年齡特點考慮:使枯燥的數(shù)學變得有趣了,變的學生好容易理解了,這樣不但激發(fā)了學生的學習興趣,而且體會到數(shù)學就在身邊,感受到數(shù)學的趣味和作用,體驗到數(shù)學的魅力。

二次函數(shù)課件教案篇十三

二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。

三、教師在設(shè)計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.

四、激發(fā)興趣,提高質(zhì)量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復習的同時,也要關(guān)注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.

二次函數(shù)課件教案篇十四

(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。

2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?

(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)。

3.函數(shù)y=-4(x-2)2+1具有哪些性質(zhì)?

(當x2時,函數(shù)值y隨x的增大而增大,當x2時,函數(shù)值y隨x的增大而減小;當x=2時,函數(shù)取得最大值,最大值y=1)。

5.你能畫出函數(shù)y=-x2+x-的圖象,并說明這個函數(shù)具有哪些性質(zhì)嗎?

二、解決問題。

由以上第4個問題的解決,我們已經(jīng)知道函數(shù)y=-x2+x-的圖象的開口方向、對稱軸和頂點坐標。根據(jù)這些特點,可以采用描點法作圖的方法作出函數(shù)y=-x2+x-的圖象,進而觀察得到這個函數(shù)的性質(zhì)。

解:(1)列表:在x的取值范圍內(nèi)列出函數(shù)對應(yīng)值表;。

x…-2-101234…。

y…-6-4-2-2-2-4-6…。

(2)描點:用表格里各組對應(yīng)值作為點的坐標,在平面直角坐標系中描點。

(3)連線:用光滑的曲線順次連接各點,得到函數(shù)y=-x2+x-的圖象,如圖所示。

說明:(1)列表時,應(yīng)根據(jù)對稱軸是x=1,以1為中心,對稱地選取自變量的值,求出相應(yīng)的函數(shù)值。相應(yīng)的函數(shù)值是相等的。

(2)直角坐標系中x軸、y軸的長度單位可以任意定,且允許x軸、y軸選取的長度單位不同。所以要根據(jù)具體問題,選取適當?shù)拈L度單位,使畫出的圖象美觀。

讓學生觀察函數(shù)圖象,發(fā)表意見,互相補充,得到這個函數(shù)韻性質(zhì);。

當x=1時,函數(shù)取得最大值,最大值y=-2。

三、做一做。

教學要點。

(1)在學生畫函數(shù)圖象的同時,教師巡視、指導;。

(2)叫一位或兩位同學板演,學生自糾,教師點評。

教學要點。

教師組織學生分組討論,各組選派代表發(fā)言,全班交流,達成共識;。

y=ax2+bx+c。

=a(x2+x)+c。

=a[x2+x+2-()2]+c。

=a[x2+x+()2]+c-。

=a(x+)2+。

當a0時,開口向上,當a0時,開口向下。

對稱軸是x=-b/2a,頂點坐標是(-,)。

四、課堂練習。

課本練習第1、2、3題。

五、小結(jié)。

通過本節(jié)課的學習,你學到了什么知識?有何體會?

六、作業(yè)。

1.同步練習。

2.選用課時作業(yè)優(yōu)化設(shè)計。

課時作業(yè)優(yōu)化設(shè)計。

1.填空:

(1)拋物線y=x2-2x+2的頂點坐標是_______;。

(2)拋物線y=2x2-2x-的開口_______,對稱軸是_______;。

(4)拋物線y=-x2+2x+4的對稱軸是_______;。

(5)二次函數(shù)y=ax2+4x+a的最大值是3,則a=_______.

2.畫出函數(shù)y=2x2-3x的圖象,說明這個函數(shù)具有哪些性質(zhì)。

3.通過配方,寫出下列拋物線的開口方向、對稱軸和頂點坐標。

(1)y=3x2+2x;(2)y=-x2-2x。

(3)y=-2x2+8x-8(4)y=x2-4x+3。

4.求二次函數(shù)y=mx2+2mx+3(m0)的圖象的對稱軸,并說出該函數(shù)具有哪些性質(zhì)。

二次函數(shù)課件教案篇十五

分組復習舊知。

探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?

可引導學生從幾個方面進行討論:

(1)如何畫圖。

(2)頂點、圖象與坐標軸的交點。

(3)所形成的三角形以及四邊形的面積。

(4)對稱軸。

從上面的問題導入今天的課題二次函數(shù)中的圖象與性質(zhì)。

二次函數(shù)課件教案篇十六

根據(jù)我們學校人人皆知的船模特色項目設(shè)計了這樣一個情境:

讓班級中的上科院小院士來簡要介紹學校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。

讓學生在練習中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。

二次函數(shù)課件教案篇十七

1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗。

2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達式與圖象之間的聯(lián)系。

3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(zhì)(開口方向、對稱軸、頂點坐標)。

教學重點:二次函數(shù)y=ax2的圖象的作法和性質(zhì)。

教學難點:建立二次函數(shù)表達式與圖象之間的聯(lián)系。

教學方法:自主探索,數(shù)形結(jié)合。

利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質(zhì)時,應(yīng)盡可能多地運用小組活動的形式,通過學生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯(lián)系,以達到學生對二次函數(shù)性質(zhì)的真正理解。

一、認知準備:

1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?

2.畫函數(shù)圖象的方法和步驟是什么?(學生口答)。

你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質(zhì)嗎?本節(jié)課我們一起探索。

二、新授:

(一)動手實踐:作二次函數(shù)y=x2和y=-x2的圖象。

(同桌二人,南邊作二次函數(shù)y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學生黑板完成)。

(二)對照黑板圖象議一議:(先由學生獨立思考,再小組交流)。

1.你能描述該圖象的形狀嗎?

2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?

3.當x0時,隨著x的增大,y如何變化?當x0時呢?

4.當x取什么值時,y值最???最小值是什么?你是如何知道的?

5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。

(三)學生交流:

1.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)。

2.二次函數(shù)y=x2和y=-x2的圖象有哪些相同點和不同點?

3.教師出示同一直角坐標系中的兩個函數(shù)y=x2和y=-x2圖象,根據(jù)圖象回答:

(1)二次函數(shù)y=x2和y=-x2的圖象關(guān)于哪條直線對稱?

(2)兩個圖象關(guān)于哪個點對稱?

(3)由y=x2的圖象如何得到y(tǒng)=-x2的圖象?

(四)動手做一做:

1.作出函數(shù)y=2x2和y=-2x2的圖象。

(同桌二人,南邊作二次函數(shù)y=-2x2的圖象,北邊作二次函數(shù)y=2x2的圖象,兩名學生黑板完成)。

2.對照黑板圖象,數(shù)形結(jié)合,研討性質(zhì):

(1)你能說出二次函數(shù)y=2x2具有哪些性質(zhì)嗎?

(2)你能說出二次函數(shù)y=-2x2具有哪些性質(zhì)嗎?

(3)你能發(fā)現(xiàn)二次函數(shù)y=ax2的圖象有什么性質(zhì)嗎?

(學生分小組活動,交流各自的發(fā)現(xiàn))。

3.師生歸納總結(jié)二次函數(shù)y=ax2的圖象及性質(zhì):

(2)性質(zhì)。

a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下[。

b:頂點坐標是(0,0)。

c:對稱軸是y軸。

d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。

e:增減性:a0時,在對稱軸的左側(cè)(x0),y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(x0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。

4.應(yīng)用:(1)說出二次函數(shù)y=1/3x2和y=-5x2有哪些性質(zhì)。

(2)說出二次函數(shù)y=4x2和y=-1/4x2有哪些相同點和不同點?

三、小結(jié):

通過本節(jié)課學習,你有哪些收獲?(學生小結(jié))。

1.會畫二次函數(shù)y=ax2的圖象,知道它的圖象是一條拋物線。

2.知道二次函數(shù)y=ax2的性質(zhì):

a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下。

b:頂點坐標是(0,0)。

c:對稱軸是y軸。

d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。

e:增減性:a0時,在對稱軸的左側(cè)(x0=,y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(x0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。

二次函數(shù)課件教案篇十八

這節(jié)課是在學完正、反比例、一次函數(shù),認識了一元二次方程之后的二次函數(shù)的第一節(jié)課,從課本的體系來看,這節(jié)課明顯是要讓學生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實際問題中對定義域的限制。

但是如果光從這些知識點上來講這節(jié)課,其實很簡單,學生在原有知識的儲備基礎(chǔ)上很容易遷移和接受這些知識,那么這節(jié)課還有什么好設(shè)計的呢?重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個實際問題,由此引出了二次函數(shù),我才意識其實這節(jié)課的重點實際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗,從而形成定義”上,有了這個認識,一切變得簡單了!

整節(jié)課的流程可以這樣概括:學生感興趣的簡單實際問題——引出學過的一次函數(shù)——復習學過的所有函數(shù)形式——設(shè)問:有沒有新的函數(shù)形式呢?——探索新的問題——形成關(guān)系式——是函數(shù)嗎?——是學過的函數(shù)嗎?——探索出新的函數(shù)形式——概括新函數(shù)形式的特點——將特點公式化——形成二次函數(shù)定義——有練習鞏固定義特點——返回實際問題討論實際問題對自變量的限制——提出新的問題,深入討論——課堂的小結(jié),這樣設(shè)計一氣呵成,感覺上無拖沓生硬之處,最關(guān)鍵的是我認為這符合學生的基本認知規(guī)律,是容易讓學生理解和接受的。

對于實際問題的選擇,我將4個問題整和于同一個實際背景下,這樣設(shè)計既能引起學生興趣,也盡量減少學生審題的時間,顯得非常有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。

和一元二次方程的知識進行的思考,因而他們的想法和說法,不論對錯,不論全面還是有所偏頗,其中都涉及到了重要的數(shù)學思想方法,而這些恰恰是非常重要的。事實證明學生的思維真的是非?;钴S的,你要你給了足夠的空間,他們總能從各方各面進行思考和解釋,我也從中看到了他們智慧的火花,這是很令人欣慰的。

二次函數(shù)課件教案篇十九

(1)知識結(jié)構(gòu)。

(2)重點、難點分析。

本節(jié)的重點之一是使學生能掌握用描點法畫出拋物線的方法。后面的學習中,經(jīng)常會涉及到利用函數(shù)圖像解決數(shù)學問題。因此,快速、準確地畫出二次函數(shù)的圖像,是學生必須要掌握的基本技能。畫圖時要求科學、準確。并且要盡量做到美觀,這就要求要確定拋物線頂點的位置,與y軸、x軸交點的位置,對稱軸開口方向等。因此,利用圖像或配方法確定拋物線的開口方向及對稱軸、頂點的位置成為本節(jié)的另一個重點,二次函數(shù)是初中階段遇到的較為復雜的函數(shù),無論它的解析式,還是它的圖像、性質(zhì)等都比另外三種函數(shù)復雜。在中考中,更始幾乎每一年都要考察二次函數(shù)的相關(guān)知識。學生在反復地描點畫圖過程中,逐漸體會數(shù)形結(jié)合的數(shù)學思想,認識到圖形更直觀,能幫助我們發(fā)現(xiàn)解決問題的線索。在配方的具體訓練中,學生能體會到配方的思想。

本節(jié)的難點之一是初步理解數(shù)形結(jié)合的思想。學生對深刻理解數(shù)形結(jié)合的數(shù)學思想方法有一定的困難。往往是題目要求畫圖了才畫圖,比較被動,不能形成主動畫圖解題的習慣。另外,對二次函數(shù)對稱軸的理解也是難點。學生可以從圖像中識別出拋物線關(guān)于哪條直線對稱,但對主動應(yīng)用拋物線的對稱性解題卻有一定的困難。例如拋物線直線方程也不太理解。

2、教學建議。

這一節(jié)的知識點較多,正如前面所分析的二次函數(shù)是初中階段所遇到的較為復雜的函數(shù),而且對靈活性的要求較高。因此,要求學生在學習這一部分知識時要深刻地理解,不能機械地模仿、記憶。在老師創(chuàng)設(shè)的教學情境中,親自感受數(shù)學知識的形成過程,積累豐富的經(jīng)驗,憑借自己的力量獲取知識,從而達到培養(yǎng)能力的目的。

(1)創(chuàng)設(shè)情境,激勵學生提出問題。

辯證唯物主義告訴我們,理性認識是從豐富的感性認識中抽象、概括出來的。沒有一定數(shù)量的材料和經(jīng)驗,事物的規(guī)律、本質(zhì)是很難發(fā)現(xiàn)的。因此,在這一節(jié)課的開始,建議教師留出一段時間與學生共同列表、畫圖,允許學生有一個走彎,對稱軸方程是x=1,學生對表示對稱軸的路的過程,在探索的過程中,會有許多的疑問。而這恰是學習新知識的開始。例如,有的同學會認識到在畫圖時,有一個點是很重要的,必須要畫出來。那么這個點的坐標是如何確定的呢?如果教師舍不得花時間,讓學生不斷地體驗,而是迅速切入正題,指明二次函數(shù)的形狀,教學生記下二次函數(shù)的性質(zhì)。那么學生就喪失了主動探索的機會。我們要意識到,認識客觀事物是有一個過程的,人為地縮短或逾越,違反了事物發(fā)展的一般規(guī)律。由老師代替學生的思考,會使數(shù)學學習索然無味,學習成為機械地模仿、復制,這樣也會導致學生對數(shù)學概念的膚淺理解,無法把握事物運動變化的規(guī)律性,數(shù)學能力自然無法提高。

(2)數(shù)學地發(fā)現(xiàn)問題,解決問題。

學習數(shù)學要善于多問幾個為什么。剛才提到,在畫圖時,我們意識到二次函數(shù)的頂點非常重要,是必須要畫出來的。二次函數(shù)在頂點處拐了一個彎,當拋物線開口向上時,圖像有最低點;當拋物線開口向下時,圖像有最高點。那么為什么二次函數(shù)有這個性質(zhì),而一次函數(shù)就沒有呢?例如:,可變形為,依靠以前學過的代數(shù)知識,可知。又因為拋物線開口向上,所以會有最低點。學生在探索過程中不斷地發(fā)現(xiàn)問題,并利用自己學過的知識解決問題。在這個過程中,對數(shù)學的理解不斷地加深。

(3)反思回顧,總結(jié)深化。

我們的教學可以從畫個圖開始,卻不能止于僅能熟練畫出圖像。在發(fā)現(xiàn)二次函數(shù)的性質(zhì)并進行代數(shù)方面的逐一說理論證的過程中。試圖使學生領(lǐng)悟到數(shù)學知識的客觀存在性,樹立懷疑一切的科學探索精神。在學習時,既要建立相應(yīng)的圖像,借助形象整體、全面地把握知識,又要會用數(shù)學抽象,概括的語言去刻畫。使學生既欣賞到數(shù)學的美,又為數(shù)學的力量所折服。正如笛卡兒所說:“每一個我解決過的問題都成為以后解決其它問題的原則或方法?!币虼耍绻麑W生情況允許的話,可以組織學生撰寫小論文,談一談二次函數(shù)的學習。對這部分知識不僅要知道操作步驟,還要善于多問幾個為什么?這樣,在熟練地畫圖過程中,學生逐漸地體會到了數(shù)形結(jié)合的思想方法。

二次函數(shù)課件教案篇二十

通過小球飛行高度問題展示二次函數(shù)與一元二次方程的聯(lián)系。然后進一步舉例說明,從而得出二次函數(shù)與一元二次方程的關(guān)系。最后通過例題介紹用二次函數(shù)的圖象求一元二次方程的根的方法。

二教學目標。

1知識與技能。

(1)。經(jīng)歷探索函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系??偨Y(jié)出二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,表述何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根。

(2)。會利用圖象法求一元二次方程的近似解。

2過程與方法。

經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系。

三情感態(tài)度價值觀。

通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況培養(yǎng)學生自主探索意識,從中體會事物普遍聯(lián)系的觀點,進一步體會數(shù)形結(jié)合思想。

四教學重點和難點。

重點:方程與函數(shù)之間的聯(lián)系,會利用二次函數(shù)的圖象求一元二次方程的近似解。

難點:二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

五教學方法。

討論探索法。

六教學過程設(shè)計。

(一)問題的提出與解決。

h=20t5t2。

考慮以下問題。

(1)球的飛行高度能否達到15m?如能,需要多少飛行時間?

(2)球的飛行高度能否達到20m?如能,需要多少飛行時間?

(3)球的飛行高度能否達到20.5m?為什么?

(4)球從飛出到落地要用多少時間?

分析:由于球的飛行高度h與飛行時間t的關(guān)系是二次函數(shù)。

h=20t-5t2。

所以可以將問題中h的值代入函數(shù)解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實際的解,則說明球的飛行高度可以達到問題中h的值:否則,說明球的飛行高度不能達到問題中h的值。

解:(1)解方程15=20t5t2。t24t+3=0。t1=1,t2=3。

當球飛行1s和3s時,它的高度為15m。

(2)解方程20=20t-5t2。t2-4t+4=0。t1=t2=2。

當球飛行2s時,它的高度為20m。

(3)解方程20.5=20t-5t2。t2-4t+4.1=0。

因為(-4)2-44.10。所以方程無解。球的飛行高度達不到20.5m。

(4)解方程0=20t-5t2。t2-4t=0。t1=0,t2=4。

當球飛行0s和4s時,它的高度為0m,即0s時球從地面飛出。4s時球落回地面。

由學生小組討論,總結(jié)出二次函數(shù)與一元二次方程的解有什么關(guān)系?

例如:已知二次函數(shù)y=-x2+4x的值為3。求自變量x的值。

分析可以解一元二次方程-x2+4x=3(即x2-4x+3=0)。反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值。

一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。

(二)問題的討論。

(2)y=x2-6x+9;。

(3)y=x2-x+0。

的圖象如圖26.2-2所示。

先畫出以上二次函數(shù)的圖象,由圖像學生展開討論,在老師的引導下回答以上的問題。

可以看出:

(1)拋物線y=x2+x-2與x軸有兩個公共點,它們的橫坐標是-2,1。當x取公共點的橫坐標時,函數(shù)的值是0。由此得出方程x2+x-2=0的根是-2,1。

(2)拋物線y=x2-6x+9與x軸有一個公共點,這點的橫坐標是3。當x=3時,函數(shù)的值是0。由此得出方程x2-6x+9=0有兩個相等的實數(shù)根3。

(3)拋物線y=x2-x+1與x軸沒有公共點,由此可知,方程x2-x+1=0沒有實數(shù)根。

總結(jié):一般地,如果二次函數(shù)y=的圖像與x軸相交,那么交點的橫坐標就是一元二次方程=0的根。

(三)歸納。

一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,

(1)如果拋物線y=ax2+bx+c與x軸有公共點,公共點的橫坐標是x0,那么當x=x0時,函數(shù)的值是0,因此x=x0就是方程ax2+bx+c=0的一個根。

(2)二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。

由上面的`結(jié)論,我們可以利用二次函數(shù)的圖象求一元二次方程的根。由于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的。

(四)例題。

例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1)。

解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點的橫坐標大約是-0.7,2.7。

所以方程x2-2x-2=0的實數(shù)根為x1-0.7,x22.7。

七小結(jié)。

二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。

八板書設(shè)計。

用函數(shù)觀點看一元二次方程。

拋物線y=ax2+bx+c與方程ax2+bx+c=0的解之間的關(guān)系。

例題。

二次函數(shù)課件教案篇二十一

11月18日,我在九年三班上了《2.1二次函數(shù)所描述的關(guān)系》這節(jié)課,結(jié)合一些聽課老師的建議,現(xiàn)總結(jié)教學反思如下:

1.對二次函數(shù)的學習,本節(jié)課通過豐富的現(xiàn)實背景和學生感興趣的問題出發(fā),以多媒體演示圖片的形式使學生感受二次函數(shù)的意義,感受數(shù)學的廣泛聯(lián)系和應(yīng)用價值。對二次函數(shù)的學習,通過學生的探究性活動,通過學生之間的合作與交流,通過分析實際問題,如探究面積問題,利息問題、觀察表格找規(guī)律及用關(guān)系式表示這些關(guān)系的過程,引出二次函數(shù)的概念,使學生感受二次函數(shù)與生活的密切聯(lián)系。

2.在新知鞏固環(huán)節(jié),我精心設(shè)計了具有代表性和易錯題型的問題,鞏固應(yīng)用了本節(jié)的新知,課堂達到了較好的教學效果。

3.在合作討論的環(huán)節(jié)中,銀行利率問題中文字敘述不夠嚴密,兩年后的利息一句產(chǎn)生分歧,應(yīng)該改成第二年的利息。

4.在課堂時間的安排上不算太合理,有一道能力提升的問題沒講。總之,通過本節(jié)課,讓我真正意識到:對于每節(jié)課的教學不能僅僅憑經(jīng)驗設(shè)計。在每節(jié)課的課前,一定要進行精心的預(yù)設(shè)。在課堂中,同時要結(jié)合課堂的實際效果和學生的情況注意靈活處理課堂生成。課堂上在進行分組教學時,提前預(yù)設(shè)好教學時間,在每節(jié)課上,既要放的開,同時又要注意在適當?shù)臅r機收回,以保證每節(jié)教學基本任務(wù)完成。

二次函數(shù)課件教案篇二十二

1.質(zhì)疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學生的主體意識,必須鼓勵學生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。

2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學模型。

3.學生有疑而問、質(zhì)疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚。現(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。

4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。

【本文地址:http://mlvmservice.com/zuowen/12841918.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔