高一數(shù)學(xué)教案必修一(專業(yè)20篇)

格式:DOC 上傳日期:2023-11-17 19:35:15
高一數(shù)學(xué)教案必修一(專業(yè)20篇)
時間:2023-11-17 19:35:15     小編:BW筆俠

教案可以幫助教師把握教學(xué)重點(diǎn)和難點(diǎn),合理安排教學(xué)時間和資源。編寫教案時,教師應(yīng)該注重教學(xué)環(huán)節(jié)之間的銜接和過渡。希望大家能夠從這些教案范例中找到適合自己的教學(xué)思路和教學(xué)模式。

高一數(shù)學(xué)教案必修一篇一

教學(xué)目標(biāo)。

掌握三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

教學(xué)重難點(diǎn)。

利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

教學(xué)過程。

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。

(精確到0.001)。

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進(jìn)、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習(xí):教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

高一數(shù)學(xué)教案必修一篇二

對課堂教學(xué)的有效性,我們不僅應(yīng)該有全面衡量的意識,也應(yīng)該有從定性與定量兩方面衡量的意識。就當(dāng)前課堂教學(xué)而言,我們要特別關(guān)注數(shù)學(xué)教學(xué)層次問題。以《平面向量基本定理》為例,采用“一個定理+三項(xiàng)注意”的模式,重點(diǎn)放在學(xué)生接受平面向量的基本定理和例題、習(xí)題的模仿與訓(xùn)練上,是一個層次;告訴學(xué)生平面向量基本定理蘊(yùn)含著分解、轉(zhuǎn)化思想,重點(diǎn)放在定理的得出和證明的方法上是另一層次;理解平面向量基底的作用與意義,師生共同探討為什么要研究這個問題,怎樣研究這個問題,搞清楚其中體現(xiàn)的數(shù)學(xué)思維是更高的一個層次;如果學(xué)生能由平面向量基本定理體會到“事物是相互聯(lián)系、相互轉(zhuǎn)化的”,“事情是由一定的基本要素構(gòu)成的,可以用構(gòu)成它的基本要素來表示”,“研究事物可轉(zhuǎn)化為對它的基本要素的研究”,有助于養(yǎng)成理性地、有條理地思考和探究問題的習(xí)慣,那就更理想。

高一數(shù)學(xué)教案必修一篇三

了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.

(2)一元二次不等式。

會從實(shí)際情境中抽象出一元二次不等式模型.

通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

會解一元二次不等式,對給定的一元二次不等式,會設(shè)計(jì)求解的程序框圖.

(3)二元一次不等式組與簡單線性規(guī)劃問題。

會從實(shí)際情境中抽象出二元一次不等式組.

了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

高一數(shù)學(xué)教案必修一篇四

1、使學(xué)生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。

2、在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法。

3、在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神。

重點(diǎn)是奇偶性概念的形成與函數(shù)奇偶性的判定。

難點(diǎn)是對概念的熟悉。

投影儀,計(jì)算機(jī)。

引導(dǎo)發(fā)現(xiàn)法。

一。引入新課。

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì)。從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì)。

(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)。

學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱。最終提出我們今天將重點(diǎn)研究圖象關(guān)于軸對稱和關(guān)于原點(diǎn)對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。

二。講解新課。

2、函數(shù)的奇偶性(板書)。

學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進(jìn)而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立。最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。

(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù)。(板書)。

(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗(yàn)一下對概念的初步熟悉)。

提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)。

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。

(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù)。(板書)。

(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。

例1。判定下列函數(shù)的奇偶性(板書)。

(1);(2);

(3);;

(5);(6)。

(要求學(xué)生口答,選出12個題說過程)。

解:(1)是奇函數(shù)。(2)是偶函數(shù)。

(3),是偶函數(shù)。

學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)。

從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗(yàn),當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。

(3)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)。

由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。

例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學(xué)生來完成)。

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。

例3。判定下列函數(shù)的奇偶性(板書)。

(1);(2);(3)。

由學(xué)生回答,不完整之處教師補(bǔ)充。

解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù)。

(2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù)。

(3)當(dāng)時,于是,

當(dāng)時,,于是=,

綜上是奇函數(shù)。

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗(yàn),并不能說明具備奇偶性,因?yàn)槠媾夹允菍瘮?shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。

三。小結(jié)。

1、奇偶性的概念。

2、判定中注重的問題。

四。作業(yè)略。

五。板書設(shè)計(jì)。

2、函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

(3)定義域關(guān)于原點(diǎn)對稱是函數(shù)例2。小結(jié)。

具備奇偶性的必要條件。

(4)函數(shù)按奇偶性分類分四類。

(1)定義域?yàn)榈娜我夂瘮?shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證實(shí)之嗎?

(2)判定函數(shù)在上的單調(diào)性,并加以證實(shí)。

在此基礎(chǔ)上試?yán)眠@個函數(shù)的單調(diào)性解決下面的問題:

高一數(shù)學(xué)教案必修一篇五

(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。

2.過程與方法。

(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。

3.情感態(tài)度與價值觀。

(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。

(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

二、教學(xué)重點(diǎn)、難點(diǎn)。

重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。

三、教學(xué)用具。

(1)學(xué)法:觀察、思考、交流、討論、概括。

(2)實(shí)物模型、投影儀。

四、教學(xué)思路。

(一)創(chuàng)設(shè)情景,揭示課題。

1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。

2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

(二)、研探新知。

1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。

2.棱柱的何兩個平面都可以作為棱柱的底面嗎?

3.課本p8,習(xí)題1.1a組第1題。

5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

四、鞏固深化。

練習(xí):課本p7練習(xí)1、2(1)(2)。

課本p8習(xí)題1.1第2、3、4題。

五、歸納整理。

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。

六、布置作業(yè)。

課本p8練習(xí)題1.1b組第1題。

課外練習(xí)課本p8習(xí)題1.1b組第2題。

1.2.1空間幾何體的三視圖(1課時)。

高一數(shù)學(xué)教案必修一篇六

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。

二、重點(diǎn)難點(diǎn)分析。

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí)。

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒有意識到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)。

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。

(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。

函數(shù)的奇偶性概念引入時,可設(shè)計(jì)一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

高一數(shù)學(xué)教案必修一篇七

1、教材(教學(xué)內(nèi)容)。

2、設(shè)計(jì)理念。

3、教學(xué)目標(biāo)。

情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

4、重點(diǎn)難點(diǎn)。

重點(diǎn):任意角三角函數(shù)的定義、

難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

5、學(xué)情分析。

6、教法分析。

7、學(xué)法分析。

本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。

高一數(shù)學(xué)教案必修一篇八

細(xì)胞膜、細(xì)胞壁、細(xì)胞核、細(xì)胞質(zhì)均不是細(xì)胞器。

一、細(xì)胞器之間分工。

1.線粒體:細(xì)胞進(jìn)行有氧呼吸的主要場所。雙層膜(內(nèi)膜向內(nèi)折疊形成脊),分布在動植物細(xì)胞體內(nèi)。

2.葉綠體:進(jìn)行光合作用,“能量轉(zhuǎn)換站”,雙層膜,分布在植物的葉肉細(xì)胞。

3.內(nèi)質(zhì)網(wǎng):蛋白質(zhì)合成和加工,以及脂質(zhì)合成的“車間”,單層膜,動植物都有。分為光面內(nèi)質(zhì)網(wǎng)和粗面內(nèi)質(zhì)網(wǎng)(上有核糖體附著)。

4.高爾基體:對來自內(nèi)質(zhì)網(wǎng)的蛋白質(zhì)進(jìn)行加工、分類和包裝,單層膜,動植物都有,植物細(xì)胞中參與了細(xì)胞壁的形成。

5.核糖體:無膜,合成蛋白質(zhì)的主要場所。生產(chǎn)蛋白質(zhì)的機(jī)器。

包括游離的核糖體(合成胞內(nèi)蛋白)和附著在內(nèi)質(zhì)網(wǎng)上的核糖體(合成分泌蛋白)。

6.溶酶體:內(nèi)含有多種水解酶,能分解衰老、損傷的細(xì)胞器,吞噬并殺死侵入細(xì)胞的病毒或病菌,單層膜。

溶酶體吞噬過程體現(xiàn)生物膜的流動性。溶酶體起源于高爾基體。

7.液泡:主要存在與植物細(xì)胞中,內(nèi)有細(xì)胞液,含糖類、無機(jī)鹽、色素和蛋白質(zhì)等物質(zhì),可以調(diào)節(jié)植物細(xì)胞內(nèi)的環(huán)境,充盈的液泡還可以使植物細(xì)胞保持堅(jiān)挺。與植物細(xì)胞的滲透吸水有關(guān)。

8.中心體:動物和某些低等植物的細(xì)胞,由兩個相互垂直排列的中心粒及周圍物質(zhì)組成,與細(xì)胞的有絲分裂有關(guān),無膜。一個中心體有兩個中心粒組成。

二、分類比較:

1.雙層膜:葉綠體、線粒體(細(xì)胞核膜)。

單層膜:內(nèi)質(zhì)網(wǎng)、高爾基體、液泡、溶酶體(細(xì)胞膜、類囊體薄膜)。

無膜:中心體、核糖體。

2.植物特有:葉綠體、液泡動物特有(低等植物):中心體。

3.含核酸的細(xì)胞器:線粒體、葉綠體(dna)線粒體、葉綠體、核糖體(rna)。

4.增大膜面積的細(xì)胞器:線粒體、內(nèi)質(zhì)網(wǎng)、葉綠體。

5.含色素:葉綠體、液泡。

6.能產(chǎn)生atp的:線粒體、葉綠體(細(xì)胞質(zhì)基質(zhì))。

7.能自主復(fù)制的細(xì)胞器:線粒體、葉綠體、中心體。

8.與有絲分裂有關(guān)的細(xì)胞器:核糖體、線粒體、高爾基體(形成細(xì)胞壁)、中心體。

9.發(fā)生堿基互補(bǔ)配對:線粒體、葉綠體、核糖體。

10.與主動運(yùn)輸有關(guān):核糖體、線粒體。

高一數(shù)學(xué)教案必修一篇九

一、課前準(zhǔn)備。

問題3:因?yàn)槿切蔚膬?nèi)角和是,四邊形的內(nèi)角和是,五邊形的內(nèi)角和是。

……所以n邊形的內(nèi)角和是。

新知1:從以上事例可一發(fā)現(xiàn):

叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。

新知2:類比推理就是根據(jù)兩類不同事物之間具有。

推測其中一類事物具有與另一類事物的性質(zhì)的推理、

簡言之,類比推理是由的推理、

新知3歸納推理就是根據(jù)一些事物的',推出該類事物的。

的推理、歸納是的過程。

例子:哥德巴赫猜想:

觀察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。

16=13+3,18=11+7,20=13+7,……,

50=13+37,……,100=3+97,

猜想:

歸納推理的一般步驟。

1通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì)。

2從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想)。

※典型例題。

例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項(xiàng)和sn的歸納過程。

變式1觀察下列等式:1+3=4=,

1+3+5=9=,

1+3+5+7=16=,

1+3+5+7+9=25=,

……。

你能猜想到一個怎樣的結(jié)論?

變式2觀察下列等式:1=1。

1+8=9,

1+8+27=36,

1+8+27+64=100,

……。

你能猜想到一個怎樣的結(jié)論?

例2設(shè)計(jì)算的值,同時作出歸納推理,并用n=40驗(yàn)證猜想是否正確。

變式:(1)已知數(shù)列的第一項(xiàng),且,試歸納出這個數(shù)列的通項(xiàng)公式。

例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)、

圓的概念和性質(zhì)球的類似概念和性質(zhì)。

圓的周長。

圓的面積。

圓心與弦(非直徑)中點(diǎn)的連線垂直于弦。

與圓心距離相等的弦長相等,

※動手試試。

2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。

3如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。

三、總結(jié)提升。

※學(xué)習(xí)小結(jié)。

1、歸納推理的定義、

高一數(shù)學(xué)教案必修一篇十

一、除了高等植物成熟的篩管細(xì)胞和哺乳動物成熟的紅細(xì)胞等極少數(shù)細(xì)胞外,真核細(xì)胞都有細(xì)胞核。植物的導(dǎo)管細(xì)胞是死細(xì)胞(主要運(yùn)輸水分、無機(jī)鹽),篩管主要運(yùn)輸有機(jī)物。

二、細(xì)胞核控制著細(xì)胞的代謝和遺傳。

三、細(xì)胞核的結(jié)構(gòu)。

2.染色質(zhì)(主要由dna和蛋白質(zhì)組成,dna是遺傳信息的載體。

4.核孔(實(shí)現(xiàn)核質(zhì)之間頻繁的物質(zhì)交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(zhì)(蛋白質(zhì)和mrna)出入細(xì)胞需要能量和載體,細(xì)胞代謝越旺盛,核孔越多,核仁體積越大。

四、細(xì)胞分裂時,細(xì)胞核解體,染色質(zhì)高度螺旋化,縮短變粗,成為光學(xué)顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結(jié)束時,染色體解螺旋,重新成為細(xì)絲狀的染色質(zhì)。染色質(zhì)(分裂間期)和染色體(分裂時)是同樣的物質(zhì)在細(xì)胞不同時期的兩種存在狀態(tài)。

五、細(xì)胞既是生物體結(jié)構(gòu)的基本單位,又是生物體代謝和遺傳的基本單位。

高一數(shù)學(xué)教案必修一篇十一

1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。

2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實(shí)踐的辯證關(guān)系,適時滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。

3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。

高一數(shù)學(xué)教案必修一篇十二

(3)會用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題、

用坐標(biāo)法解決幾何問題的步驟:

第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;

第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論、

重點(diǎn)與難點(diǎn):直線與圓的方程的應(yīng)用、

問 題設(shè)計(jì)意圖師生活動

生:回顧,說出自己的看法、

2、解決直線與圓的位置關(guān)系,你將采用什么方法?

生:回顧、思考、討論、交流,得到解決問題的方法、

問 題設(shè)計(jì)意圖師生活動

3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題

生:自 學(xué)例4,并完成練習(xí)題1、2、

生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問題的方法、

8、小結(jié):

(1)利用“坐標(biāo)法”解決問對知識進(jìn)行歸納概括,體會利 師:指導(dǎo) 學(xué)生完成練習(xí)題、

生:閱讀教科書的例3,并完成第

問 題設(shè)計(jì)意圖師生活動

題的需要準(zhǔn)備什么工作?

(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問題?

(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問題的關(guān)鍵是什么?

高一數(shù)學(xué)教案必修一篇十三

1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。

(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個通項(xiàng)公式。

(3)已知一個數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項(xiàng)。

2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。

3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計(jì)算等。

(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。

(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。

(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。

(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。

高一數(shù)學(xué)教案必修一篇十四

教學(xué)目標(biāo)。

理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點(diǎn)的過程,理解推導(dǎo)過程,掌握其應(yīng)用.

教學(xué)重難點(diǎn)。

1.教學(xué)重點(diǎn):兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用;。

2.教學(xué)難點(diǎn):兩角和與差正弦、余弦和正切公式的靈活運(yùn)用.

教學(xué)過程。

高一數(shù)學(xué)教案必修一篇十五

教學(xué)目標(biāo)。

熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。

教學(xué)重難點(diǎn)。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

教學(xué)過程。

復(fù)習(xí)。

兩角差的余弦公式。

用-b代替b看看有什么結(jié)果?

高一數(shù)學(xué)教案必修一篇十六

教學(xué)目標(biāo)。

1、理解平面向量的坐標(biāo)的概念;。

2、掌握平面向量的坐標(biāo)運(yùn)算;。

3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算。

教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.

教學(xué)過程。

平面向量基本定理:。

什么叫平面的一組基底?

平面的基底有多少組?

引入:。

1.平面內(nèi)建立了直角坐標(biāo)系,點(diǎn)a可以用什么來。

表示?

2.平面向量是否也有類似的表示呢?

高一數(shù)學(xué)教案必修一篇十七

1.閱讀課本練習(xí)止。

2.回答問題:

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3.完成練習(xí)。

4.小結(jié)。

二、方法指導(dǎo)。

1.在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開,同學(xué)們在學(xué)習(xí)時應(yīng)該把兩個函數(shù)進(jìn)行類比,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。

一、提問題。

1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。

二、變題目。

1.試求下列函數(shù)的反函數(shù):

(1);(2);(3);(4)。

2.求下列函數(shù)的定義域:。

(1);(2);(3)。

3.已知則=;的定義域?yàn)椤?/p>

1.對數(shù)函數(shù)的有關(guān)概念。

(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。

(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。

(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。

2.反函數(shù)的概念。

在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù)。

3.與對數(shù)函數(shù)有關(guān)的定義域的求法:

4.舉例說明如何求反函數(shù)。

一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,

二、課外思考:

1.求定義域:

2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。

高一數(shù)學(xué)教案必修一篇十八

教學(xué)目標(biāo)。

3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn):用向量方法解決實(shí)際問題的基本方法:向量法解決幾何問題的“三步曲”.

教學(xué)難點(diǎn):如何將幾何等實(shí)際問題化歸為向量問題.

教學(xué)過程。

由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實(shí)例,說明向量方法在平面幾何中的運(yùn)用。

思考:

運(yùn)用向量方法解決平面幾何問題可以分哪幾個步驟?

運(yùn)用向量方法解決平面幾何問題可以分哪幾個步驟?

“三步曲”:

(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。

(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.

高一數(shù)學(xué)教案必修一篇十九

掌握三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。

·利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。

(精確到0·001)·。

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的`進(jìn)、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習(xí):教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。

2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

高一數(shù)學(xué)教案必修一篇二十

(2)了解區(qū)間的概念;。

(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。

問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。

問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時間的關(guān)系。

設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

【本文地址:http://mlvmservice.com/zuowen/12836913.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔