教案的編寫需要不斷反思和調(diào)整,以提高教學質(zhì)量和教師的專業(yè)素養(yǎng)。教案需要根據(jù)不同的課程目標和教學內(nèi)容,確定適當?shù)慕虒W策略。對于教學活動的總結和歸納,教案是一種非常重要的記錄和參考材料。
初中數(shù)學完整教案篇一
1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。
2.通過驗證過程中數(shù)與形的結合,體會數(shù)形結合的思想以及數(shù)學知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。
4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學學習的信心。通過豐富有趣拼的圖活動增強對數(shù)學學習的興趣。
1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。
2.通過拼圖驗證公式的過程,使學習獲得一些研究問題與合作交流的方法與經(jīng)驗。
利用數(shù)形結合的方法驗證公式。
動手操作,合作探究課型新授課教具投影儀。
你已知道的關于驗證公式的拼圖方法有哪些?(教師在此給予學生獨立思考和討論的時間,讓學生回想前面拼圖。)。
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常??梢缘玫揭恍┯杏玫氖阶印C绹诙慰偨y(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關公式。
提問:還能通過怎樣拼圖來解決以下問題。
(2)任意寫出一個關于a、b的二次三項式,如a2+4ab+3b2。
試用拼一個長方形的方法,把這個二次三項式因式分解。
了解學生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導,并讓學生展示自己的拼圖及讓學生講解驗證公式的方法,并根據(jù)不同學生的不同狀況給予適當?shù)囊龑В龑W生整理結論。
從這節(jié)課中你有哪些收獲?
(教師應給予學生充分的時間鼓勵學生暢所欲言,只要是學生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學生所說的進行全面的總結。)。
學生回答。
a(b+c+d)=ab+ac+ad。
(a+b)(c+d)=ac+ad+bc+bd。
(a+b)2=a2+2ab+b2。
學生拿出準備好的硬紙板制作。
給學生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學生教師要給予適當引導。
第95頁第3題。
復習例1板演。
………………。
………………。
……例2……。
………………。
………………。
教學后記。
初中數(shù)學完整教案篇二
根據(jù)《數(shù)學課程標準》和素質(zhì)教育的要求,結合學生的認知規(guī)律及心理特征而確定,即:七年級的學生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強的表現(xiàn)欲,同時又具備了一定的歸納、總結表達的能力。因此,確定如下教學目標:
(1).知識技能目標。
讓學生掌握多邊形的內(nèi)角和的公式并熟練應用。
(2).過程和方法目標。
讓學生經(jīng)歷知識的形成過程,認識數(shù)學特征,獲得數(shù)學經(jīng)驗,進一步發(fā)展學生的說理意識和簡單推理,合情推理能力。
(3).情感目標。
激勵學生的學習熱情,調(diào)動他們的學習積極性,使他們有自信心,激發(fā)學生樂于合作交流意識和獨立思考的習慣。。
2、教學重、難點定位。
教學重點是多邊形的內(nèi)角和的得出和應用。
教學難點是探索和歸納多邊形內(nèi)角和的過程。
1、教材的地位與作用。
本課選自人教版數(shù)學七年級下冊第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。
2、聯(lián)系及應用。
本節(jié)課是以三角形的知識為基礎,仿照三角形建立多邊形的有關概念。因此。
多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會把復雜化為簡單,化未知為已知,從特殊到一般和轉化等重要的思想方法。而多邊形在工程技術和實用圖案等方面有許多的實際應用,下一節(jié)平面鑲嵌就要用到,讓學生接觸一些多邊形的實例,可以加深對它的概念以及性質(zhì)的理解。
學生對三角形的知識都已經(jīng)掌握。讓學生由三角形的內(nèi)角和等于180°,是一個定值,猜想四邊形的內(nèi)角和也是一個定值,這是學生很容易理解的地方。由幾個特殊的四邊形的內(nèi)角和出發(fā),譬如長方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個定值,這個定值是360°。要得到四邊形的內(nèi)角和等于360°這個結論最直接的方法就是用量角器來度量。讓學生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導學生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導,學習將新問題化歸為已有結論的思想方法,這里學生都容易理解。課堂教學設計中,在探究五邊形,六邊形和七邊形的內(nèi)角和時,讓學生動手實踐,設置探究活動二,為了讓學生拓寬思路,從不同的角度去思考這個問題,這個活動對學生的動手能力要求進一步提高了,學生對這個問題的理解稍微有些難度,但學生可根據(jù)自己本身的特點來加以補充和完善。在教學設計中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內(nèi)各個成員需要分工協(xié)作,才能夠順利的把任務完成;最后,學生還需要把自己的思維從感性認識提升到理性認識的高度,這樣就培養(yǎng)了學生合情推理的意識。
本節(jié)課借鑒了美國教育家杜威的"在做中學"的理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"的思想,我確定如下教法和學法:
1、教學方法的設計。
我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。
2、活動的開展。
利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
3、現(xiàn)代教育技術的應用。
我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學設計中占了非常大的比例,探究活動一設置目的讓學生動手實踐,并把新知識與學過的三角形的相關知識聯(lián)系起來;探究活動二設置目的讓學生拓寬思路,為放開書本的束縛打下基礎;培養(yǎng)學生動手操作的能力和合情推理的意識。通過師生共同活動,訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神;使學生懂得數(shù)學內(nèi)容普遍存在相互聯(lián)系,相互轉化的特點。練習活動的設計,目的一檢查學生的掌握知識的情況,并促進學生積極思考;目的二凸現(xiàn)小組合作的特點,并促進學生情感交流。
以上是我對《多邊形的內(nèi)角和》的教學設計說明。
初中數(shù)學完整教案篇三
一學期的工作結束了,可以說緊張忙碌卻收獲多多?;仡欉@學期的工作,我教九(4)班的數(shù)學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結經(jīng)驗,吸取教訓,使以后的工作能夠有效、有序地進行,現(xiàn)將教學所得總結如下:
在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經(jīng)過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數(shù)。
在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發(fā)現(xiàn)知識。波利亞說:“學習任何知識的最佳途徑都是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系?!敝挥谐浞职l(fā)揮學生的主體作用,讓學生人人參與,才能最大限度地促進學生的發(fā)展。但還是難免受傳統(tǒng)教學觀念的影響,加之經(jīng)驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學校“”的教學模式下,才開始進一步嘗試,并在不斷的嘗試中總結經(jīng)驗。
1)、教材挖掘不深入。
2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發(fā)不足。
3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導。
4)、差生末抓在手。由于對學生的了解不夠,對學生的學習態(tài)度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數(shù)。導致了教學中的盲目性。
1)、加強學習,學習新教學模式下新的教學思想。
2)、熟讀初一到初三的數(shù)學教材,深入挖掘教材,進一步把握知識點和考點。
3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發(fā)事件方法。
4)、加強轉差培優(yōu)力度。
5)、加強教學反思,加大教學投入。
一學期的教學工作即將結束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業(yè)務水平。
初中數(shù)學完整教案篇四
圖樣,圖樣,還是圖樣。到處都是圖樣,有的用尖細的木片潦草地寫在滿是灰塵的大理石桌上,有的用一塊木炭涂在墻上,有的用粉筆畫在地上。阿基米德穿著一件白色的舊長袍,坐在桌子上思索起來。手指象發(fā)燒似的微微顫抖。豆大的汗珠裹著灰塵,從他極度疲倦的臉上落在手上,落到衣服上,落到隨手扔在桌子上的一卷草片紙上。
他沒有跑,沒有象一個無恥的膽小鬼那樣從戰(zhàn)場上逃跑。他竭盡全力,把全部的智慧和熱情都獻給了這座城市。多少個不眠之夜,多少個酷熱難耐的白天,他就是整個敘拉古防御陣地的大腦和心臟。一提到他的名字,羅馬人就驚恐地逃離城墻,他們唯恐躲避不及致命的投石炮,以及紛紛落下的熾熱的涂滿油脂的麻屑,標槍與長矛的驟雨。不就是他,不動咫尺就把接近城市海防工事的羅馬艦隊都燒毀了嗎?不就是他,一個人用他發(fā)明的一組復雜的滑車把羅馬的兵船吊在半空,再從高處把船拋向深海里去了嗎?但這對于一個人的獨創(chuàng)才能和精力來說,已經(jīng)是極限了,他已經(jīng)是一個衰弱的老人,他的手握不住戰(zhàn)劍。他堅持留在陣地上,直至敵人出現(xiàn)在城墻外邊。而這時戴著盔形帽的羅馬人已經(jīng)開始在被歲月磨出來的馬路的石塊上晃動。希臘人竭盡最后的力量進行抵抗,肉搏戰(zhàn)當然沒有阿基米德參加的份。。。。。。
還在青年時代,他就踏上了這條荊棘叢生的,曲折的,布滿無數(shù)坎坷的學者道路。學者的生活。。。。。。當生活道路開始的時候,他曾經(jīng)把生活想象的很不實際。他用充滿甜蜜的幸福,普遍的崇敬和持久不變的,任憑什么也不能蒙蔽的榮譽來描繪自己青年時代雄心勃勃的夢想。但生活并非如此,他竟然是格外地嚴酷。他實際體驗到,這生活是一天一時也不停地,終身為一個神靈,一個偶像,一個各種思想和愿望的主宰服務。科學就是一個催眠術家,只要一次受到科學真理魔術般的誘惑,立刻就會為了科學而忘掉一切,直至最后進入墳墓。
榮譽是有的,但是這榮譽足以為不學無術者和嫉妒者們的大聲嘲笑所敗壞。是有許多狂熱的崇拜者,但也有許多惡毒的非難者,他們不錯過任何一個機會,通過假借的名義,公開和秘密地對他進行侮辱,詆毀和誹傍,以他為笑柄。。。。。。
他本人的生活是這樣,他父親的生活也是這樣。他父親叫做菲迪亞斯。供人參閱的備忘錄描述了他很早的童年時代的情形,小阿基米德似乎不得不讓每一個新認識的人相信,他的父親只是和奧利匹亞的宙斯像和雅典的女神像的著名的建造者,比阿基米德天文學家的父親早生一百多年的雕刻家菲迪亞斯同姓。奇怪的是,菲迪亞斯竟然不是國王亥厄洛的親戚,相反,完全出乎意料之外,阿基米德卻是國王亥厄洛的一個親戚,就是說,也是國王兒子格隆的一個親戚。。。。。。
這里是繁華的亞歷山大城。阿基米德花了許多時間沿著城市的石頭道散步,登上佛洛斯燈塔,從那里了望擁簇著似乎是從地球上所有有人居住的地方抵達到這里的希臘,羅馬,腓尼基,波斯和其它國家的船只的港灣。但是,比這多得多的時間,他是在著名的亞歷山大圖書館里度過的。世界上任何一個圖書館可能都要羨慕這家圖書館所收集的抄本和手稿。在圖書館里,集中了偉大的亞歷山大城所有最優(yōu)秀的青年人。在和那些崇拜本國著名的歐幾里德的年輕人的熱烈爭論中,阿基米德對自己的科學立場的理解逐漸成熟,有些地方與亞歷山大人接近,有些地方則與他們截然不同。但是,盡管在觀點上有所不同,他剛一熟悉歐幾里德的著作,對已故的偉大學者歐幾里德的虔誠的敬意就完全征服了阿基米德。歐幾里德的幾何原本從此成為他整個漫長一生的必讀之書。。。。。。
戰(zhàn)斗的吶喊聲越來越大。厚實的窗簾已經(jīng)擋不住獲勝的羅馬人狂喜的歡呼聲,戰(zhàn)劍打擊敘拉古最后一批保衛(wèi)者的盾牌的叮當聲,還有那刺向他們被長時間的防御戰(zhàn)折磨得精疲力盡的身體的沉悶聲。獲勝的敵人已經(jīng)占領了這座苦難的城市,又醉心于卑鄙無恥的,令人痛惡的殺掠,連兒童,婦女和老人也不放過。
非常奇怪的是,所以這一切————戰(zhàn)劍的叮當聲,垂死者的呻吟聲,羅馬人勝利的歡呼聲,都是這樣地遙遠,似乎是在半個多世紀以前發(fā)出的。阿基米德突然以一種可怕的清醒回想起自己乘一艘小船從亞歷山大到敘拉古所經(jīng)歷的漫長而又十分危險的旅程。在危機四伏的不平靜的大海中,綠色的波濤的巔峰翻騰著白色的大理石般的泡沫,不停地撞擊著毫無保護的不堅固的小船,船上可憐的人們覺得好像無論是人,還是超人的力量都已經(jīng)不能把他們從海神的懷抱里解救出來。而就在這時,舵手使出全身的力氣掌穩(wěn)沉重的船舵,高高地向上搬動舵尾,用力地沖向那轟隆作響的搖蕩的浪山。船象一匹戴上嚼子的馬,戰(zhàn)栗著,一會兒呆立在高高的浪峰上,一會兒又搖晃著跌進隨之而來的無底的深淵。。。。。。
船駛離亞歷山大之時,裝飾著色彩繽紛的船帆,宛如一位服裝時髦的美女,而抵達敘拉古時,卻遍體鱗傷,千瘡百孔,失去了桅桿和船帆,簡直就是一個衣衫襤褸的女乞丐了。。。。。。
一個羅馬兵兇惡的面孔突然出現(xiàn)在眼前,在他身后是一群形形色色的敘拉古人,正在走去迎接無數(shù)條載著有半死不活的航海者的戰(zhàn)船。這個外國的不速之客從哪里來?是怎么來的呢?這個人張牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德卻聽不見他的話。往事仍然把阿基米德死死地拖住不放,忘卻現(xiàn)實的銷魂的魔力還沒有退卻。。。。。。
幻影沒有消失。在它還沒有最后填滿整個房間,把整個古老的敘拉古陽光充足的港灣里毫無剩余地從房間里排擠出去之前,它在數(shù)學家視線模糊的眼睛里仍然在擴大,擴大。啊,原來這里還有個人。這時,一個強盜,殺人兇手找到了數(shù)學家阿基米德的住宅。這個殘忍的羅馬士兵————數(shù)學家以前幾乎沒有想過的死亡就這樣悄悄地向她逼近了。
"別動我的圖案!"老人聲音低微,但語氣卻強硬地命令道。這就是他說的最后一句話。一把寬大的雙刃劍用力地砍在這位偉大的世界公民頭發(fā)斑白,疲憊不堪的,但卻威嚴自豪,充滿靈感的頭顱上。。。。。。
據(jù)說,阿基米德就這樣在位于被羅馬人攻取并搶劫的敘拉古的一條街道上的房間里被殺害了。甚至羅馬主將馬爾采勒,這個長期徒勞地企圖占領這座城市的不共戴天的,陰險的敵人,在得知這位最偉大的學者和最熱情和無畏的愛國主義者的死訊之后,也感到極度的悲傷。
初中數(shù)學完整教案篇五
創(chuàng)設情境導入新課
引導學生欣賞魯迅紀念館的照片,簡單介紹魯迅其人其事,進行愛國主義教育和鄉(xiāng)土文化教育,激發(fā)學生的自豪感,并請學生做導游,點出這節(jié)課的主線:邊參觀魯迅紀念館邊學習身邊的數(shù)學.
沿參觀旅程依此遇到下列問題:。
3、在參觀時了解到了紀念館的一些情況:。
初中數(shù)學完整教案篇六
1、理解并掌握三角形中位線的概念、性質(zhì),會利用三角形中位線的性質(zhì)解決有關問題。
2、經(jīng)歷探索三角形中位線性質(zhì)的過程,讓學生實現(xiàn)動手實踐、自主探索、合作交流的學習過程。
3、通過對問題的探索研究,培養(yǎng)學生分析問題和解決問題的能力以及思維的靈活性。
4、培養(yǎng)學生大膽猜想、合理論證的科學精神。
探索并運用三角形中位線的性質(zhì)。
運用轉化思想解決有關問題。
創(chuàng)設情境——建立數(shù)學模型——應用——拓展提高。
情境創(chuàng)設:測量不可達兩點距離。
活動一:剪紙拼圖。
操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形。
觀察、猜想:四邊形bcfd是什么四邊形。
探索:如何說明四邊形bcfd是平行四邊形?
活動二:探索三角形中位線的性質(zhì)。
應用。
練習及解決情境問題。
例題教學。
操作——猜想——驗證。
拓展:數(shù)學實驗室。
小結:布置作業(yè)。
初中數(shù)學完整教案篇七
從文體和表述方式上看,論文是以說理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說明。也就是說,案例是講一個故事,是通過故事說明道理。
從寫作的思路和思維方式來看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。
教案和教學設計都是事先設想的教學思路,是對準備實施的教學措施的簡要說明;教學案例則是對已經(jīng)發(fā)生的教學過程的反映。一個寫在教之前,一個寫在教之后;一個是預期達到什么目標,一個是結果達到什么水平。教學設計不宜于交流,教學案例適宜于交流。
案例與教學實錄的體例比較接近,它們都是對教學情景的描述,但教學實錄是有聞必錄,而案例則是有所選擇的,教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷或理性思考)。
——真實性:案例必須是在課堂教學中真實發(fā)生的事件;。
——典型性:必須是包括特殊情境和典型案例問題的故事;。
——濃縮性:必須多角度地呈現(xiàn)問題,提供足夠的信息;。
——啟發(fā)性:必須是經(jīng)過研究,能夠引起討論,提供分析和反思。
從文章結構上看,數(shù)學案例一般包含以下幾個基本的元素。
(1)背景。案例需要向讀者交代故事發(fā)生的有關情況:時間、地點、人物、事情的起因等。如介紹一堂課,就有必要說明這堂課是在什么背景情況下上的,是一所重點學校還是普通學校,是一個重點班級還是普通班級,是有經(jīng)驗的優(yōu)秀教師還是年青的新教師執(zhí)教,是經(jīng)過準備的“公開課”還是平時的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說明故事的發(fā)生是否有什么特別的原因或條件。
(2)主題。案例要有一個主題:寫案例首先要考慮我這個案例想反映什么問題,例如是想說明怎樣轉變學困生,還是強調(diào)怎樣啟發(fā)思維,或者是介紹如何組織小組討論,或是觀察學生的獨立學習情況,等等?;蛘呤且粋€什么樣的數(shù)學任務解決過程和方法,在課程標準中數(shù)學任務認知水平的要求怎么樣,在課堂教學中數(shù)學任務認知水平的發(fā)展怎么樣等等。動筆前都要有一個比較明確的想法。比如學校開展研究性學習活動,不同的研究課題、研究小組、研究階段,會面臨不同的問題、情境、經(jīng)歷,都有自己的獨特性。寫作時應該從最有收獲、最有啟發(fā)的角度切入,選擇并確立主題。
(3)情節(jié)。有了主題,寫作時就不會有聞必錄,而要是對原始材料進行篩選。首先需要教師對課堂教學中師生雙方(外顯的和內(nèi)隱的)活動的清晰感知,然后是有針對性地向讀者交代特定的內(nèi)容,把關鍵性的細節(jié)寫清楚。比如介紹教師如何指導學生掌握學習數(shù)學的方法,就要把學生怎么從“不會”到“會”的轉折過程,要把學習發(fā)生發(fā)展過程的細節(jié)寫清楚,要把教師觀察到的學生學習行為,學習行為反映的學生思想、情感、態(tài)度寫清楚,或者把小組合作學習的突出情況寫清楚,或者把個別學生獨立學習的典型行為寫清楚。不能把“任務”布置了一番,把“方法”介紹了一番,說到“任務”的完成過程,說到“掌握”的程度就一筆帶過了。
(4)結果。一般來說,教案和教學設計只有設想的措施而沒有實施的結果,教學實錄通常也只記錄教學的過程而不介紹教學的效果;而案例則不僅要說明教學的思路、描述教學的過程,還要交代學生學習的結果,即這種教學措施的即時效果,包括學生的反映和教師的感受等。讀者知道了結果,將有助于加深對整個過程的內(nèi)涵的了解。
(5)反思。對于案例所反映的主題和內(nèi)容,包括教育教學指導思想、過程、結果,對其利弊得失,作者要有一定的看法和分析。反思是在記敘基礎上的議論,可以進一步揭示事件的意義和價值。比如同樣是一個學困生轉化的事例,我們可以從社會學、教育學、心理學、學習理論等不同的理論角度切入,揭示成功的原因和科學的規(guī)律。反思不一定是理論闡述,也可以是就事論事、有感而發(fā),引起人的共鳴,給人以啟發(fā)。
新課程理念下的初中數(shù)學教學案例,可從以下六方面選擇主題:
(1)體現(xiàn)讓學生動手實踐、自主探究、合作交流的教學方式;。
(4)體現(xiàn)數(shù)學與信息技術整合的教學方法;。
(5)體現(xiàn)教師在教學過程中的組織者、引導者與合作者的作用;。
(6)體現(xiàn)教學中對學生情感、態(tài)度的關注和評價,以及怎樣幫助不同的人在數(shù)學上獲得不同的發(fā)展,等等。
初中數(shù)學完整教案篇八
2.使學生學會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;。
3.使學生初步理解數(shù)形結合的思想方法.
教學重點和難點。
重點:初步理解數(shù)形結合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應關系.
課堂教學過程設計。
一、從學生原有認知結構提出問題。
1.小學里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內(nèi)容——.
二、講授新課。
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))。
在此基礎上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例變式練習。
例1畫一個,并在上畫出表示下列各數(shù)的點:
例2指出上a,b,c,d,e各點分別表示什么數(shù).
課堂練習。
示出來.
2.說出下面上a,b,c,d,o,m各點表示什么數(shù)?
最后引導學生得出結論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結。
指導學生閱讀教材后指出:是非常重要的數(shù)學工具,它使數(shù)和直線上的點建立了對應關系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)。
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)a,h,d,e,o各點分別表示什么數(shù)?
2.在下面上,a,b,c,d各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};。
初中數(shù)學完整教案篇九
本次檢查大多數(shù)教師都比較重視,檢查內(nèi)容完整、全面?,F(xiàn)將檢查情況總結如下教案方面的特點與不足。
特點:
1、絕大多數(shù)教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文李雅芳等能突出對學科素養(yǎng)的高度關注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現(xiàn)課堂教學的反思意識,反思深刻、務實、有針對性。
2、注重選擇恰當?shù)慕虒W方法,注重在靈活多樣的教學方法中培養(yǎng)學生的合作意識和創(chuàng)新精神。
3、教案能體現(xiàn)多媒體教學手段,注重培養(yǎng)學生的探究精神和創(chuàng)新能力。
不足:
1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業(yè)方面的特點與不足。
特點:
1、能按進度布置作業(yè),作業(yè)設置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業(yè)中的錯誤做法及糾正措施。
3、學生在書寫方面有很大進步。從檢查可以發(fā)現(xiàn)教師對學生作業(yè)的書寫格式有明確的要求。
不足:
1、對于學生書寫的工整性,還需加強教育。
2、教師在批閱作業(yè)時,要稍細心些,發(fā)現(xiàn)問題就讓學生當時改正,學生也就會逐漸養(yǎng)成做事認真的習慣。
初中數(shù)學完整教案篇十
生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個面的交線。
側棱:相鄰兩個側面的交線。棱柱的所有側棱長都相等。
底面:棱柱有上、下兩個底面,形狀相同。
側面:棱柱的側面都是平行四邊形。
立體圖形的分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點、無頂點。
棱柱:分為直棱柱、斜棱柱。直棱柱的側面是長方形。
特殊的四棱柱:長方體、正方體。正方體的每個面都是正方形。
圓柱:上、下兩個面都是圓形,側面展開圖是長方形。
圓錐:底面是圓形,側面展開圖是扇形。
截面:用一個平面去截一個幾何體,截出的面。
球:用一個平面去截,截面圖形是圓形。
正方體的截面:可以是正方形、長方形、梯形、三角形。
圓柱體的截面:可以是長方形、圓形、橢圓形、三角形。
展開與折疊:兩個面出現(xiàn)在同一位置的展開圖形,是不可折疊的。
從三個方向看物體的形狀:正面看(主視圖)、左面看(側視圖)、上面看(俯視圖)。
初中數(shù)學完整教案篇十一
3,體驗分類是數(shù)學上的常用處理問題的方法。
正確理解有理數(shù)的概念。
問題1:觀察黑板上的9個數(shù),并給它們進行分類.。
學生思考討論和交流分類的情況.。
例如,
對于數(shù)5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個的數(shù),稱為“正分數(shù),,.…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))。
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.。
看書了解有理數(shù)名稱的由來.。
“統(tǒng)稱”是指“合起來總的名稱”的意思.。
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會。
練一練1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.。
2,教科書第10頁練習.。
此練習中出現(xiàn)了集合的概念,可向學生作如下的說明.。
思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學生進行判斷。
集合的概念不必深入展開。
創(chuàng)新探究問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學時,要讓學生總結已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇?,逐步得到如下的分類表?/p>
有理數(shù)這個分類可視學生的程度確定是否有必要教學。
課堂小結到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結果也不同。
1,必做題:教科書第18頁習題1.2第1題。
2,教師自行準備。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念.分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視.關于分類標準與分類結果的關系,分類標準的確定可向學生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
初中數(shù)學完整教案篇十二
(一)使學生直觀認識線段,知道它的特征。
(二)使學生能辨認線段,初步學會畫線段。
(三)培養(yǎng)學生初步的空間觀念,空間的想象能力和動手操作能力。
認識線段的特征。
人手一根毛線、一張長方形紙、一把直尺、小黑板。
同學們,今天老師給大家?guī)砹艘晃恍屡笥?,想認識它嗎?它的名字就叫“線段”。
(板書課題:認識線段)。
(1)初步感知。
1、你覺得線段是怎樣的?(生:直直的;一段一段的;彎曲的……)。
2、能不能想辦法變出一條線段?
生嘗試。
師(出示準備好的.毛線):把毛線拉得直就出現(xiàn)一條線段。
請一生上來摸一摸。演示:這直的一段叫線段。
3、同桌合作:一個拉,另一個指出這條線段在哪里。
請兩生演示。
一生想辦法拉出線段,另一生指出:兩手之間的距離就是線段。
演示,問:垂下來的這一段是不是線段?為什么?
4、小結:線段是直直的。(板書:直直的)。
(2)認識端點。
1、兩頭粘上去的叫做線段的什么?(端點)(師把毛線拉直粘在黑板上)。
2、一條線段有幾個端點?(兩個)(板書:有兩個端點)。
(3)總結概念。
現(xiàn)在,同學們認識線段了嗎?線段是怎樣的?
讓生記線段:請同學們閉上眼睛,把線段印在自己的腦子里。
(4)找線段。
其實,在我們身邊,有許多物體的邊都是線段。同學們找找看,看誰的小眼睛最亮?生:課桌邊、黑板邊……(讓生用手感知)。
(5)折線段。
1、指出白紙中哪些邊是線段?
2、在白紙中折出一條線段。(折痕)。
3、再折比剛才短一點的線段。
4、在這張紙中折出最長的線段。(擺擂臺,讓擂主說出理由和折的方法)。
(6)小結。
通過剛才的拉、折、指,你認識線段了嗎?
(7)畫線段。
1、生自由畫在白紙上,然后反饋評價。
2、指定條件畫。
a、畫一條3厘米長的線段。
說說你是怎樣畫的?(師演示方法:用0刻度尺示畫出3厘米長的線段)。
b、畫一條比3厘米長1厘米的線段。
反饋:要求非常準確。(進行認真做事的思想教育)。
3、小結:線段有長有短。(板書)。
1、找一找,下面那些是線段?(小黑板出示)。
2、數(shù)一數(shù),下面的圖形是有幾條線段組成的。
3、過任意兩點,能連起幾條線段?
3點能連幾條線段?
4點呢,每兩點連起來,共有幾條線段?(生思考,動筆畫。)。
4點位置方向有不同。
思考:
4、比較:看看哪條線段長?
演示:一樣長。(生活中經(jīng)常用到這樣的數(shù)學知識。如:穿豎條衣服的人看上去瘦一些,穿橫條衣服的人看上去胖一些等)。
這節(jié)課,同學們有哪些收獲?
認識線段。
直的、有兩個端點、有長有短。
初中數(shù)學完整教案篇十三
教師孫志華2017年12月30日。
按照“兩學一做”學習教育要求,對照《準則》《條例》,結合思想和工作實際,進行了認真剖析。組織生活會主要是開展批評和自我批評,所以我直奔主題,查找問題,剖析根源、提出整改措施。
存在的主要問題。
一、存在的問題。
1、理論學習不夠深入。
由于忙于具體工作,對政治業(yè)務理論的學習僅僅停留在表面,且很被動,缺乏刻苦鉆研精神,沒有深入的挖掘理論的內(nèi)涵,沒有把握吃透這些理論的精髓,思想上缺乏緊迫感,政治上缺乏責任感。其次,理論聯(lián)系實際不夠。沒有真正的學以致用,處理問題和工作有時憑經(jīng)驗,缺乏理論和實際工作的有機結合。
2、在思想工作方面,總是把工作做的太具體,教學工作上不夠創(chuàng)新。對學生的要求僅停留在課業(yè)上,對學生的日常生活、心理健康關注的程度不夠。
3、工作缺乏創(chuàng)新。自己能夠在教學上動腦筋、想辦法,查缺補漏,但從目前看,充其量只是一個補鍋匠,創(chuàng)新意識還不夠強,創(chuàng)新的思路還不夠寬闊,層次還不高。
三、整改措施。
1、進一步提高對政治理論學習重要性的認識,增強學習的自覺性,時刻保持清醒的政治頭腦,堅持正確的政治方向,堅定正確的政治立場,樹立正確的政治觀點,要加強對黨的先進性建設、科學發(fā)展觀、社會主義和諧社會理論等黨的最新理論成果的學習。在不斷提高自身政治理論水平的同時,注重理論與工作實踐相結合,努力做到學以致用、用以促學、學用相長,提高運用理論指導實踐的能力。
2、進一步轉變工作作風,加大抓落實力度。
3、樹立開拓創(chuàng)新的思想,養(yǎng)成勤于思考的習慣,增強工作的主動性和預見性,對各項工作的落實要敢想敢為,積極研究新情況,解決新問題,闖出新路子,創(chuàng)造性地開展教學工作。進一步增強責任意識、創(chuàng)新意識,以實際行動,切實抓好教學工作。
總之,我身上存在的問題不僅僅是自己總結的這幾方面,還有許多沒有察覺的缺點,需要在與同志們的進一步交流中發(fā)現(xiàn)和改進,需要在坐的領導和同志們給予中懇的批評。今后,我愿和大家一起在開拓中前進,保持積極進取的良好精神狀態(tài),團結奮斗、發(fā)揮優(yōu)勢,使自己在今后的工作中進一步走向成熟。
以上自查,請各位領導批評指正。
初中數(shù)學完整教案篇十四
會用列一元二次方程的方法解有關面積、體積方面的應用題。
(1)列方程解應用題的步驟?
(2)長方形的周長、面積?長方體的體積?
據(jù)題意:(19—2x)(15—2x)=77。
整理后,得x2—17x+52=0,
解得x1=4,x2=13。
∴當x=13時,15—2x=—11(不合題意,舍去)。
答:截取的小正方形邊長應為4cm,可制成符合要求的無蓋盒子。
練習1章節(jié)前引例.。
學生筆答、板書、評價。
練習2教材p。42中4。
學生筆答、板書、評價。
注意:全面積=各部分面積之和。
剩余面積=原面積—截取面積。
解:長方體底面的寬為xcm,則長為(x+5)cm,
解:長方體底面的寬為xcm,則長為(x+5)cm,
據(jù)題意,6x(x+5)=750,
整理后,得x2+5x—125=0。
解這個方程x1=9。0,x2=—14。0(不合題意,舍去)。
當x=9。0時,x+17=26。0,x+12=21。0.。
答:可以選用寬為21cm,長為26cm的長方形鐵皮。
教師引導,學生板書,筆答,評價。
3.進一步體會數(shù)字在實踐中的應用,培養(yǎng)學生分析問題、解決問題的能力。
教材p42中a3、6、7。
教材p41中3、4。
初中數(shù)學完整教案篇十五
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解一元二次方程。
(一)創(chuàng)設情景,引入新課。
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
練習。
2:一元二次方程的一般形式(形如ax+bx+c=0)。
任一個一元二次方程都可以轉化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
4:利用因式分解法解一元二次方程。
5:講解例子。
6:一般步驟。
練習。
(三)小結。
(四)布置作業(yè)。
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解一元二次方程。
(一)創(chuàng)設情景,引入新課。
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
練習。
2:一元二次方程的一般形式(形如ax+bx+c=0)。
任一個一元二次方程都可以轉化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
4:利用因式分解法解一元二次方程。
5:講解例子。
6:一般步驟。
(三)小結。
(四)布置作業(yè)。
板書設計。
初中數(shù)學完整教案篇十六
1、了解分式的概念,會判斷一個代數(shù)式是否是分式。
2、能用分式表示簡單問題中數(shù)量之間的關系,能解釋簡單分式的實際背景或幾何意義。
3、能分析出一個簡單分式有、無意義的條件。
4、會根據(jù)已知條件求分式的值。
分式的概念,掌握分式有意義的'條件。
分式有、無意義的條件。
一、創(chuàng)設情境:
京滬鐵路是我國東部沿海地區(qū)縱貫南北的交通大動脈,全長1462km,是我國最繁忙的鐵路干線之一。如果貨運列車的速度為akm/h,快速列車的速度為貨運列車2倍,那么:。
(1)貨運列車從北京到上海需要多長時間?
(2)快速列車從北京到上海需要多長時間?
(3)已知從北京到上海快速列車比貨運列車少用多少時間?
觀察剛才你們所列的式子,它們有什么特點?
這些式子與分數(shù)有什么相同和不同之處?
一、概念探究:
1、列出下列式子:
(1)一塊長方形玻璃板的面積為。
2,如果寬為am,那么長是。
(2)小麗用n元人民幣買了m袋瓜子,那么每袋瓜子的價格是元。
(3)正n邊形的每個內(nèi)角為度。
(4)兩塊面積分別為a公頃、b公頃的棉田,產(chǎn)棉花分別為m、n。這兩塊棉田平均每公頃產(chǎn)棉花xxxxxx。
3、思考:
初中數(shù)學完整教案篇十七
3、通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
重點:通過具體例子了解公式、應用公式。
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2、在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
初中數(shù)學完整教案篇十八
立體圖形的翻折問題是高二《代數(shù)》(下)中立體幾何的一個學習內(nèi)容,它融會貫通于各種立體幾何和幾何體中,對學生進一步理解立體圖形起著至關重要的作用。立體圖形的翻折是從學生生活周圍熟悉的物體入手,使學生進一步認識立體圖形于平面圖形的關系;不僅要讓學生了解幾何體可由平面圖形折疊而成,更重要的是讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗圖形的變化過程,使學生了解研究立體圖形的方法。
了解平面圖形于折疊后的立體圖形之間的關系,找到變化過程中的不變量。
轉化思想的運用及發(fā)散思維的培養(yǎng)。
學生在前面已經(jīng)對一些簡單幾何體有了一定的認識,對于求解空間角及空間距離已具備了一定的能力,并且在班級中已初步形成合作交流,敢于探索與實踐的良好習慣。學生間相互評價、相互提問的互動的氣氛較濃。
根據(jù)教育課程改革的具體目標,結合“注重開放與生成,構建充滿生命活力的課堂教學運行體系”的要求,改變課程過于注重知識傳授的傾向,強調(diào)形成積極生動的學習態(tài)度,關注學生的學習興趣和經(jīng)驗,實施開放式教學,讓學生主動參與學習活動,并引導學生在課堂活動中感悟知識的生成、發(fā)展與變化。
1、使學生掌握翻折問題的`解題方法,并會初步應用。
2、培養(yǎng)學生的動手實踐能力。在實踐過程中,使學生提高對立體圖形的分析能力,并在設疑的同時培養(yǎng)學生的發(fā)散思維。
3、通過平面圖形與折疊后的立體圖形的對比,向學生滲透事物間的變化與聯(lián)系觀點,在解題過程中,使學生理解,將立體圖形中的問題化歸到平面圖形中去解決的轉化思想。
一、創(chuàng)設問題情境,引導學生觀察、設想、導入課題。
1、如圖(圖略),是一個正方體的展開圖,在原正方體中,有下列命題。
(1)ab與ef所在直線平行。
(2)ab與cd所在直線異面。
(3)mn與ef所在直線成60度。
(4)mn與cd所在直線互相垂直其中正確命題的序號是。
2、引入課題----翻折。
二、學生通過直觀感知、操作確認等實踐活動,加強對圖形的認識和感受(引導學生在解題的過程中如何突破難點,從而體現(xiàn)在平面圖形中求解一些不變量對于解空間問題的重要性)。
1、給學生一個展示自我的空間和舞臺,讓學生自己講解。教師根據(jù)學生的講解進一步提出問題。
(1)線段ae與ef的夾角為什么不是60度呢?
(2)ae與fg所成角呢?
(3)ae與gc所成角呢?
(4)在此正四棱柱上若有一小蟲從a點爬到c點最短路徑是什么?經(jīng)過各面呢?
(通過對發(fā)散問題的提出培養(yǎng)學生的培養(yǎng)精神及轉化的教學思想方法,讓學生體會折疊圖與展開圖的不同應用。)。
2、讓學生觀察電腦演示折疊過程后,再親自動手折疊,針對問題做出回答。
(1)e、f分別處于g1g2、g2g3的什么位置?
(2)選擇哪種擺放方式更利于求解體積呢?
(3)如何求g點到面pef的距離呢?
(4)pg與面pef所成角呢?
(5)面gef與面pef所成角呢?
(學生會發(fā)現(xiàn)這幾個問題可在同一個直角三角形中找到答案,然后讓學生在折紙中找到這個三角形的位置,既而發(fā)現(xiàn)折疊過程中的不變量。)。
(學生大膽想象,并通過模型制作確認想象結果的正確性,從而開辟一條簡捷的翻折思想解題思路。)。
三、小結。
1、畫平面圖,并折前圖與折后圖中的字母盡量保持一致。
2、尋找立體圖形中的不變量到平面圖形中求解是關鍵。
3、注意培養(yǎng)轉化思想和發(fā)散思維。
(通過提問方式引導學生小結本節(jié)主要知識及學習活動,養(yǎng)成學習、總結、學習的良好學習習慣,發(fā)散自我評價的作用,培養(yǎng)學生的語言表達能力。)。
四、課外活動。
1、完成課上未解決的問題。
2、對與1題折成正三棱柱結果會怎樣?對于2題改變e、f兩點位置剪成正三棱柱呢?
(通過課外活動學習本節(jié)知識內(nèi)容,培養(yǎng)學生的發(fā)散思維。)。
本課設計中,有梯度性的先安排三個小題,讓學生經(jīng)歷先動手、思考、預習這一學習過程,然后在課堂上給學生一個充分展示自我的空間,并且適時發(fā)問的同時幫助學生找到解決方法。歸納總結解翻折問題的技巧和作為解題方法的優(yōu)越性。在實施開放式教學的過程中,注重引導學生在課堂活動過程中感悟知識的生成、發(fā)展與變化,培養(yǎng)學生主動探索、敢于實踐、善于發(fā)現(xiàn)的科學精神以及合作交流的精神和創(chuàng)新意識,將創(chuàng)新的教材、創(chuàng)新的教法與創(chuàng)新的課堂環(huán)境有機地結合起來,將學生自主學習與創(chuàng)新意識的培養(yǎng)落到實處。
初中數(shù)學完整教案篇十九
1.通過實驗,使學生相信經(jīng)過大量的重復實驗后得到的頻率值確實可以作為隨機事件每次發(fā)生的機會的估計值,體會隨機事件中所隱含著的確定性內(nèi)涵。
2.使學生知道,通過實驗的方法,用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。且在相同條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但個人所得的值也并不一定相同。
3.培養(yǎng)學生合作學習的能力,并學會與他人交流思維的過程和結果。
重點:頻率與機會的關系。
難點:如何用頻率估計機會的大???教學準備數(shù)枚相同的圖釘。
一、提出問題。
上一節(jié)課,通過一系列的實驗和觀察,我們已經(jīng)知道:實驗是估計機會大小的一種方法。我們可以通過實驗,觀察某事件出現(xiàn)的`頻率,當頻率值逐漸穩(wěn)定時,這個值就可以作為我們對該事件發(fā)生機會的估計。
下面讓我們看另一類問題:
一枚圖釘被拋起后釘尖觸地的機會有多大?
二、分組實驗。
1.兩個學生一個小組,一人拋擲,一人記錄。
每個小組拋擲40次,記錄出現(xiàn)釘尖觸地的頻數(shù)。
教師負責把各小組的結果登錄在黑板上。
3.列出統(tǒng)計表,繪制折線圖。
4.根據(jù)實驗結果估計一下釘尖觸地的機會是百分之幾?
三、深入思考。
如果兩個小組使用的是兩種不同形狀的圖釘,那么這兩種圖釘釘尖觸地的機會相同嗎?
能把兩個小組的實驗數(shù)據(jù)合起來進行實驗嗎?
四、概括小結。
從上面的問題可以看出:
1.通過實驗的方法用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。比如,以同樣的方式拋擲同一種圖釘。
2.在相同的條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但每人所得的值也并不一定相同。
五、用心觀察。
觀察課本第105頁表15.2.1和圖15.2.2。
當實驗進行到多少次以后,所得頻率值就趨于平穩(wěn)了?
(小結:實驗到頻率值較穩(wěn)定時,結果比較可靠。這個頻率值也就可以作為這個事件發(fā)生機會的估計值。)。
六、鞏固練習。
課本第107頁練習第1、2題。
七、課堂小結。
這節(jié)課你有什么收獲?還有哪些問題需要老師幫你解決的?
注意:通過實驗的方法用頻率估計機會大小,必須要求實驗是在相同條件下進行的。
八、布置作業(yè)。
1、課本第108頁習題15.2第2題。
2、課本第106頁做一做。
2、數(shù)字之積為奇數(shù)與偶數(shù)的機會。
初中數(shù)學完整教案篇二十
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書七年級下冊多邊形內(nèi)角和。
1、知識目標:了解多邊形內(nèi)角和公式。
2、數(shù)學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結論的確定性,提高學生學習熱情。
重點:探索多邊形內(nèi)角和。
難點:探索多邊形內(nèi)角和時,如何把多邊形轉化成三角形。
引導發(fā)現(xiàn)法、討論法。
教具:多媒體課件。
學具:三角板、量角器。
大屏幕、實物投影。
(一)創(chuàng)設情境,設疑激思。
師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?
活動一:探究四邊形內(nèi)角和。
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360o。
方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360o。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。
學生先獨立思考每個問題再分組討論。
關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
學生分組討論后進行交流(五邊形的內(nèi)角和)。
方法1:把五邊形分成三個三角形,3個180o的和是540o。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結果得540o。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結果得540o。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結果得540o。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。
(二)引申思考,培養(yǎng)創(chuàng)新。
師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
活動三:探究任意多邊形的內(nèi)角和公式。
思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關系?
(2)多邊形的邊數(shù)與內(nèi)角和的關系?
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?
學生結合思考題進行討論,并把討論后的結果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。
發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180o。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。
得出結論:多邊形內(nèi)角和公式:(n-2)〃180。
(三)實際應用,優(yōu)勢互補。
1、口答:(1)七邊形內(nèi)角和()。
(2)九邊形內(nèi)角和()。
(3)十邊形內(nèi)角和()。
2、搶答:(1)一個多邊形的內(nèi)角和等于1260o,它是幾邊形?
(2)一個多邊形的內(nèi)角和是1440o,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
(四)概括存儲。
學生自己歸納總結:
1、多邊形內(nèi)角和公式。
2、運用轉化思想解決數(shù)學問題。
3、用數(shù)形結合的思想解決問題。
(五)作業(yè):練習冊第93頁1、2、3。
八、教學反思:
1、教的轉變。
本節(jié)課教師的`角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
2、學的轉變。
學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變。
整節(jié)課以?流暢、開放、合作、‘隱’導?為基本特征,教師對學生的。
思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以?對話?、?討論?為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
初中數(shù)學完整教案篇二十一
引導學生觀察上面所列的算式:。
它們與我們以前學過的算式有什么區(qū)別?點出課題(板書課題)。
概念:像這樣含有字母的數(shù)學表達式稱為代數(shù)式。
先判別下列哪些是代數(shù)式?再說說你對代數(shù)式構成的看法.【師】:引導學生觀察算式,并與以前學過的算式相比較,得出概念.
在學生交流的基礎上點明代數(shù)式的構成。
讓學生經(jīng)歷代數(shù)式概念產(chǎn)生的過程,使學生在數(shù)學活動過程中建構自己的數(shù)學知識,獲得對概念的理解,發(fā)展數(shù)學能力。改變學生的學習方式,變"學會"為"會學"。
師生互動探索新知。
??動手計算再探新知。
??歡樂游戲鞏固新知。
對代數(shù)式構成的理解:。
(1)一個代數(shù)式由數(shù)、表示數(shù)的字母和運算符號組成.這里的運算指加、減、乘、除、乘方和開方6種運算.
(2)為了今后研究和表述方便,規(guī)定單獨一個數(shù)或者字母也稱代數(shù)式.
初中數(shù)學完整教案篇二十二
先算什么,再算什么?同桌互說。
繼續(xù)演示:這時車上有7人,又到了一站,上來了2人,下去了3人,該怎樣列式計算?
列式為:7+2-3=6。
還可以怎樣列式?(7-3+2=6)。
2。試一試。
3。擺一擺。
同桌兩人一組,用圓片互相擺,一人擺,一人列式,然后交換角色練習。
(三)課堂作業(yè)。
1。7+2-88-8+410-4+2。
10-8+510-7-33+5+1。
2+7+16-3+73+5-6。
2.2+2+2+2+29-2-2-2-2。
(四)總結。
同學們的表現(xiàn)都很棒,希望繼續(xù)努力。
初中數(shù)學完整教案篇二十三
1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗數(shù)學與日常生活密切相關,認識到許多實際問題可以用數(shù)學方法解決。
歸納一元次方程的概念。
感受方程作為刻畫現(xiàn)實世界有效模型的意義.
我能猜出你們的年齡,相信嗎?
只要任何一個同學回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學生說出結果,教師猜測年齡,并問:你們知道我是怎么做的嗎?
學生討論并回答。
1、方程的教學(投影演示)。
小彬和小明也在進行猜年齡游戲,我們來看一看。
找出這道題中的等量關系,列出方程.
大家觀察,這兩個式子有什么特點。
討論并回答:什么是方程?方程有哪些特點?
2、判斷下列式子是不是方程?
(1)x+2=3(是)(2)x+3y=6(是)。
(3)3m-6(不是)(4)1+2=3(不是)。
(5)x+35(不是)(6)y-12=5(是)。
1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)。
你能找出題中的等量關系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國人口普查統(tǒng)計數(shù)據(jù)(20__年3月28日新華社公布)。
下面是剛才根據(jù)幾道情景題所列的方程,分析下列方程有何共同點?
2x–5=21。
40+15x=100。
x(1+153.94﹪)=3611。
2[x+(x+12)]=200。
2[y+(y–12)]=200。
在一個方程中,只含有一個未知數(shù)x(元),并且未知數(shù)的指數(shù)是1(次),這樣的方程叫一元一次方程。
生:分組討論,回答列方程的步驟(1)找等量關系(2)設未知數(shù)(3)列方程。
1、投影趣味習題,2、做一做。
下面有兩道題,請選做一題。
(1)、請根據(jù)方程2x+3=21自己設計一道有實際背景的應用題。
(2)、發(fā)揮你的想象,用自己的年齡編一道應用題,并列出方程。
1、這節(jié)課你學到了什么?
2、這節(jié)課給你印象最深的是什么?
分組布置。
【本文地址:http://mlvmservice.com/zuowen/12784976.html】