高三數(shù)學(xué)教案案例(模板18篇)

格式:DOC 上傳日期:2023-11-17 08:23:11
高三數(shù)學(xué)教案案例(模板18篇)
時(shí)間:2023-11-17 08:23:11     小編:影墨

教案的編制需要緊密結(jié)合課程標(biāo)準(zhǔn)和教材內(nèi)容,突出重點(diǎn)、難點(diǎn)和關(guān)鍵問題的教學(xué)設(shè)計(jì)。教案的編寫需要細(xì)化教學(xué)目標(biāo)和具體步驟,合理設(shè)計(jì)教學(xué)內(nèi)容和任務(wù),確保教學(xué)過程的連貫性和系統(tǒng)性。教案的編寫不是一成不變的,應(yīng)當(dāng)根據(jù)學(xué)科發(fā)展和教學(xué)需要不斷更新和改進(jìn)。

高三數(shù)學(xué)教案案例篇一

數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生交往、互動(dòng)、共同發(fā)展的過程。有效的數(shù)學(xué)教學(xué)應(yīng)當(dāng)從學(xué)生的生活經(jīng)驗(yàn)和已有的知識水平出發(fā),向他們提供充分地從事數(shù)學(xué)活動(dòng)的機(jī)會,在活動(dòng)中激發(fā)學(xué)生的學(xué)習(xí)潛能,促使學(xué)生在自主探索與合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識、技能和思想方法。提高解決問題的能力,并進(jìn)一步使學(xué)生在意志力、自信心、理性精神等情感、態(tài)度方面都得到良好的發(fā)展。

二.對教學(xué)內(nèi)容的認(rèn)識。

1.教材的地位和作用。

本節(jié)課是在學(xué)生學(xué)習(xí)過“一百萬有多大”之后,繼續(xù)研究日常生活中所存在的較小的數(shù),進(jìn)一步發(fā)展學(xué)生的數(shù)感,并在學(xué)完負(fù)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的基礎(chǔ)上,嘗試用科學(xué)記數(shù)法來表示百萬分之一等較小的數(shù)。學(xué)生具備良好的數(shù)感,不僅對于其正確理解數(shù)據(jù)所要表達(dá)的信息具有重要意義,而且對于發(fā)展學(xué)生的統(tǒng)計(jì)觀念也具有重要的價(jià)值。

2.教材處理。

基于設(shè)計(jì)理念,我在尊重教材的基礎(chǔ)上,適時(shí)添加了“銀河系的直徑”這一問題,以向?qū)W生滲透辯證的研究問題的思想方法,幫助學(xué)生正確認(rèn)識百萬分之一。

通過本節(jié)課的教學(xué),我力爭達(dá)到以下教學(xué)目標(biāo):

3.教學(xué)目標(biāo)。

(1)知識技能:

借助自身熟悉的事物,從不同角度來感受百萬分之一,發(fā)展學(xué)生的數(shù)感。能運(yùn)用科學(xué)記數(shù)法來表示百萬分之一等較小的數(shù)。

(2)數(shù)學(xué)思考:

通過對較小的數(shù)的問題的學(xué)習(xí),尋求科學(xué)的記數(shù)方法。

(3)解決問題:

能解決與科學(xué)記數(shù)有關(guān)的實(shí)際問題。

(4)情感、態(tài)度、價(jià)值觀:

使學(xué)生體會科學(xué)記數(shù)法的科學(xué)性和辯證的研究問題的思想方法。培養(yǎng)學(xué)生的合作交流意識與探究精神。

4.教學(xué)重點(diǎn)與難點(diǎn)。

根據(jù)教學(xué)目標(biāo),我確定本節(jié)課的重點(diǎn)、難點(diǎn)如下:

重點(diǎn):對較小數(shù)據(jù)的信息做合理的解釋和推斷,會用科學(xué)記數(shù)法來表示絕對值較小的數(shù)。

難點(diǎn):感受較小的數(shù),發(fā)展數(shù)感。

三.教法、學(xué)法與教學(xué)手段。

1.教法、學(xué)法:

本節(jié)課的教學(xué)對象是七年級的學(xué)生,這一年級的學(xué)生對于周圍世界和社會環(huán)境中的實(shí)際問題具有越來越強(qiáng)烈的興趣。他們對于日常生活中一些常見的數(shù)據(jù)都想嘗試著來加以分析和說明,但又缺乏必要的感知較大數(shù)據(jù)或較小數(shù)據(jù)的方法及感知這些數(shù)據(jù)的活動(dòng)經(jīng)驗(yàn)。

因此根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容,及學(xué)生的認(rèn)知特點(diǎn),教學(xué)上以“問題情境——設(shè)疑誘導(dǎo)——引導(dǎo)發(fā)現(xiàn)——合作交流——形成結(jié)論和認(rèn)識”為主線,采用“引導(dǎo)探究式”的教學(xué)方法。學(xué)生將主要采用“動(dòng)手實(shí)踐——自主探索——合作交流”的學(xué)習(xí)方法,使學(xué)生在直觀情境的觀察和自主的實(shí)踐活動(dòng)中獲取知識,并通過合作交流來深化對知識的理解和認(rèn)識。

2.教學(xué)手段:

1.采用現(xiàn)代化的教學(xué)手段——多媒體教學(xué),能直觀、生動(dòng)地反映問題情境,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。

2.以常見的生活物品為直觀教具,豐富了學(xué)生感知認(rèn)識對象的途徑,使學(xué)生對百萬分之一的認(rèn)識更貼近生活。

四.教學(xué)過程。

(一).復(fù)習(xí)舊知,鋪墊新知。

問題1:光的速度為300000km/s。

問題2:地球的半徑約為6400km。

問題3:中國的人口約為1300000000人。

(十).教學(xué)設(shè)計(jì)說明。

本節(jié)課我以貼近學(xué)生生活的數(shù)據(jù)及問題背景為依托,使學(xué)生學(xué)會用數(shù)學(xué)的方法來認(rèn)識百萬分之一,豐富了學(xué)生對數(shù)學(xué)的認(rèn)識,提高了學(xué)生應(yīng)用數(shù)學(xué)的能力,并為培養(yǎng)學(xué)生的終身學(xué)習(xí)奠定了基礎(chǔ)。在授課時(shí)相信會有一些預(yù)見不到的情況,我將在課堂上根據(jù)學(xué)生的實(shí)際情況做相應(yīng)的處理。

高三數(shù)學(xué)教案案例篇二

【教學(xué)目標(biāo)】:

(1)知識目標(biāo):

通過實(shí)例,了解簡單的邏輯聯(lián)結(jié)詞“且”、“或”的含義;

(2)過程與方法目標(biāo):

(3)情感與能力目標(biāo):

在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能。

【教學(xué)重點(diǎn)】:

通過數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞“或”、“且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。

【教學(xué)難點(diǎn)】:

簡潔、準(zhǔn)確地表述“或”命題、“且”等命題,以及對新命題真假的判斷。

【教學(xué)過程設(shè)計(jì)】:

教學(xué)環(huán)節(jié)教學(xué)活動(dòng)設(shè)計(jì)意圖。

情境引入問題:

下列三個(gè)命題間有什么關(guān)系?

(1)12能被3整除;

(2)12能被4整除;

知識建構(gòu)歸納總結(jié):

一般地,用邏輯聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個(gè)新命題,

記作,讀作“p且q”。

引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實(shí)例分析,概括出一般特征。

1、引導(dǎo)學(xué)生閱讀教科書上的例1中每組命題p,q,讓學(xué)生嘗試寫出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯(cuò)誤。學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個(gè)命題,根據(jù)“且”的含義判斷邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)成的新命題的真假。

2、引導(dǎo)學(xué)生閱讀教科書上的例2中每個(gè)命題,讓學(xué)生嘗試改寫命題,判斷真假,糾正可能出現(xiàn)的邏輯錯(cuò)誤。

歸納總結(jié):

當(dāng)p,q都是真命題時(shí),是真命題,當(dāng)p,q兩個(gè)命題中有一個(gè)是假命題時(shí),是假命題,

學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”改寫一些命題,根據(jù)“且”的含義判斷原先命題的真假。

引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實(shí)例分析命題p和命題q以及命題的真假性,概括出這三個(gè)命題的真假性之間的一般規(guī)律。

高三數(shù)學(xué)教案案例篇三

(3)掌握復(fù)數(shù)的模的定義及其幾何意義;。

(4)通過學(xué)習(xí),培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想;。

(5)通過本節(jié)內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生的觀察能力、分析能力,幫助學(xué)生逐步形成科學(xué)的思維習(xí)慣和方法.

教學(xué)建議。

一、知識結(jié)構(gòu)。

本節(jié)內(nèi)容首先從物理中所遇到的一些矢量出發(fā)引出向量的概念,介紹了向量及其表示法、向量的模、向量的相等、零向量的概念,接著介紹了復(fù)數(shù)集與復(fù)平面內(nèi)以原點(diǎn)為起點(diǎn)的向量集合之間的一一對應(yīng)關(guān)系,指出了復(fù)數(shù)的模的定義及其計(jì)算公式.

二、重點(diǎn)、難點(diǎn)分析。

本節(jié)的重點(diǎn)是復(fù)數(shù)與復(fù)平面的向量的一一對應(yīng)關(guān)系的理解;難點(diǎn)是復(fù)數(shù)模的概念.復(fù)數(shù)可以用向量表示,二者的對應(yīng)關(guān)系為什么只能說復(fù)數(shù)集與以原點(diǎn)為起點(diǎn)的向量的集合一一對應(yīng)關(guān)系,而不能說與復(fù)平面內(nèi)的向量一一對應(yīng),對這一點(diǎn)的理解要加以重視.在復(fù)數(shù)向量的表示中,從復(fù)數(shù)集與復(fù)平面內(nèi)的點(diǎn)以及以原點(diǎn)為起點(diǎn)的向量之間的一一對應(yīng)關(guān)系是本節(jié)教學(xué)的難點(diǎn).復(fù)數(shù)模的概念是一個(gè)難點(diǎn),首先要理解復(fù)數(shù)的絕對值與實(shí)數(shù)絕對值定義的一致性質(zhì),其次要理解它的幾何意義是表示向量的長度,也就是復(fù)平面上的點(diǎn)到原點(diǎn)的距離.

三、教學(xué)建議。

1.在學(xué)習(xí)新課之前一定要復(fù)習(xí)舊知識,包括實(shí)數(shù)的絕對值及幾何意義,復(fù)數(shù)的有關(guān)概念、現(xiàn)行高中物理課本中的有關(guān)矢量知識等,特別是對于基礎(chǔ)較差的學(xué)生,這一環(huán)節(jié)不可忽視.

如圖所示,建立復(fù)平面以后,復(fù)數(shù)與復(fù)平面內(nèi)的點(diǎn)形成—一對應(yīng)關(guān)系,而點(diǎn)又與復(fù)平面的向量構(gòu)成—一對應(yīng)關(guān)系.因此,復(fù)數(shù)集與復(fù)平面的以為起點(diǎn),以為終點(diǎn)的向量集形成—一對應(yīng)關(guān)系.因此,我們常把復(fù)數(shù)說成點(diǎn)z或說成向量.點(diǎn)、向量是復(fù)數(shù)的另外兩種表示形式,它們都是復(fù)數(shù)的幾何表示.

相等的向量對應(yīng)的是同一個(gè)復(fù)數(shù),復(fù)平面內(nèi)與向量相等的向量有無窮多個(gè),所以復(fù)數(shù)集不能與復(fù)平面上所有的向量相成—一對應(yīng)關(guān)系.復(fù)數(shù)集只能與復(fù)平面上以原點(diǎn)為起點(diǎn)的向量集合構(gòu)成—一對應(yīng)關(guān)系.

2.

這種對應(yīng)關(guān)系的建立,為我們用解析幾何方法解決復(fù)數(shù)問題,或用復(fù)數(shù)方法解決幾何問題創(chuàng)造了條件.

3.向量的模,又叫向量的絕對值,也就是其有向線段的長度.它的計(jì)算公式是,當(dāng)實(shí)部為零時(shí),根據(jù)上面復(fù)數(shù)的模的公式與以前關(guān)于實(shí)數(shù)絕對值及算術(shù)平方根的規(guī)定一致.這些內(nèi)容必須使學(xué)生在理解的基礎(chǔ)上牢固地掌握.

4.講解教材第182頁上例2的第(1)小題建議.在講解教材第182頁上例2的第(1)小題時(shí).如果結(jié)合提問的圖形,可以幫助學(xué)生正確理解教材中的“圓”是指曲線而不是指圓面(曲線所包圍的平面部分).對于倒2的第(2)小題的圖形,畫圖時(shí)周界(兩個(gè)同心圓)都應(yīng)畫成虛線.

5.講解復(fù)數(shù)的模.講復(fù)數(shù)的模的定義和計(jì)算公式時(shí),要注意與向量的有關(guān)知識聯(lián)系,結(jié)合復(fù)數(shù)與復(fù)平面內(nèi)以原點(diǎn)為起點(diǎn),以復(fù)數(shù)所對應(yīng)的點(diǎn)為終點(diǎn)的向量之間的一一對應(yīng)關(guān)系,使學(xué)生在理解的基礎(chǔ)上記憶。向量的模,又叫做向量的絕對值,也就是有向線段oz的長度.它也叫做復(fù)數(shù)的?;蚪^對值.

高三數(shù)學(xué)教案案例篇四

一年級學(xué)生是一個(gè)特殊的群體,他們剛剛從受保護(hù)的幼兒園環(huán)境中脫離,正走向自我管理的小學(xué)生活中。他們面對全新的環(huán)境,老師,同學(xué),心里總有局促不安。熟悉環(huán)境,心理調(diào)適顯的尤為重要。因此老師要向?qū)W生介紹小學(xué)生活的基本習(xí)慣,減少學(xué)生對小學(xué)生活的陌生感。教學(xué)環(huán)節(jié):

1.教師自我介紹,建立良好的師生關(guān)系。

首先,我在黑板上寫一個(gè)“銀”字,我讓他們數(shù)出“銀”有幾畫,我順勢告訴他們數(shù)數(shù)是數(shù)學(xué)常用的一種數(shù)學(xué)方法,數(shù)數(shù)要有順序的數(shù)。每位學(xué)生從姓名,年齡,學(xué)前班所在地3個(gè)方面做自我介紹。目的是讓大家大膽介紹自己,使大家盡快的熟悉。

2.向?qū)W生介紹聽說讀寫走坐的基本學(xué)習(xí)習(xí)慣。

聽:引導(dǎo)學(xué)生學(xué)會傾聽。

說:清楚,完整的表達(dá)自己的想法。

坐:頭正,身直,足平。走:上下樓梯和在走廊要靠右走。在引導(dǎo)學(xué)生在靠右走時(shí),學(xué)生不知道該怎么走。在舉起右手提示他們時(shí),有的同學(xué)說:“個(gè)位手”,有的同學(xué)說:“十位手”。最后同學(xué)說出了右手。我對他們說:“個(gè)位和十位、認(rèn)識左右就是我們要學(xué)習(xí)的內(nèi)容。

3.介紹排隊(duì)的基本要求。

讓學(xué)生自覺從矮到高的順序排隊(duì)。我問幾個(gè)同學(xué)你為什么站在他的后面,學(xué)生都回答我比他高。我順勢說出比較也是一種數(shù)學(xué)思想。

高三數(shù)學(xué)教案案例篇五

教學(xué)重點(diǎn):理解等比數(shù)列的概念,認(rèn)識等比數(shù)列是反映自然規(guī)律的重要數(shù)列模型之一,探索并掌握等比數(shù)列的通項(xiàng)公式。

教學(xué)難點(diǎn):遇到具體問題時(shí),抽象出數(shù)列的模型和數(shù)列的等比關(guān)系,并能用有關(guān)知識解決相應(yīng)問題。

教學(xué)過程:

一.復(fù)習(xí)準(zhǔn)備。

1.等差數(shù)列的通項(xiàng)公式。

2.等差數(shù)列的前n項(xiàng)和公式。

3.等差數(shù)列的性質(zhì)。

二.講授新課。

引入:1“一尺之棰,日取其半,萬世不竭?!?/p>

2細(xì)胞分裂模型。

3計(jì)算機(jī)病毒的傳播。

由學(xué)生通過類比,歸納,猜想,發(fā)現(xiàn)等比數(shù)列的特點(diǎn)。

進(jìn)而讓學(xué)生通過用遞推公式描述等比數(shù)列。

讓學(xué)生回憶用不完全歸納法得到等差數(shù)列的通項(xiàng)公式的過程然后類比等比數(shù)列的通項(xiàng)公式。

注意:1公比q是任意一個(gè)常數(shù),不僅可以是正數(shù)也可以是負(fù)數(shù)。

2當(dāng)首項(xiàng)等于0時(shí),數(shù)列都是0。當(dāng)公比為0時(shí),數(shù)列也都是0。

所以首項(xiàng)和公比都不可以是0。

3當(dāng)公比q=1時(shí),數(shù)列是怎么樣的,當(dāng)公比q大于1,公比q小于1時(shí)數(shù)列是怎么樣的?

4以及等比數(shù)列和指數(shù)函數(shù)的關(guān)系。

5是后一項(xiàng)比前一項(xiàng)。

列:1,2,(略)。

小結(jié):等比數(shù)列的通項(xiàng)公式。

三.鞏固練習(xí):

1.教材p59練習(xí)1,2,3,題。

2.作業(yè):p60習(xí)題1,4。

第二課時(shí)5.2.4等比數(shù)列(二)。

教學(xué)重點(diǎn):等比數(shù)列的性質(zhì)。

教學(xué)難點(diǎn):等比數(shù)列的通項(xiàng)公式的應(yīng)用。

一.復(fù)習(xí)準(zhǔn)備:

提問:等差數(shù)列的通項(xiàng)公式。

等比數(shù)列的通項(xiàng)公式。

等差數(shù)列的性質(zhì)。

二.講授新課:

1.討論:如果是等差列的三項(xiàng)滿足。

那么如果是等比數(shù)列又會有什么性質(zhì)呢?

由學(xué)生給出如果是等比數(shù)列滿足。

2練習(xí):如果等比數(shù)列=4,=16,=?(學(xué)生口答)。

如果等比數(shù)列=4,=16,=?(學(xué)生口答)。

3等比中項(xiàng):如果等比數(shù)列.那么,

則叫做等比數(shù)列的等比中項(xiàng)(教師給出)。

4思考:是否成立呢?成立嗎?

成立嗎?

又學(xué)生找到其間的規(guī)律,并對比記憶如果等差列,

5思考:如果是兩個(gè)等比數(shù)列,那么是等比數(shù)列嗎?

如果是為什么?是等比數(shù)列嗎?引導(dǎo)學(xué)生證明。

6思考:在等比數(shù)列里,如果成立嗎?

如果是為什么?由學(xué)生給出證明過程。

三.鞏固練習(xí):

列3:一個(gè)等比數(shù)列的第3項(xiàng)和第4項(xiàng)分別是12和18,求它的第1項(xiàng)和第2項(xiàng)。

解(略)。

列4:略:

練習(xí):1在等比數(shù)列,已知那么。

2p61a組8。

高三數(shù)學(xué)教案案例篇六

教學(xué)目標(biāo):

結(jié)合已學(xué)過的數(shù)學(xué)實(shí)例和生活中的實(shí)例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡單推理。

教學(xué)重點(diǎn):

掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡單推理。

教學(xué)過程。

一、復(fù)習(xí)。

二、引入新課。

1.假言推理。

假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。

(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結(jié)論就肯定大前提的后件;小前提否定大前提的后件,結(jié)論就否定大前提的前件。

(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結(jié)論就要肯定大前提的前件;小前提否定大前提的前件,結(jié)論就要否定大前提的后件。

2.三段論。

三段論是指由兩個(gè)簡單判斷作前提和一個(gè)簡單判斷作結(jié)論組成的演繹推理。三段論中三個(gè)簡單判斷只包含三個(gè)不同的概念,每個(gè)概念都重復(fù)出現(xiàn)一次。這三個(gè)概念都有專門名稱:結(jié)論中的賓詞叫“大詞”,結(jié)論中的主詞叫“小詞”,結(jié)論不出現(xiàn)的那個(gè)概念叫“中詞”,在兩個(gè)前提中,包含大詞的叫“大前提”,包含小詞的叫“小前提”。

3.關(guān)系推理指前提中至少有一個(gè)是關(guān)系判斷的推理,它是根據(jù)關(guān)系的邏輯性質(zhì)進(jìn)行推演的??煞譃榧冴P(guān)系推理和混合關(guān)系推理。純關(guān)系推理就是前提和結(jié)論都是關(guān)系判斷的推理,包括對稱性關(guān)系推理、反對稱性關(guān)系推理、傳遞性關(guān)系推理和反傳遞性關(guān)系推理。

(1)對稱性關(guān)系推理是根據(jù)關(guān)系的對稱性進(jìn)行的推理。

(2)反對稱性關(guān)系推理是根據(jù)關(guān)系的反對稱性進(jìn)行的推理。

(3)傳遞性關(guān)系推理是根據(jù)關(guān)系的傳遞性進(jìn)行的推理。

(4)反傳遞性關(guān)系推理是根據(jù)關(guān)系的反傳遞性進(jìn)行的推理。

4.完全歸納推理是這樣一種歸納推理:根據(jù)對某類事物的全部個(gè)別對象的考察,已知它們都具有某種性質(zhì),由此得出結(jié)論說:該類事物都具有某種性質(zhì)。

完全歸納推理的基本特點(diǎn)在于:前提中所考察的個(gè)別對象,必須是該類事物的全部個(gè)別對象。否則,只要其中有一個(gè)個(gè)別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結(jié)論所斷定的范圍,并未超出前提所斷定的范圍。所以,結(jié)論是由前提必然得出的。應(yīng)用完全歸納推理,只要遵循以下兩點(diǎn),那末結(jié)論就必然是真實(shí)的:(1)對于個(gè)別對象的斷定都是真實(shí)的;(2)被斷定的個(gè)別對象是該類的全部個(gè)別對象。

高三數(shù)學(xué)教案案例篇七

復(fù)習(xí):

1、(課本p28a13)填空:

(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;

(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是;

(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;

探究新知(復(fù)習(xí)教材p14~p25,找出疑惑之處)。

問題1:判斷下列問題哪個(gè)是排列問題,哪個(gè)是組合問題:

(1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?

(2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?

應(yīng)用示例。

例2、7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù)、

(1)甲站在中間;

(2)甲、乙必須相鄰;

(3)甲在乙的左邊(但不一定相鄰);

(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

(5)甲、乙、丙相鄰;

(6)甲、乙不相鄰;

(7)甲、乙、丙兩兩不相鄰。

反饋練習(xí)。

當(dāng)堂檢測。

1、某班新年聯(lián)歡會原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目、如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()。

a、42b、30c、20d、12。

課后作業(yè)。

高三數(shù)學(xué)教案案例篇八

1通過師生之間、學(xué)生與學(xué)生之間的互相交流,培養(yǎng)學(xué)生的數(shù)學(xué)交流能力和與人合作的精神。

2通過對對數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系、相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合的數(shù)學(xué)思想。

3通過對對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察、分析、歸納的思維能力。

二、識技能目標(biāo)。

1理解對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖象,感受研究對數(shù)函數(shù)的意義。

2掌握對數(shù)函數(shù)的性質(zhì),并能初步應(yīng)用對數(shù)的性質(zhì)解決簡單問題。

三、情感目標(biāo)。

1通過學(xué)習(xí)對數(shù)函數(shù)的概念、圖象和性質(zhì),使學(xué)生體會知識之間的有機(jī)聯(lián)系,激發(fā)學(xué)生的學(xué)習(xí)興趣。

2在教學(xué)過程中,通過對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)觀察、分析、歸納的思維能力以及數(shù)學(xué)交流能力,增強(qiáng)學(xué)習(xí)的積極性,同時(shí)培養(yǎng)學(xué)生傾聽、接受別人意見的優(yōu)良品質(zhì)。

教學(xué)重點(diǎn)難點(diǎn):

1對數(shù)函數(shù)的定義、圖象和性質(zhì)。

2對數(shù)函數(shù)性質(zhì)的初步應(yīng)用。

教學(xué)工具:多媒體。

【學(xué)前準(zhǔn)備】對照指數(shù)函數(shù)試研究對數(shù)函數(shù)的定義、圖象和性質(zhì)。

高三數(shù)學(xué)教案案例篇九

一、概述。

九年制義務(wù)教育九年級數(shù)學(xué)(北師大版)下冊第三章第五節(jié)“直線和圓的位置關(guān)系”。本節(jié)是探索直線與圓的位置關(guān)系,課本通過操作、觀察直線與圓的相對運(yùn)動(dòng),提示直線與圓的三種位置關(guān)系,探索直線與的位置關(guān)系,和圓心到直線的距離與半徑之間的大小關(guān)系的聯(lián)系,并突出研究了圓的切線的性質(zhì)和判定。在本節(jié)的設(shè)計(jì)中,充分體現(xiàn)了學(xué)生已有經(jīng)驗(yàn)的作用,用運(yùn)動(dòng)的觀點(diǎn)研究直線與圓的位置關(guān)系,使學(xué)生明確圖形在運(yùn)動(dòng)變化中的特點(diǎn)和規(guī)律。

二、設(shè)計(jì)理念。

鼓勵(lì)學(xué)生從事觀察、測量、折疊、平移、旋轉(zhuǎn)、推理證明等活動(dòng),幫助學(xué)生有意識地積累活動(dòng)經(jīng)驗(yàn),獲得成功的體驗(yàn)。教學(xué)中應(yīng)鼓勵(lì)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦和交流,充分展示“觀察、操作——猜想、探索——說理(有條理地表達(dá))”的過程,使學(xué)生能在直觀的基礎(chǔ)上學(xué)習(xí)說理,體現(xiàn)合情推理和演繹推理的融合,促進(jìn)學(xué)生形成科學(xué)地、能動(dòng)地認(rèn)識世界的良好品質(zhì)。

(1)激發(fā)學(xué)生親自探索直線和圓的位置關(guān)系。

(2)通過實(shí)踐讓學(xué)生理解直線與圓的三種位置關(guān)系——相交、相切、相離的含義。

(3)探索圓心到直線的距離與半徑之間的數(shù)量關(guān)系和直線與圓的位置關(guān)系之間的內(nèi)在聯(lián)系。

四、教學(xué)重點(diǎn)。

直線與圓的三種位置關(guān)系——相交、相切、相離。

從設(shè)置情景提出問題,到動(dòng)手操作、交流,直至歸納得出結(jié)論,整個(gè)過程學(xué)生不僅得到了直線與圓的位置關(guān)系,更重要的是經(jīng)歷了知識過程,體會了一種分析問題的方法,積累了數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),這將有利于學(xué)生更好的理解數(shù)學(xué)、應(yīng)用數(shù)學(xué)。

五、教學(xué)難點(diǎn)。

探索圓心到直線的距離與半徑之間的數(shù)量關(guān)系和直線與圓的位置關(guān)系之間的內(nèi)在聯(lián)系。

高三數(shù)學(xué)教案案例篇十

教學(xué)目標(biāo):

1、知識與技能:

1)了解導(dǎo)數(shù)概念的實(shí)際背景;

2)理解導(dǎo)數(shù)的概念、掌握簡單函數(shù)導(dǎo)數(shù)符號表示和基本導(dǎo)數(shù)求解方法;

3)理解導(dǎo)數(shù)的幾何意義;

4)能進(jìn)行簡單的導(dǎo)數(shù)四則運(yùn)算。

2、過程與方法:

先理解導(dǎo)數(shù)概念背景,培養(yǎng)觀察問題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問題的能力;最后求切線方程及運(yùn)算,培養(yǎng)解決問題的能力。

3、情態(tài)及價(jià)值觀;

讓學(xué)生感受數(shù)學(xué)與生活之間的聯(lián)系,體會數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)興趣與主動(dòng)性。

教學(xué)重點(diǎn):

1、導(dǎo)數(shù)的求解方法和過程;

2、導(dǎo)數(shù)公式及運(yùn)算法則的熟練運(yùn)用。

教學(xué)難點(diǎn):

1、導(dǎo)數(shù)概念及其幾何意義的理解;

2、數(shù)形結(jié)合思想的靈活運(yùn)用。

教學(xué)課型:復(fù)習(xí)課(高三一輪)。

教學(xué)課時(shí):約1課時(shí)。

高三數(shù)學(xué)教案案例篇十一

引出數(shù)形結(jié)合思想方法,強(qiáng)調(diào)其含義和重要性,告訴學(xué)生,本節(jié)課將利用數(shù)形結(jié)合方法來研究,會使學(xué)習(xí)變得輕松有趣。

采用這樣的引入方法,目的是打消學(xué)生對函數(shù)學(xué)習(xí)的畏難情緒,引起學(xué)生注意,也激起學(xué)生好奇和興趣。

(二)新知探索主要環(huán)節(jié),分為兩個(gè)部分。

教學(xué)過程如下:

第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)。

1.定義域、值域2.周期性。

3.單調(diào)性(重難點(diǎn)內(nèi)容)。

為了突出重點(diǎn)、克服難點(diǎn),采用以下手段和方法:

(1)利用多媒體動(dòng)態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結(jié)合的重要作用;。

(2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學(xué)生思維,反饋課堂信息,使問題成為探索新知的線索和動(dòng)力,隨著問題的解決,學(xué)生的積極性將被調(diào)動(dòng)起來。

(3)單調(diào)區(qū)間的探索過程是:

先在靠近原點(diǎn)的一個(gè)單調(diào)周期內(nèi)找出正弦函數(shù)的一個(gè)增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認(rèn)識過程。

**教師結(jié)合圖象幫助學(xué)生理解并強(qiáng)調(diào)“距離”(“長度”)是周期的多少倍。

為什么要這樣強(qiáng)調(diào)呢?

因?yàn)檫@是對知識的一種意義建構(gòu),有助于以后理解記憶正弦型函數(shù)的相關(guān)性質(zhì)。

4.對稱性。

設(shè)計(jì)意圖:

(1)因?yàn)槠媾夹允翘厥獾膶ΨQ性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。

(2)從正弦函數(shù)的對稱性看到了數(shù)學(xué)的對稱之美、和諧之美,體現(xiàn)了數(shù)學(xué)的審美功能。

5.最值點(diǎn)和零值點(diǎn)。

有了對稱性的理解,容易得出此性質(zhì)。

第二部分————學(xué)習(xí)任務(wù)轉(zhuǎn)移給學(xué)生。

設(shè)計(jì)意圖:

(3)通過課堂教學(xué)結(jié)構(gòu)的改革,提高課堂教學(xué)效率,最終使學(xué)生成為獨(dú)立的學(xué)習(xí)者,這也符合建構(gòu)主義的教學(xué)原則。

(三)鞏固練習(xí)。

補(bǔ)充和選作題體現(xiàn)了課堂要求的差異性。

(四)結(jié)課。

高三數(shù)學(xué)教案案例篇十二

(一)教法說明教法的確定基于如下考慮:

(1)心理學(xué)的研究表明:只有內(nèi)化的東西才能充分外顯,只有學(xué)生自己獲取的知識,他才能靈活應(yīng)用,所以要注重學(xué)生的自主探索。

(2)本節(jié)目的是讓學(xué)生學(xué)會如何探索、理解正、余弦函數(shù)的性質(zhì)。教師始終要注意的是引導(dǎo)學(xué)生探索,而不是自己探索、學(xué)生觀看,所以教師要引導(dǎo),而且只能引導(dǎo)不能代辦,否則不但沒有教給學(xué)習(xí)方法,而且會讓學(xué)生產(chǎn)生依賴和倦怠。

(3)本節(jié)內(nèi)容屬于本源性知識,一般采用觀察、實(shí)驗(yàn)、歸納、總結(jié)為主的方法,以培養(yǎng)學(xué)生自學(xué)能力。

所以,根據(jù)以人為本,以學(xué)定教的原則,我采取以問題為解決為中心、啟發(fā)為主的教學(xué)方法,形成教師點(diǎn)撥引導(dǎo)、學(xué)生積極參與、師生共同探討的課堂結(jié)構(gòu)形式,營造一種民主和諧的課堂氛圍。

(二)教學(xué)手段說明:

為完成本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn)、克服難點(diǎn),我采取了以下三個(gè)教學(xué)手段:

(1)精心設(shè)計(jì)課堂提問,整個(gè)課堂以問題為線索,帶著問題探索新知,因?yàn)闆]有問題就沒有發(fā)現(xiàn)。

(3)為節(jié)省課堂時(shí)間,制作幻燈片演示正、余弦函數(shù)圖象和性質(zhì),也可以使教學(xué)更生動(dòng)形象和連貫。

高三數(shù)學(xué)教案案例篇十三

我發(fā)現(xiàn),許多學(xué)生的學(xué)習(xí)方法是:直接記住函數(shù)性質(zhì),在解題中套用結(jié)論,對結(jié)論的來源不理解,知其然不知其所以然,應(yīng)用中不能變通和遷移。

本節(jié)的學(xué)習(xí)方法對后續(xù)內(nèi)容的學(xué)習(xí)具有指導(dǎo)意義。為了培養(yǎng)學(xué)法,充分關(guān)注學(xué)生的可持續(xù)發(fā)展,教師要轉(zhuǎn)換角色,站在初學(xué)者的位置上,和學(xué)生共同探索新知,共同體驗(yàn)數(shù)形結(jié)合的研究方法,體驗(yàn)周期函數(shù)的研究思路;幫助學(xué)生實(shí)現(xiàn)知識的意義建構(gòu),幫助學(xué)生發(fā)現(xiàn)和總結(jié)學(xué)習(xí)方法,使教師成為學(xué)生學(xué)習(xí)的高級合作伙伴。

教師要做到:

授之以漁,與之合作而漁,使學(xué)生享受漁之樂趣。因此。

1.本節(jié)要教給學(xué)生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學(xué)習(xí)方法。

2.通過本課的探索過程,培養(yǎng)學(xué)生觀察、分析、交流、合作、類比、歸納的學(xué)習(xí)能力及數(shù)形結(jié)合(看圖說話)的意識和能力。

高三數(shù)學(xué)教案案例篇十四

函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容,中學(xué)數(shù)學(xué)對函數(shù)的研究大致分成了三個(gè)階段。

三角函數(shù)是最具代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學(xué)習(xí)的延伸,也是第四章《三角函數(shù)》的核心內(nèi)容,是在前面已經(jīng)學(xué)習(xí)過正、余弦函數(shù)的圖象、三角函數(shù)的有關(guān)概念和公式基礎(chǔ)上進(jìn)行的,其知識和方法將為后續(xù)內(nèi)容的學(xué)習(xí)打下基礎(chǔ),有承上啟下的作用。

本節(jié)課是數(shù)形結(jié)合思想方法的良好素材。數(shù)形結(jié)合是數(shù)學(xué)研究中的重要思想方法和解題方法。

本節(jié)通過對數(shù)形結(jié)合的進(jìn)一步認(rèn)識,可以改進(jìn)學(xué)習(xí)方法,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心和興趣。另外,三角函數(shù)的曲線性質(zhì)也體現(xiàn)了數(shù)學(xué)的對稱之美、和諧之美。

因此,本節(jié)課在教材中的知識作用和思想地位是相當(dāng)重要的。

(二)課時(shí)安排。

4.8節(jié)教材安排為4課時(shí),我計(jì)劃用5課時(shí)。

(三)目標(biāo)和重、難點(diǎn)。

1.教學(xué)目標(biāo)。

教學(xué)目標(biāo)的確定,考慮了以下幾點(diǎn):

(2)本班學(xué)生對數(shù)學(xué)科特別是函數(shù)內(nèi)容的學(xué)習(xí)有畏難情緒,所以在內(nèi)容上要降低深難度。

(3)學(xué)會方法比獲得知識更重要,本節(jié)課著眼于新知識的探索過程與方法,鞏固應(yīng)用主要放在后面的三節(jié)課進(jìn)行。

由此,我確定了以下三個(gè)層面的教學(xué)目標(biāo):

(3)情感層面:通過運(yùn)用數(shù)形結(jié)合思想方法,讓學(xué)生體會(數(shù)學(xué))問題從抽象到形象的轉(zhuǎn)化過程,體會數(shù)學(xué)之美,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的信心和興趣。

2.重、難點(diǎn)。

由以上教學(xué)目標(biāo)可知,本節(jié)重點(diǎn)是師生共同探索,正、余函數(shù)的性質(zhì),在探索中體會數(shù)形結(jié)合思想方法。

難點(diǎn)是:函數(shù)周期定義、正弦函數(shù)的單調(diào)區(qū)間和對稱性的理解。

為什么這樣確定呢?

因?yàn)橹芷诟拍钍菍W(xué)生第一次接觸,理解上易錯(cuò);單調(diào)區(qū)間從圖上容易看出,但用一個(gè)區(qū)間形式表示出來,學(xué)生感到困難。

如何克服難點(diǎn)呢?

其一,抓住周期函數(shù)定義中的關(guān)鍵字眼,舉反例說明;。

高三數(shù)學(xué)教案案例篇十五

1.針對本班學(xué)生情況對課本進(jìn)行了適當(dāng)改編、細(xì)化,有利于難點(diǎn)克服和學(xué)生主體性的調(diào)動(dòng)。

2.根據(jù)課堂上師生的雙邊活動(dòng),作出適時(shí)調(diào)整、補(bǔ)充(反饋評價(jià));根據(jù)學(xué)生課后作業(yè)、提問等情況,反復(fù)修改并指導(dǎo)下節(jié)課的設(shè)計(jì)(反復(fù)評價(jià))。

3.本節(jié)課充分體現(xiàn)了面向全體學(xué)生、以問題解決為中心、注重知識的建構(gòu)過程與方法、重視學(xué)生思想與情感的'設(shè)計(jì)理念,積極地探索和實(shí)踐我校的科研課題——努力推進(jìn)課堂教學(xué)結(jié)構(gòu)改革。

通過這樣的探索過程,相信學(xué)生能從中有所體會,對后續(xù)內(nèi)容的學(xué)習(xí)和學(xué)生的可持續(xù)發(fā)展會有一定的幫助。希望很久以后留在學(xué)生記憶中的不是知識本身,而是方法與思想,是學(xué)習(xí)的習(xí)慣和熱情,這正是我們教育工作者追求的結(jié)果。

高三數(shù)學(xué)教案案例篇十六

(一)引入:。

(1)情景1。

2元/千克,而送到縣城每千克大豆可獲利1.2元,每千克紅薯可獲利0.6元,王老漢決定明天就帶上家中僅有的1000元現(xiàn)金,踏著可載重350千克的三輪車開始自己的發(fā)財(cái)大計(jì),可明天應(yīng)該收購多少大豆與紅薯呢?王老漢決定與家人合計(jì).回家一討論,問題來了.孫女說:“收購大豆每千克獲利多故應(yīng)收購大豆”,孫子說:“收購紅薯每元成本獲利多故應(yīng)收購紅薯”,王老漢一聽,好像都對,可誰說得更有理呢?精明的王老漢心中更糊涂了。

(2)問題與探究。

師:同學(xué)們,你們能用具體的數(shù)字體現(xiàn)出王老漢的兩個(gè)孫子的收購方案嗎?

生,討論并很快給出答案.(師,記錄數(shù)據(jù))。

師:請你們各自為王老漢設(shè)計(jì)一種收購方案.

生,獨(dú)立思考,并寫出自己的方案.(師,查看學(xué)生各人的設(shè)計(jì)方案并有針對性的請幾個(gè)同學(xué)說出自己的方案并記錄,注意:要特意選出2個(gè)不合理的方案)。

師:這些同學(xué)的方案都是對的嗎?

生,討論并找出其中不合理的方案.

師:為什么這些方案就不行呢?

生,討論后并回答。

師:滿足什么條件的方案才是合理的呢?

生,討論思考.(師,引導(dǎo)學(xué)生設(shè)出未知量,列出起約束作用的不等式組)。

師,讓幾個(gè)學(xué)生上黑板列出不等式組,并對之分析指正。

(教師用多媒體展示所列不等式組,并介紹二元一次不等式,二元一次不等式組的概念.)。

生,討論并回答(教師記錄幾組,并引導(dǎo)學(xué)生表示成有序?qū)崝?shù)對形式.)。

生,討論并回答(教師對于學(xué)生的回答指正并有選擇性的記錄幾組比較簡單的數(shù)據(jù),對于這些數(shù)據(jù)要事先設(shè)計(jì)好并在課件的坐標(biāo)系中標(biāo)出備用)。

(教師對引例中給出的不等式組介紹,并指出上面的正確的設(shè)計(jì)方案都是不等式組的解.進(jìn)而介紹二元一次不等式(組)解與解集的概念)。

生,討論并在下面作圖(師巡視檢查并對個(gè)別同學(xué)的錯(cuò)誤進(jìn)行指正)。

師,利用多媒體課件展示平面直角坐標(biāo)系及不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解所對應(yīng)的一些點(diǎn),讓學(xué)生觀察并思考討論:不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解在平面直角坐標(biāo)系中的位置有什么特點(diǎn)?(由于點(diǎn)太少,我們的學(xué)生可能得不出結(jié)論)。

生,提出猜想:直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)分得的左下半平面.

師:這個(gè)結(jié)論正確嗎?你能說出理由來嗎?

生,分組討論,并利用自己的數(shù)學(xué)知識去探究.(由于沒有給出一個(gè)固定的方向,所以各人用的方法不一,有的可能用特殊點(diǎn)再去檢驗(yàn),有的可能會試著用坐標(biāo)軸的正方向去說明,也有的可能會用直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)下方的點(diǎn)與對應(yīng)直線上的點(diǎn)對照比較的方法進(jìn)行說明)。

師,在巡視的基礎(chǔ)上請運(yùn)用不同方法的同學(xué)闡述自己的理由,并對于正確的作法給予表揚(yáng),然后用多媒體展示出利用與直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)橫坐標(biāo)相同而縱坐標(biāo)不同的點(diǎn)對應(yīng)分析的方法進(jìn)行證明.

生:表示為二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì),(很快回答)。

師:從中你能得出什么結(jié)論?

生,討論并得到一般性結(jié)論(教師總結(jié)糾正)。

(教師總結(jié)并用多媒體展示,二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)表示直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的某側(cè)所有點(diǎn)組成的平面區(qū)域,因不包含邊界故直線畫成虛線;二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)表示的平面區(qū)域因包含邊界故直線畫成實(shí)線.)。

生,作圖分析,討論并回答(師,對學(xué)生的回答進(jìn)行分析)。

師:結(jié)合上面問題請同學(xué)們歸納出作不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)對應(yīng)的平面區(qū)域的過程.

生,討論并回答(師,對于學(xué)生的答案給以分析,并肯定其中正確的結(jié)論)。

生,討論并回答(教師總結(jié)并用多媒體展示:直線定界,特殊點(diǎn)定域)。

生,討論,思考(教師巡視,并觀察學(xué)生的解答過程,最后引導(dǎo)學(xué)生得出:一個(gè)是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解,一個(gè)是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解)。

生.討論分析,最后得到不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)并求解.

師:若把上面問題改為點(diǎn)在同側(cè)呢?請同學(xué)們課后完成.

(二)實(shí)例展示:。

例1、畫出不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)表示的平面區(qū)域.

例2、用平面區(qū)域表示不等式組二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解集.

(三)練習(xí):。

學(xué)生練習(xí)p86第1-3題.

【及時(shí)鞏固所學(xué),進(jìn)一步體會畫出不等式(組)表示的平面區(qū)域的基本流程】。

(四)課后延伸:。

(五)小結(jié)與作業(yè):。

二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)表示直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)某側(cè)所有點(diǎn)組成的平面區(qū)域,畫出不等式(組)表示的平面區(qū)域的基本流程:直線定界,特殊點(diǎn)定域(一般找原點(diǎn))。

作業(yè):第93頁a組習(xí)題1、2,

高三數(shù)學(xué)教案案例篇十七

本節(jié)課的主要內(nèi)容是比例的意義和性質(zhì)。在教學(xué)比例意義時(shí),在課前的預(yù)設(shè)下,學(xué)生很容易就發(fā)現(xiàn)了:表示兩個(gè)比相等的式子叫比例。比例的意義解決了,接下來比例的性質(zhì)也應(yīng)該沒有什么問題。通過例題的學(xué)習(xí)學(xué)生又知道了比例的外項(xiàng)和內(nèi)項(xiàng),接下來就是引導(dǎo)學(xué)生看比例中的外項(xiàng)和內(nèi)項(xiàng),有什么發(fā)現(xiàn)?學(xué)生的回答出現(xiàn)了與課前預(yù)設(shè)不相符的一幕,課前我是這樣設(shè)計(jì)的:

2.我是想學(xué)生講:一3×40=120二5×20=100三8×6=48。

5×24=1204×25=1003×16=48。

3.然后教師板書:

外項(xiàng)積:3×40=1205×20=1008×6=48。

內(nèi)項(xiàng)積:5×24=1204×25=1003×16=48。

4.師:剛才同學(xué)們的發(fā)現(xiàn)其實(shí)就是比例的基本性質(zhì),那什么是比例的基本性質(zhì)呢?(然后師出示:在比例里,兩個(gè)外項(xiàng)的積等于兩個(gè)內(nèi)項(xiàng)的積。)。

2.(過了一會兒)生說:我知道,比例的基本性質(zhì)是:在比例里,兩個(gè)外項(xiàng)的積等于兩個(gè)內(nèi)項(xiàng)的積。

3.我還帶開玩笑的口氣說:我沒有教你,你怎么就會了?

生:我自己預(yù)習(xí)了。

師:預(yù)習(xí)是我們學(xué)習(xí)中一個(gè)很好的習(xí)慣。(心里想:他怎么沒有按照我的設(shè)計(jì)來,就一下子就把性質(zhì)講出來了。怎么辦?這時(shí)我靈機(jī)一動(dòng)。)。

師:好,在比例里,兩個(gè)外項(xiàng)的積是不是等于兩個(gè)內(nèi)項(xiàng)的積呢?我們來驗(yàn)證一下。(學(xué)生分別講出三組比例的外項(xiàng)積和內(nèi)項(xiàng)積)。

4.師板書:

外項(xiàng)積:3×40=1205×20=1008×6=48。

內(nèi)項(xiàng)積:5×24=1204×25=1003×16=48。

這個(gè)時(shí)候水到渠成的學(xué)生就知道了什么叫比例的基本性質(zhì)。

設(shè)計(jì)一,我是想學(xué)生按照之前的設(shè)計(jì)意圖,一環(huán)套一環(huán)教學(xué)下去。而不愿意讓學(xué)生有自主的,創(chuàng)造性的分析和思考,甚至害怕學(xué)生“思維出軌”。這是一種機(jī)械的模式化的教學(xué),這種教學(xué)方法從掌握知識的角度進(jìn)行分析,確實(shí)簡單高效,但它的弊端也是顯而易見的,那就是造成學(xué)生思維的僵化,學(xué)生不會獨(dú)立分析、思考。

設(shè)計(jì)二,更多關(guān)注的是學(xué)生獲取知識的過程,引導(dǎo)學(xué)生借助三個(gè)比例式來驗(yàn)證,設(shè)計(jì)二可以說是一種生動(dòng)的充分發(fā)揮學(xué)生自主學(xué)習(xí)的過程。在這種教學(xué)過程中,學(xué)生有獨(dú)立思考的時(shí)間,有自主探索的機(jī)會,有展示自己創(chuàng)造性思維成果的舞臺。

通過兩種教學(xué)片斷的比較,我深深得體會到,向課堂要效率不僅僅要著眼于課堂上的教學(xué)用時(shí)和學(xué)生在課堂上是否學(xué)會了解題,而更注重學(xué)生思維能力的發(fā)展,讓學(xué)生真正成為學(xué)習(xí)的主人?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》中指出:數(shù)學(xué)教學(xué)要“讓學(xué)生親身經(jīng)歷竟實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋和應(yīng)用的過程,進(jìn)而使學(xué)生獲取對數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等方面得到進(jìn)步和發(fā)展”。

通過上述案例分析只有動(dòng)態(tài)生成的課堂才能很好地培養(yǎng)學(xué)生的思維能力和解決實(shí)際問題能力,提高學(xué)生的數(shù)學(xué)素質(zhì)。

高三數(shù)學(xué)教案案例篇十八

(2)使學(xué)生初步了解“屬于”關(guān)系的意義。

(3)使學(xué)生初步了解有限集、無限集、空集的意義。

【重點(diǎn)難點(diǎn)】。

教學(xué)重點(diǎn):集合的基本概念及表示方法。

教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合。

授課類型:新授課。

課時(shí)安排:1課時(shí)。

教具:多媒體、實(shí)物投影儀。

【內(nèi)容分析】。

【本文地址:http://mlvmservice.com/zuowen/12668465.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔