編寫教案是教師備課工作的重要組成部分。教案應(yīng)該根據(jù)教材內(nèi)容和學(xué)科特點(diǎn),選取合適的教學(xué)資源。想要寫好一份教案,不妨參考一下小編為大家準(zhǔn)備的教案范文。
多項(xiàng)式的因式分解教案篇一
2、鞏固因式分解常用的三種方法。
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。
4、應(yīng)用因式分解來解決一些實(shí)際問題。
5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣。
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識(shí)回顧。
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。
(7).2πr+2πr=2π(r+r)因式分解。
2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.
(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.
4、強(qiáng)化訓(xùn)練。
試一試把下列各式因式分解:。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例題講解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知識(shí)應(yīng)用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展應(yīng)用。
2、20042+2004被2005整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
多項(xiàng)式的因式分解教案篇二
課標(biāo)要求:理解多項(xiàng)式與多項(xiàng)式相乘的法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。
選用教材:選自華東師范大學(xué)出版社出版的《數(shù)學(xué)》八年級(jí)上冊(cè)第十三章第3節(jié)。課題是《多項(xiàng)式與多項(xiàng)式相乘》,課時(shí)為1課時(shí)。
教材地位:本課學(xué)習(xí)多項(xiàng)式與多項(xiàng)式相乘的法則,對(duì)學(xué)生初中階段學(xué)好必備的基礎(chǔ)知識(shí)與基本技能、解決實(shí)際問題起到基礎(chǔ)作用,在提高學(xué)生的運(yùn)算能力方面有重要的作用。同時(shí),對(duì)平方差與完全平方公式的應(yīng)用以及楊輝三角等后續(xù)教學(xué)內(nèi)容起到奠基作用。
2、教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):理解并掌握多項(xiàng)式乘以多項(xiàng)式的法則,能夠按步驟進(jìn)行簡(jiǎn)單的多項(xiàng)式乘法的運(yùn)算。
過程與方法目標(biāo):
1、通過創(chuàng)設(shè)情景中的問題的探索,體驗(yàn)數(shù)學(xué)是一個(gè)充滿觀察、歸納的過程;
3、通過為學(xué)生提供自主練習(xí)的活動(dòng)空間,提高學(xué)生的運(yùn)算能力;
4、借助具體到一般的認(rèn)知規(guī)律,培養(yǎng)學(xué)生探索問題的能力和創(chuàng)新的品質(zhì)。
情感、態(tài)度與價(jià)值觀目標(biāo):
學(xué)生通過主動(dòng)參與探索法則和拓展探索等的學(xué)習(xí)活動(dòng),領(lǐng)悟轉(zhuǎn)化思想,體會(huì)數(shù)學(xué)與生活的聯(lián)系,感受數(shù)學(xué)的應(yīng)用價(jià)值,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
3、教學(xué)重點(diǎn):多項(xiàng)式乘以多項(xiàng)式法則的理解和應(yīng)用;
4、教學(xué)難點(diǎn):將多項(xiàng)式與多項(xiàng)式的乘法轉(zhuǎn)化為單項(xiàng)式與多項(xiàng)式的乘法,防止漏乘、重復(fù)乘和看錯(cuò)符號(hào)。
本節(jié)課是在學(xué)習(xí)了“單項(xiàng)式與多項(xiàng)式相乘”的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)掌握了“單項(xiàng)式與多項(xiàng)式相乘”的運(yùn)算法則,因此沒有把時(shí)間過多地放在復(fù)習(xí)舊知上,而是讓學(xué)生親身參加探索發(fā)現(xiàn),從而獲取新知。在法則的得出過程中,讓學(xué)生在探索的過程中自己發(fā)現(xiàn)總結(jié)規(guī)律,提高了學(xué)生的積極性。在法則的應(yīng)用這一環(huán)節(jié)選配一些變式練習(xí),通過書上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。
注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位。教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識(shí)的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)。
1、自主學(xué)習(xí)歸納
2、小組討論
多項(xiàng)式的因式分解教案篇三
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。
2、教學(xué)目標(biāo)。
(1)會(huì)推導(dǎo)乘法公式。
(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。
(3)會(huì)用提公因式法、公式法進(jìn)行因式分解。
(4)了解因式分解的一般步驟。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。
難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).。
2.1平方差公式1課時(shí)。
2.2完全平方公式2課時(shí)。
初中優(yōu)秀......
初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學(xué),教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。來參考自己需要的教案吧!下面是小編為......
多項(xiàng)式的因式分解教案篇四
因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。
通過探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。
1、在分解因式的過程中體會(huì)整式乘法與因式分解之間的聯(lián)系。
2、通過公式a-b=(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。
3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。
4、通過活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
靈活運(yùn)用平方差公式進(jìn)行分解因式。
平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。
多項(xiàng)式的因式分解教案篇五
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。
2、教學(xué)目標(biāo)。
(1)會(huì)推導(dǎo)乘法公式。
(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。
(3)會(huì)用提公因式法、公式法進(jìn)行因式分解。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。
難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學(xué)的方法和策略:
3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).。
三、課時(shí)安排:
2.1平方差公式1課時(shí)。
2.2完全平方公式2課時(shí)。
多項(xiàng)式的因式分解教案篇六
1、會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。
二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):
教學(xué)重點(diǎn)。
因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。
教學(xué)難點(diǎn):
應(yīng)用因式分解解方程涉及較多的推理過程。
三、教學(xué)過程。
(一)引入新課。
(二)師生互動(dòng),講授新課。
一個(gè)小問題:這里的x能等于3/2嗎?為什么?
想一想:那么(4x—9)(3—2x)呢?練習(xí):課本p162課內(nèi)練習(xí)。
合作學(xué)習(xí)。
等練習(xí):課本p162課內(nèi)練習(xí)2。
(三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:
(四)布置課后作業(yè)。
作業(yè)本6、42、課本p163作業(yè)題(選做)。
多項(xiàng)式的因式分解教案篇七
知識(shí)點(diǎn):
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標(biāo):
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。
考查重難點(diǎn)與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過程:
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:
如多項(xiàng)式。
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。
(2)運(yùn)用公式法,即用。
寫出結(jié)果。
(3)十字相乘法。
(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。
(5)求根公式法:如果有兩個(gè)根x1,x2,那么。
1、教學(xué)實(shí)例:學(xué)案示例。
2、課堂練習(xí):學(xué)案作業(yè)。
3、課堂:
4、板書:
5、課堂作業(yè):學(xué)案作業(yè)。
6、教學(xué)反思:
多項(xiàng)式的因式分解教案篇八
根據(jù)大綱要求,結(jié)合本教材特點(diǎn)和學(xué)生認(rèn)知能力,將教學(xué)目標(biāo)確定為:
知識(shí)與技能:1、理解因式分解的含義,能判斷一個(gè)式子的變形是否為因式分解。
2、熟練運(yùn)用提取公因式法分解因式。
過程與方法:在教學(xué)過程中,體會(huì)類比的數(shù)學(xué)思想逐步形成獨(dú)立思考,主動(dòng)探索的習(xí)慣。
情感態(tài)度與價(jià)值觀:通過現(xiàn)實(shí)情景,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,并提高學(xué)生關(guān)注生存環(huán)境的環(huán)保意識(shí)。
多項(xiàng)式的因式分解教案篇九
教學(xué)過程中滲透類比的數(shù)學(xué)思想,形成新的知識(shí)結(jié)構(gòu)體系;設(shè)置探究式教學(xué),讓學(xué)生經(jīng)歷知識(shí)的形成,從而達(dá)到對(duì)知識(shí)的深刻理解與靈活應(yīng)用。
學(xué)法:自主、合作、探索的學(xué)習(xí)方式。
在教學(xué)活動(dòng)中,既要提高學(xué)生獨(dú)立解決問題的能力,又要培養(yǎng)團(tuán)結(jié)協(xié)作精神,拓展學(xué)生探究問題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。
多項(xiàng)式的因式分解教案篇十
教學(xué)設(shè)計(jì)示例。
――完全平方公式(1)。
教學(xué)目標(biāo)。
2.理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力.
3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.。
4.通過分解因式的教學(xué),使學(xué)生進(jìn)一步體會(huì)“把一個(gè)代數(shù)式看作一個(gè)字母”的換元思想。
教學(xué)重點(diǎn)和難點(diǎn)。
重點(diǎn):運(yùn)用完全平方式分解因式.
難點(diǎn):靈活運(yùn)用完全平方公式公解因式.
教學(xué)過程設(shè)計(jì)。
一、復(fù)習(xí)。
1.問:什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?
答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解.我們學(xué)過的因式分解的方法有提取公因式法及運(yùn)用平方差公式法.
2.把下列各式分解因式:
(1)ax4-ax2(2)16m4-n4.
解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。
(2)16m4-n4=(4m2)2-(n2)2。
=(4m2+n2)(4m2-n2)。
=(4m2+n2)(2m+n)(2m-n).
問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?
答:有完全平方公式.
請(qǐng)寫出完全平方公式.
完全平方公式是:
(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.
這節(jié)課我們就來討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解.
二、新課。
和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過來,就得到。
a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.
這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式.運(yùn)用這兩個(gè)式子,可以把形式是完全平方式的多項(xiàng)式分解因式.
問:具備什么特征的多項(xiàng)是完全平方式?
答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號(hào)都是正號(hào),第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號(hào)可正可負(fù),像這樣的式子就是完全平方式.
問:下列多項(xiàng)式是否為完全平方式?為什么?
(1)x2+6x+9;(2)x2+xy+y2;
(3)25x4-10x2+1;(4)16a2+1.
答:(1)式是完全平方式.因?yàn)閤2與9分別是x的平方與3的平方,6x=2·x·3,所以。
x2+6x+9=(x+3).
(2)不是完全平方式.因?yàn)榈谌糠直仨毷?xy.
(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。
25x-10x+1=(5x-1).
(4)不是完全平方式.因?yàn)槿钡谌糠?
答:完全平方公式為:
其中a=3x,b=y,2ab=2·(3x)·y.
例1把25x4+10x2+1分解因式.
分析:這個(gè)多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍.所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式.
解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
例2把1-m+分解因式.
問:請(qǐng)同學(xué)分析這個(gè)多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?
答:這個(gè)多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“”是的平方,第二項(xiàng)“-m”是1與m/4的積的2倍的相反數(shù),因此這個(gè)多項(xiàng)式是完全平方式,可以用完全平方公式分解因式.
解法11-m+=1-2·1·+()2=(1-)2.
解法2先提出,則。
1-m+=(16-8m+m2)。
=(42-2·4·m+m2)。
=(4-m)2.
第12頁。
多項(xiàng)式的因式分解教案篇十一
3、通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力、訓(xùn)練學(xué)生的綜合解題能力和計(jì)算能力。
4、培養(yǎng)學(xué)生耐心細(xì)致、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維品質(zhì)。
2、理解法則導(dǎo)出的根據(jù)。
一課時(shí)。
投影儀、膠片。
(1)用式子表示乘法分配律。
(3)計(jì)算:
(4)填空:
規(guī)律:多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加。
(1)多項(xiàng)式除以單項(xiàng)式,商式與被除式的項(xiàng)數(shù)相同,不可丟項(xiàng),如(1)中容易丟掉最后一項(xiàng)。
(2)要求學(xué)生說出式子每步變形的依據(jù)。
(3)讓學(xué)生養(yǎng)成檢驗(yàn)的'習(xí)慣,利用乘除逆運(yùn)算,檢驗(yàn)除的對(duì)不對(duì)。
說明:注意弄清題中運(yùn)算順序,正確運(yùn)用有關(guān)法則、公式。
練習(xí):
(1)p1501,2。
(2)錯(cuò)例辯析:
有兩個(gè)錯(cuò)誤:
第一,丟項(xiàng),被除式有三項(xiàng),商式只有二項(xiàng),丟了最后一項(xiàng)1;
第二項(xiàng)是符號(hào)上錯(cuò)誤,商式第一項(xiàng)的符號(hào)為“-”,正確答案為()。
2、運(yùn)用該法則應(yīng)注意什么?
正確地把多項(xiàng)式除以單項(xiàng)式問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式問題。計(jì)算不可丟項(xiàng),分清“約掉”與“消掉”的區(qū)別:“約掉”對(duì)乘除法則言,不減項(xiàng);“消掉”對(duì)加減法而言,減項(xiàng)。
p152a組1,2。
多項(xiàng)式的因式分解教案篇十二
1、知識(shí)與能力:
1)進(jìn)一步鞏固相似三角形的知識(shí).
2)能夠運(yùn)用三角形相似的知識(shí),解決不能直接測(cè)量物體的長(zhǎng)度和高度(如測(cè)量金字塔高度問題、測(cè)量河寬問題)等的一些實(shí)際問題.
2.過程與方法:
經(jīng)歷從實(shí)際問題到建立數(shù)學(xué)模型的過程,發(fā)展學(xué)生的抽象概括能力。
3.情感、態(tài)度與價(jià)值觀:
1)通過利用相似形知識(shí)解決生活實(shí)際問題,使學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活。
2)通過對(duì)問題的探究,培養(yǎng)學(xué)生認(rèn)真踏實(shí)的學(xué)習(xí)態(tài)度和科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)方法,通過獲得成功的經(jīng)驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
(三)教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):利用相似三角形的知識(shí)解決實(shí)際問題。
難點(diǎn):運(yùn)用相似三角形的判定定理構(gòu)造相似三角形解決實(shí)際問題。
關(guān)鍵:將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用所學(xué)的知識(shí)來進(jìn)行解答。
【教法與學(xué)法】。
(一)教法分析。
為了突出教學(xué)重點(diǎn),突破教學(xué)難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律和心理特征,在教學(xué)過程中,我采用了以下的教學(xué)方法:
1.采用情境教學(xué)法。整節(jié)課圍繞測(cè)量物體高度這個(gè)問題展開,按照從易到難層層推進(jìn)。在數(shù)學(xué)教學(xué)中,注重創(chuàng)設(shè)相關(guān)知識(shí)的現(xiàn)實(shí)問題情景,讓學(xué)生充分感知“數(shù)學(xué)來源于生活又服務(wù)于生活”。
2.貫徹啟發(fā)式教學(xué)原則。教學(xué)的各個(gè)環(huán)節(jié)均從提出問題開始,在師生共同分析、討論和探究中展開學(xué)生的思路,把啟發(fā)式思想貫穿與教學(xué)活動(dòng)的全過程。
3.采用師生合作教學(xué)模式。本節(jié)課采用師生合作教學(xué)模式,以師生之間、生生之間的全員互動(dòng)關(guān)系為課堂教學(xué)的核心,使學(xué)生共同達(dá)到教學(xué)目標(biāo)。教師要當(dāng)好“導(dǎo)演”,讓學(xué)生當(dāng)好“演員”,從充分尊重學(xué)生的潛能和主體地位出發(fā),課堂教學(xué)以教師的“導(dǎo)”為前提,以學(xué)生的“演”為主體,把較多的課堂時(shí)間留給學(xué)生,使他們有機(jī)會(huì)進(jìn)行獨(dú)立思考,相互磋商,并發(fā)表意見。
(二)學(xué)法分析。
按照學(xué)生的認(rèn)識(shí)規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體的指導(dǎo)思想,在本節(jié)課的學(xué)習(xí)過程中,采用自主探究、合作交流的學(xué)習(xí)方式,讓學(xué)生思考問題、獲取知識(shí)、掌握方法,運(yùn)用所學(xué)知識(shí)解決實(shí)際問題,啟發(fā)學(xué)生從書本知識(shí)到社會(huì)實(shí)踐,學(xué)以致用,力求促使每個(gè)學(xué)生都在原有的基礎(chǔ)上得到有效的發(fā)展。
【教學(xué)過程】。
一、知識(shí)梳理。
1、判斷兩三角形相似有哪些方法?
1)定義:2)定理(平行法):。
3)判定定理一(邊邊邊):。
4)判定定理二(邊角邊):。
5)判定定理三(角角):。
2、相似三角形有什么性質(zhì)?
對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等。
(通過對(duì)知識(shí)的梳理,幫助學(xué)生形成自己的知識(shí)結(jié)構(gòu)體系,為解決問題儲(chǔ)備理論依據(jù)。)。
二、情境導(dǎo)入。
胡夫金字塔是埃及現(xiàn)存規(guī)模的金字塔,被喻為“世界古代七大奇觀之一”。塔的4個(gè)斜面正對(duì)東南西北四個(gè)方向,塔基呈正方形,每邊長(zhǎng)約230多米。據(jù)考證,為建成大金字塔,共動(dòng)用了10萬人花了時(shí)間.原高146.59米,但由于經(jīng)過幾千年的風(fēng)吹雨打,頂端被風(fēng)化吹蝕.所以高度有所降低。
(數(shù)學(xué)教學(xué)從學(xué)生的生活體驗(yàn)和客觀存在的事實(shí)或現(xiàn)實(shí)課題出發(fā),為學(xué)生提供較感興趣的問題情景,幫助學(xué)生順利地進(jìn)入學(xué)習(xí)情景。同時(shí),問題是知識(shí)、能力的生長(zhǎng)點(diǎn),通過富有實(shí)際意義的問題能夠激活學(xué)生原有認(rèn)知,促使學(xué)生主動(dòng)地進(jìn)行探索和思考。)。
三、例題講解。
例1(教材p49例3——測(cè)量金字塔高度問題)。
《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì)分析:根據(jù)太陽光的光線是互相平行的特點(diǎn),可知在同一時(shí)刻的陽光下,豎直的兩個(gè)物體的影子互相平行,從而構(gòu)造相似三角形,再利用相似三角形的判定和性質(zhì),根據(jù)已知條件,求出金字塔的高度.
解:略(見教材p49)。
問:你還可以用什么方法來測(cè)量金字塔的高度?(如用身高等)。
解法二:用鏡面反射(如圖,點(diǎn)a是個(gè)小鏡子,根據(jù)光的反射定律:由入射角等于反射角構(gòu)造相似三角形).(解法略)。
例2(教材p50練習(xí)?——測(cè)量河寬問題)。
《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì)《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì)分析:設(shè)河寬ab長(zhǎng)為xm,由于此種測(cè)量方法構(gòu)造了三角形中的平行截線,故可得到相似三角形,因此有,即《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì).再解x的方程可求出河寬.
解:略(見教材p50)。
問:你還可以用什么方法來測(cè)量河的寬度?
解法二:如圖構(gòu)造相似三角形(解法略).
四、鞏固練習(xí)。
五、回顧小結(jié)。
一)相似三角形的應(yīng)用主要有如下兩個(gè)方面。
1測(cè)高(不能直接使用皮尺或刻度尺量的)。
2測(cè)距(不能直接測(cè)量的兩點(diǎn)間的距離)。
二)測(cè)高的方法。
測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)的比例”的原理解決。
三)測(cè)距的方法。
測(cè)量不能到達(dá)兩點(diǎn)間的距離,常構(gòu)造相似三角形求解。
(落實(shí)教師的引導(dǎo)作用以及學(xué)生的主體地位,既訓(xùn)練學(xué)生的概括歸納能力,又有助于學(xué)生在歸納的過程中把所學(xué)的知識(shí)條理化、系統(tǒng)化。)。
六、拓展提高。
怎樣利用相似三角形的有關(guān)知識(shí)測(cè)量旗桿的高度?
七、作業(yè)。
課本習(xí)題27.210題、11題。
【本文地址:http://mlvmservice.com/zuowen/12596866.html】