2023年高一數(shù)學(xué)教案集合的概念 高一數(shù)學(xué)教案(精選14篇)

格式:DOC 上傳日期:2023-11-16 14:32:09
2023年高一數(shù)學(xué)教案集合的概念 高一數(shù)學(xué)教案(精選14篇)
時間:2023-11-16 14:32:09     小編:飛雪

作為一名默默奉獻(xiàn)的教育工作者,通常需要用到教案來輔助教學(xué),借助教案可以讓教學(xué)工作更科學(xué)化。那么我們該如何寫一篇較為完美的教案呢?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對大家有所幫助。

高一數(shù)學(xué)教案集合的概念篇一

1、掌握雙曲線的范圍、對稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)

2、掌握標(biāo)準(zhǔn)方程中的幾何意義

3、能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題

1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

3、雙曲線的漸進(jìn)線方程為、

4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點(diǎn)到它的一條漸近線的距離是、

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

(1)過點(diǎn),離心率、

(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、

例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、

2、橢圓的離心率為,則雙曲線的離心率為、

3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、

4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、

將本文的word文檔下載到電腦,方便收藏和打印

推薦度:

點(diǎn)擊下載文檔

搜索文檔

高一數(shù)學(xué)教案集合的概念篇二

《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教a版)第44頁。-----《實(shí)習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過了解函數(shù)的發(fā)展歷史進(jìn)一步感受數(shù)學(xué)的魅力。學(xué)生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂趣。

該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教a版)第44頁。學(xué)生第一次完成《實(shí)習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗(yàn),所以需要教師精心設(shè)計(jì),做好準(zhǔn)備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時注意學(xué)生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達(dá)能力等),選題時,各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過程中受到更多的數(shù)學(xué)文化的熏陶。

《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。

2.體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識的快樂;

3.在合作形式的小組學(xué)習(xí)活動中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識、社會實(shí)踐技能和民主價值觀。

重點(diǎn):了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;

難點(diǎn):培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。

【課堂準(zhǔn)備】

1.分組:4~6人為一個實(shí)習(xí)小組,確定一人為組長。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。

2.選題:根據(jù)個人興趣初步確定實(shí)習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。

3.分配任務(wù):根據(jù)個人情況和優(yōu)勢,經(jīng)小組共同商議,由組長確定每人的具體任務(wù)。

4.搜集資料:針對所選題目,通過各種方式(相關(guān)書籍----《函數(shù)在你身邊》、《世界函數(shù)通史》、《世界著名科學(xué)家傳記》等;搜集素材,包括文字、圖片、數(shù)據(jù)以及音像資料等,并記錄相關(guān)資料,寫出實(shí)習(xí)報告。

6.把各組的實(shí)習(xí)報告,貼在班級的學(xué)習(xí)欄內(nèi),讓學(xué)生學(xué)習(xí)交流。

【教學(xué)過程】

1.出示課題:交流、分享實(shí)習(xí)報告

2.交流、分享:(由數(shù)學(xué)科代表主持。小組推薦中心發(fā)言人;以下記錄均為發(fā)言概述)

(1)學(xué)生1:函數(shù)小史

數(shù)學(xué)史表明,重要的數(shù)學(xué)概念的產(chǎn)生和發(fā)展,對數(shù)學(xué)發(fā)展起著不可估量的作用。有些重要的數(shù)學(xué)概念對數(shù)學(xué)分支的產(chǎn)生起著奠定性的作用。我們剛學(xué)過的函數(shù)就是這樣的重要概念。在笛卡爾引入變量以后,變量和函數(shù)等概念日益滲透到科學(xué)技術(shù)的各個領(lǐng)域。最早提出函數(shù)(function)概念的,是17世紀(jì)德國數(shù)學(xué)家萊布尼茨。最初萊布尼茨用“函數(shù)”一詞表示冪。1755年,瑞士數(shù)學(xué)家歐拉把給出了不同的函數(shù)定義。中文數(shù)學(xué)書上使用的“函數(shù)”一詞是轉(zhuǎn)譯詞。是我國清代數(shù)學(xué)家李善蘭在翻譯《代數(shù)學(xué)》(1895年)一書時,把“function”譯成“函數(shù)”的。我們可以預(yù)計(jì)到,關(guān)于函數(shù)的爭論、研究、發(fā)展、拓廣將不會完結(jié),也正是這些影響著數(shù)學(xué)及其相鄰學(xué)科的發(fā)展。

(2)教師帶頭鼓掌并簡單評價

(3)學(xué)生2:函數(shù)概念的縱向發(fā)展:

變革,形成了函數(shù)的現(xiàn)代定義形式。

(4)教師帶頭鼓掌并簡單評價

(5)學(xué)生3:我國數(shù)學(xué)家李國平與函數(shù)

學(xué)生3描述了數(shù)學(xué)家中國科學(xué)院數(shù)學(xué)物理學(xué)部委員.李國平(1910—1996),的身世和他的成長歷程。李國平1933年畢業(yè)于中山大學(xué)數(shù)學(xué)天文系。后歷任中國科學(xué)院數(shù)學(xué)計(jì)算技術(shù)研究所所長,中國科學(xué)院武漢數(shù)學(xué)物理研究所所長,中國數(shù)學(xué)會理事,中國科學(xué)院學(xué)部委員等職務(wù)。學(xué)生還通俗地講述了李國平先生在微分方程復(fù)變函數(shù)論領(lǐng)域的卓越貢獻(xiàn)。

(6)教師帶頭鼓掌并簡單評價

(7)學(xué)生4:函數(shù)概念對數(shù)學(xué)發(fā)展的影響

(8)教師帶頭鼓掌并簡單評價

(9)學(xué)生5:函數(shù)概念的歷史演變過程

上述函數(shù)概念的歷史演變過程,就是一系列弱抽象的過程.學(xué)生展示了下表:早期函數(shù)概念

代數(shù)函數(shù)

函數(shù)是這樣一個量,它是通過其它一些量的代數(shù)運(yùn)算得到的

近代函數(shù)概念

映射函數(shù)

18世紀(jì)函數(shù)概念

解析函數(shù)

函數(shù)是指由一個變量與一些常量通過任何方式形成的解析表達(dá)式

19世紀(jì)函數(shù)概念

變量函數(shù)

對于給定區(qū)間上的每一個x值,y總有唯一確定的值與之對應(yīng),則稱y是x的函數(shù).

(10)教師帶頭鼓掌并簡單評價

3.課堂小結(jié):

4.實(shí)習(xí)作業(yè)的評定:

高一數(shù)學(xué)教案集合的概念篇三

(1)理解直線與圓的位置關(guān)系的幾何性質(zhì);

(2)利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;

(3)會用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.

直線與圓的方程的應(yīng)用.

一、復(fù)習(xí)引入:

問題1:如何判斷直線與圓的位置關(guān)系?

問題2:如何判斷圓與圓的位置關(guān)系?

二、新課教學(xué):

例1.(課本例4)圖4。2-5是某圓拱形橋的示意圖。這個圓的圓拱跨度ab=20m,拱高op=4m,建造時每間隔4m需要用一根支柱支撐,求支柱的高度(精確到0.01m).

小結(jié)方法:用坐標(biāo)法解決實(shí)際應(yīng)用題的步驟:

第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;

第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成實(shí)際結(jié)論,.

例2.(課本例5)已知內(nèi)接于圓的四邊形的對角線互相垂直,求證圓心到一邊的距離等于這條邊所對邊長的一半.

小結(jié)方法:用坐標(biāo)法解決幾何問題的步驟:

第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;

第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.

課堂練習(xí):課本練習(xí)第2,3,4題;

課后作業(yè):課本習(xí)題4.2a組第8,11題.b組第1題

高一數(shù)學(xué)教案集合的概念篇四

學(xué)習(xí)是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對您有所幫助!

教學(xué)目標(biāo)

1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的。

(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個通項(xiàng)公式。

(3)已知一個數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng)。

2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。

3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。

教學(xué)建議

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計(jì)算等。

(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。

(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。

(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。

(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。

上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實(shí)際需要!

高一數(shù)學(xué)教案集合的概念篇五

教學(xué)目標(biāo):

(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個特性,識記數(shù)學(xué)中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。

(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關(guān)系,比較用自然語言、列舉法和描述法表示集合。

(3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴(yán)密謹(jǐn)慎的集合語言描述問題的習(xí)慣。

教學(xué)重難點(diǎn):

(1)重點(diǎn):了解集合的含義與表示、集合中元素的特性。

(2)難點(diǎn):區(qū)別集合與元素的概念及其相應(yīng)的符號,理解集合與元素的關(guān)系,表示具體的集合時,如何從列舉法與描述法中做出選擇。

教學(xué)過程:

[設(shè)計(jì)意圖]引出“集合”一詞。

【問題2】同學(xué)們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。

[設(shè)計(jì)意圖]探討并形成集合的含義。

【問題3】請同學(xué)們舉出認(rèn)為是集合的例子。

[設(shè)計(jì)意圖]點(diǎn)評學(xué)生舉出的例子,剖析并強(qiáng)調(diào)集合中元素的三大特性:確定性、互異性、無序性。

[設(shè)計(jì)意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。

[設(shè)計(jì)意圖]引出并介紹列舉法。

【問題6】例1的講解。同學(xué)們能用列舉法表示不等式x—73的解集嗎?

【問題7】例2的講解。請同學(xué)們思考課本第6頁的思考題。

[設(shè)計(jì)意圖]幫助學(xué)生在表示具體的集合時,如何從列舉法與描述法中做出選擇。

【問題8】請同學(xué)們總結(jié)這節(jié)課我們主要學(xué)習(xí)了那些內(nèi)容?有什么學(xué)習(xí)體會?

[設(shè)計(jì)意圖]學(xué)習(xí)小結(jié)。對本節(jié)課所學(xué)知識進(jìn)行回顧。

布置作業(yè)。

高一數(shù)學(xué)教案集合的概念篇六

拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時間。對于能夠很快做出來的.題目,一定要拿到應(yīng)得的分?jǐn)?shù)。

二、確定每部分的答題時間

1、考試時占用了很多時間卻一點(diǎn)也沒有做出來的題目。對于這類題目,你以后考試時就應(yīng)該盡量減少時間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。

2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時能用較少的時間做出來。

三、碰到難題時

1、你可以先用“直覺”最快的找到解題思路;

2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;

3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點(diǎn)和解題技巧。

4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。

四、卷面整潔、字跡清楚、注意小節(jié)

做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。

高一數(shù)學(xué)教案集合的概念篇七

1、掌握雙曲線的范圍、對稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)

2、掌握標(biāo)準(zhǔn)方程中的幾何意義

3、能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題

1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

3、雙曲線的漸進(jìn)線方程為、

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

(1)過點(diǎn),離心率、

(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、

例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、

2、橢圓的離心率為,則雙曲線的離心率為、

3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、

4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、

高一數(shù)學(xué)教案集合的概念篇八

1.知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。

2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動手作圖,體會三視圖的作用。

3.情感態(tài)度與價值觀:提高學(xué)生空間想象力,體會三視圖的作用。

二、教學(xué)重點(diǎn):畫出簡單幾何體、簡單組合體的三視圖;

難點(diǎn):識別三視圖所表示的空間幾何體。

三、學(xué)法指導(dǎo):觀察、動手實(shí)踐、討論、類比。

四、教學(xué)過程

(一)創(chuàng)設(shè)情景,揭開課題

展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。

(二)講授新課

1、中心投影與平行投影:

中心投影:光由一點(diǎn)向外散射形成的投影;

平行投影:在一束平行光線照射下形成的投影。

正投影:在平行投影中,投影線正對著投影面。

2、三視圖:

正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

長對正:正視圖與俯視圖的長相等,且相互對正;

高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;

寬相等:俯視圖與側(cè)視圖的寬度相等。

3、畫長方體的三視圖:

正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

4、畫圓柱、圓錐的三視圖:

5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

(三)鞏固練習(xí)

課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。

(四)歸納整理

請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

(五)布置作業(yè)

課本p20習(xí)題1.2[a組]1。

高一數(shù)學(xué)教案集合的概念篇九

掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。

(一)主要知識:

1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略

四、小結(jié):

1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的`知識解決有關(guān)應(yīng)用問題,

2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。

高一數(shù)學(xué)教案集合的概念篇十

?復(fù)習(xí)要求】熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

?方法規(guī)律】應(yīng)用數(shù)列知識界實(shí)際應(yīng)用問題的關(guān)鍵是通過對實(shí)際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。

一、基礎(chǔ)訓(xùn)練

a、511b、512c、1023d、1024

2、若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為

a、b、

c、d、

二、典型例題

例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。

高一數(shù)學(xué)教案集合的概念篇十一

1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。

(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個通項(xiàng)公式。

(3)已知一個數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項(xiàng)。

2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。

3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計(jì)算等。

(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。

(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。

(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。

(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。

高一數(shù)學(xué)教案集合的概念篇十二

“解三角形”既是高中數(shù)學(xué)的.基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。

二、學(xué)情分析

我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯的表現(xiàn)。

三、教學(xué)目標(biāo)

1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理解決一些簡單的解三角形問題。

過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。

情感、態(tài)度、價值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

2、教學(xué)重點(diǎn)、難點(diǎn)

教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。

四、教學(xué)方法與手段

為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

五、教學(xué)過程

為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時本著貼近生活、貼近學(xué)生、貼近時代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:

(一)創(chuàng)設(shè)情景,揭示課題

問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

[設(shè)計(jì)說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。

(二)特殊入手,發(fā)現(xiàn)規(guī)律

引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。

(三)類比歸納,嚴(yán)格證明

高一數(shù)學(xué)教案集合的概念篇十三

一、準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題

概念抽象、符號術(shù)語多是集合單元的一個顯著特點(diǎn),例如交集、并集、補(bǔ)集的概念及其表示方法,集合與元素的關(guān)系及其表示方法,集合與集合的關(guān)系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關(guān)系和表示方法,都可以作為求解集合問題的依據(jù)、出發(fā)點(diǎn)甚至是突破口。因此,要想學(xué)好集合的內(nèi)容,就必須在準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題上下功夫。

二、注意弄清集合元素的性質(zhì),學(xué)會運(yùn)用元素分析法審視集合的有關(guān)問題

眾所周知,集合可以看成是一些對象的全體,其中的每一個對象叫做這個集合的元素。集合中的元素具有“三性”:

(1)、確定性:集合中的元素應(yīng)該是確定的,不能模棱兩可。

(2)、互異性:集合中的元素應(yīng)該是互不相同的,相同的元素在集合中只能算作一個。

(3)、無序性:集合中的元素是無次序關(guān)系的。

集合的關(guān)系、集合的運(yùn)算等等都是從元素的角度予以定義的。因此,求解集合問題時,抓住元素的特征進(jìn)行分析,就相當(dāng)于牽牛抓住了牛鼻子。

三、體會集合問題中蘊(yùn)含的數(shù)學(xué)思想方法,掌握解決集合問題的基本規(guī)律

布魯納說過,掌握數(shù)學(xué)思想可使得數(shù)學(xué)更容易理解和記憶,領(lǐng)會數(shù)學(xué)思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數(shù)學(xué)思想內(nèi)容,例如數(shù)形結(jié)合的思想、分類討論的思想、等價轉(zhuǎn)化的思想、正難則反的思想等等,顯得十分活躍。在學(xué)習(xí)過程中,注意對這些數(shù)學(xué)思想進(jìn)行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識,駕馭集合問題的求解,而且對于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質(zhì),都具有十分重要的意義。

四、重視空集的特殊性,防止由于忽視空集這一特殊情況導(dǎo)致的解題失誤

空集是一個十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時刻注意有無可能存在空集的情況,否則極易導(dǎo)致解題失誤。這一點(diǎn),必須引起我們的高度重視。

高一數(shù)學(xué)習(xí)數(shù)學(xué)的技巧

一、轉(zhuǎn)變觀念,化被動學(xué)習(xí)為主動學(xué)習(xí)

初中階段,特別是初中三年級,老師會通過大量的練習(xí),學(xué)生自己也會查找很多資料,這樣就會把自己的數(shù)學(xué)成績得到明顯的提高,這樣的學(xué)習(xí)方式是一種被動式的學(xué)習(xí)也叫題海戰(zhàn)術(shù),學(xué)生只是簡單的接受數(shù)學(xué)知識,并且初中數(shù)學(xué)的知識相對比較淺顯,學(xué)生很快就能掌握知識??墒堑搅烁咧幸院笸ㄟ^題海戰(zhàn)術(shù)是能提高一些對數(shù)學(xué)知識的掌握,可是對于這個知識中的為什么就不能說出其所以然,就不能對相關(guān)的知識進(jìn)行創(chuàng)新。所以高中數(shù)學(xué)的學(xué)習(xí)不只是單純的做題就可以掌握其知識,而是要弄得其所以然才行,這樣就需要學(xué)生自己去主動發(fā)掘知識的內(nèi)涵,在老師的指導(dǎo)下把數(shù)學(xué)知識進(jìn)行擴(kuò)展,達(dá)到觸類旁通。要做到這樣就需要學(xué)生本身更加主動的學(xué)習(xí),這樣才能更加的發(fā)現(xiàn)數(shù)學(xué)中的樂趣。

二、學(xué)會聽課,盡可能掌握更多的知識

數(shù)學(xué)的學(xué)習(xí)是需要老師的引導(dǎo),在引導(dǎo)下,學(xué)生根據(jù)自己的情況做一些相應(yīng)的練習(xí)來掌握知識,鞏固知識,要想提高學(xué)習(xí)效率,就需要學(xué)生做到以下一些:

1、做好預(yù)習(xí),提出問題,進(jìn)行多次閱讀課本,查閱相關(guān)資料,回答自己提出的問題,力爭在老師講新課前盡可能的掌握更多的知識,如果不能回答的問題可以在老師講課中去解決。

2、學(xué)會聽課,在初中的教學(xué)中老師經(jīng)常會把一個知識點(diǎn)進(jìn)行多次的講解和通過大量的練習(xí)讓學(xué)生去掌握,可是到高中以后,老師對于一個知識點(diǎn)就不會再通過大量的練習(xí)來讓學(xué)生去掌握,而是通過一些相關(guān)知識的講解去引導(dǎo)學(xué)生明白這個知識是怎么來的,又如何用這個知識解答一些相關(guān)的疑惑,如果學(xué)生能明白的話就能在自己的知識下通過課后的練習(xí)去鞏固這些知識,同時學(xué)生也可以根據(jù)老師的引導(dǎo)去擴(kuò)展知識。

當(dāng)然,對于自己在聽課過程中一下子不能明白的知識,可以通過舉手讓老師再進(jìn)行一次分析講解,也同時做好相關(guān)的記錄,以備在課后去進(jìn)一步弄明白;對于自己在預(yù)習(xí)中提出的問題,如果老師沒有解決的話,可以利用課余時間請教老師解答,這樣學(xué)習(xí)就可能學(xué)習(xí)到更多的知識。

3、敢于發(fā)表自己的想法,在高中數(shù)學(xué)學(xué)習(xí)中,學(xué)生會遇到很多解題技巧,可能這種方法你知道,另外的人不是很熟悉。那么就需要學(xué)生敢于發(fā)表自己的想法,這樣就能讓大家掌握更多的技巧。也同樣能激發(fā)同學(xué)學(xué)習(xí)的興趣,如果一節(jié)課都是老師講的話,課堂氣氛也是很悶的,學(xué)生學(xué)習(xí)的效率也是很低的。

4、聽好每一分鐘,尤其是老師講課的開頭和結(jié)束

老師講課開頭,一般是概括前節(jié)課的要點(diǎn)指出本節(jié)課要講的內(nèi)容,是把舊知識和新知識聯(lián)系起來的環(huán)節(jié),結(jié)尾常常是對一節(jié)課所講知識的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識方法的綱要。

三、課后鞏固

很多學(xué)生在學(xué)習(xí)過程中沒有重視課后的鞏固,只是覺得在課堂上掌握一些知識就夠了,其實(shí)這是錯誤的。高中數(shù)學(xué)的知識很多,并且不像初中數(shù)學(xué)那么淺顯,而是有很多的內(nèi)涵,如果不能進(jìn)一步挖掘其內(nèi)涵,那么只是掌握這個知識的表面,于是在自己做練習(xí)時就不知道如何去解了,也不能運(yùn)用這個知識的。

做練習(xí)是需要的,可是有些學(xué)生只是為了練習(xí)去做練習(xí),而不是為了鞏固這個知識,擴(kuò)展這個知識去做練習(xí),經(jīng)常是做完這個練習(xí)后算做完了,這樣跟初中的做題是沒有區(qū)別的。其實(shí),我們還應(yīng)該把這個練習(xí)中使用到的知識串起來,這樣我們就能明白那些知識在運(yùn)用,也能掌握更多的知識。也同樣能發(fā)現(xiàn)那個知識點(diǎn)是重點(diǎn),也能發(fā)現(xiàn)難題是如何把相關(guān)知識串起來的。

四、學(xué)會看題、學(xué)會選做題

高中的相關(guān)資料比初中更多,高考是全社會都關(guān)注的問題,所以高中的練習(xí)也特別多,有些學(xué)生買的資料也多,于是如何利用題目來掌握我們學(xué)習(xí)的知識,擴(kuò)展我們學(xué)習(xí)的知識就成為學(xué)習(xí)的關(guān)鍵。我覺得題目要多看,多想,看資料中的解題方法,想方法中的為什么,這樣就可以借鑒更多的方法。方法多了,可以也要消化。于是我們要會有選擇的做題,達(dá)到事半功倍。我建議每天一小練,每周做一套完整的考題,看2~3套考題,從中去發(fā)現(xiàn)那些是這段時間數(shù)學(xué)學(xué)習(xí)的重點(diǎn)知識,那些是我們常用的解題方法以及使用什么方法能優(yōu)化解題。

五、重視每一次測試,認(rèn)真分析考試中丟分的原因,并對丟分的地方做出相關(guān)的措施。

數(shù)學(xué)的學(xué)習(xí)技巧有很多,每一個人都有自己的不同技巧,我自己根據(jù)自己讀書時期的一些體會和現(xiàn)在教學(xué)過程中的體會,歸納出幾點(diǎn)技巧與大家共勉。

高一理數(shù)數(shù)學(xué)記筆記的方法

一記內(nèi)容提綱

老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡明清晰地呈現(xiàn)在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識框架,對所學(xué)知識做到胸有成竹、清晰完整。

二記疑難問題

將課堂上未聽懂的問題及時記下來,便于課后請教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時,受到時空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識的斷層、方法的缺陷。

三記思路方法

對老師在課堂上介紹的解題方法和分析思路也應(yīng)及時記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎(chǔ)上,若能主動鉆研,另辟蹊徑,則更難能可貴。

四記歸納總結(jié)

注意記下老師的課后總結(jié),這對于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內(nèi)容都很有作用。同時,很多有經(jīng)驗(yàn)的老師在課后小結(jié)時,一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。

五記體會感受

數(shù)學(xué)學(xué)習(xí)是智、情、意、行的綜合。數(shù)學(xué)學(xué)習(xí)過程伴隨著積極的情感體驗(yàn)、意志體驗(yàn)過程,記下自己學(xué)習(xí)過程的感受,可以用來更好地調(diào)控自己的學(xué)習(xí)行為。譬如,一道運(yùn)算很繁雜的習(xí)題,依靠堅(jiān)強(qiáng)的意志獲得解題成功后,可在旁邊寫上“功夫不負(fù)有心人”等自勉的語句,用來激勵自己。

六記錯誤反思

學(xué)習(xí)過程中不可避免地會犯這樣或那樣的錯誤,“聰明人不犯或少犯相同的錯誤”,記下自己所犯的錯誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時也應(yīng)注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。

將本文的word文檔下載到電腦,方便收藏和打印

推薦度:

點(diǎn)擊下載文檔

搜索文檔

高一數(shù)學(xué)教案集合的概念篇十四

(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。

(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。

2.過程與方法

學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

3.情感態(tài)度與價值觀

(1)提高空間想象力與直觀感受。

(2)體會對比在學(xué)習(xí)中的作用。

(3)感受幾何作圖在生產(chǎn)活動中的應(yīng)用。

【本文地址:http://mlvmservice.com/zuowen/12488756.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔