直線和圓的位置關系說課稿(通用19篇)

格式:DOC 上傳日期:2023-11-16 14:31:11
直線和圓的位置關系說課稿(通用19篇)
時間:2023-11-16 14:31:11     小編:JQ文豪

建筑是一種通過設計和構造建筑物來滿足人們居住和工作需求的活動。在總結中可以適當引用他人觀點和研究成果,以增加總結的權威性和可信度。下面是一些備受推崇的總結范文,相信能夠對大家的寫作有所幫助。

直線和圓的位置關系說課稿篇一

《普通高中數學課程標準》指出:在平面解析幾何初步的教學中,教師應幫助學生經歷如下過程:首先將幾何問題代數化,用代數的語言描述幾何要素及其關系,進而將幾何問題轉化為代數問題;處理代數問題;分析代數結果的幾何含義,最終解決幾何問題。這種思想應貫穿平面解析幾何教學的始終,幫助學生不斷地體會“數形結合”的思想方法。

《直線與圓的位置關系》這一節(jié)內容出現在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學主要是讓學生體會到用代數方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應用,也為后一小節(jié)《圓與圓的位置關系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內容,起著貫穿始終、應用反饋的重要作用,而且是貫徹“用代數方法處理幾何問題”思想和“數形結合”方法的重要的反映內容和工具。在本章中的作用非常重要。

1、知識目標:

2、能力目標:

要使學生體會用代數方法處理幾何問題的思路和“數形結合”的思想方法。

四、教法分析:

1、教學方法:啟發(fā)式講授法、演示法、輔導法。

2、教材處理:

(1)例題1(1)(2)用兩種不同的辦法求解,讓學生自己體會這兩種方法。

通過老師引導和讓學生自己探索解決,反饋學生的解決情況。

(2)增加一個過一點求圓的切線方程的題型,幫助學生增加對直線與圓的認識。

3、學法指導:本節(jié)課的學法是繼續(xù)指導學生把新問題轉化為已有知識解決的化歸思想。

4、教具:多媒體電腦、投影儀、自做多媒體。

五、過程分析:

教學。

環(huán)節(jié)。

教學內容。

設計意圖。

新課引入。

1、學生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學生回答的基礎上,通過多媒體演示圓與直線的三種位置關系。讓學生感受到數學產生于生活,與生活密切相關,并能使學生更好的直觀感受直線和圓的三種位置關系。然后引入本節(jié)課的課題。

2、在上一章,我們在學習了直線的方程后,研究了點和直線、直線與直線的位置關系,本章我們已經學習了圓的方程,現在我們要研究直線與圓以及圓與圓的位置關系。

1數學產生于生活,與生活密切相關。

2、以實際問題引入有利于激發(fā)學生學習數學的興趣,有利于擴展學生的視野。

新課講解。

一、知識點撥:

答:把圓心到直線的距離d和半徑r比較大?。?/p>

2、我們如何利用坐標法將初中判斷直線和圓的位置關系代數化?

答:先利用點到直線的距離公式求圓心到直線的距離,再和半徑比較大小。

答:在直線與直線的方程這一節(jié)里,我們先把兩直線的方程聯立解方程組。

在思考直線和圓的位置關系時,我們可類似地把直線和圓的方程聯立解方程組。

二、例題講解:

1、讓學生先自學例1并回答下列問題:

(1)第二小題中,消去x的步驟怎樣?如何判斷方程組有沒有解?

(2)你認為這兩種方法哪一種較簡單,為什么?

(2)方法一較簡單,因為方法二在求交點坐標時仍要解方程組。

圓的切線l,求切線l的方程。

4、練習:課本第83頁練習1、2。

問題1涉及初中知識,可使得學生比較容易上手。

問題2體現了將幾何問題代數化的思想。

問題3以前一章知識做類比,有利于培養(yǎng)學生類比歸納的能力。

通過前面對知識的分析,例題1對學生來說應該比較容易,又通過兩個問題檢查學生的理解程度。

例3該例題有利于培養(yǎng)學生全面考慮問題的良好思維習慣。

課堂小結。

作業(yè)布置。

課本p86,a組4、6、b組1。

一、復習回顧。

例1。

例2。

例3。

直線和圓的位置關系說課稿篇二

在本屆貴陽市中青年教師教學研討會中,修文中學提出打造有自己特色的“良知高效課堂”,整個課堂進程分四步八環(huán)節(jié)。本人承擔的是直線與圓的位置關系這一堂課與大家交流,有不足之外請老師們批評指正。

從知識結構來看,直線與圓的位置關系是對圓的方程應用的延續(xù)和拓展,又是后續(xù)研究圓與圓的位置關系和直線與圓錐曲線的位置關系等內容的基礎。在直線與圓的位置關系的判斷方法的建立過程中蘊涵著諸多的數學思想方法,這對于進一步探索、研究后續(xù)內容有很強的啟發(fā)與示范作用。

對于直線和圓,學生已經非常熟悉,并且知道直線與圓有三種位置關系:相離,相切和相交。從直線與圓的直觀感受上,學生懂得從圓心到直線的距離與圓的半徑相比較來研究直線與圓的位置關系。本節(jié)課,學生將進一步挖掘直線與圓的位置關系中的“數”的關系,學會從不同角度分析思考問題,為后續(xù)學習打下基礎。另外學生在探究問題的能力,合作交流的意識及反思總結等方面有待加強。

新課程標準的要求是能根據直線與圓的方程判斷其位置關系(相交、相切、相離),體會用代數方法處理幾何問題的思想,感受“形”與“數”的對立和統一;初步掌握數形結合的思想方法在研究數學問題中的應用。

根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,本節(jié)課教學應實現如下教學目標:

掌握用圓心到直線的距離d與圓的半徑r的大小比較,判斷直線與圓位置關系,幾何法。

理解直線和圓的三種位置關系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應關系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數判斷直線與圓的位置關系,能用直線和圓的方程解決一些條件下圓的切線問題;領會數形結合的數學思想方法,提高發(fā)現問題、分析問題、解決問題的能力。

通過對本節(jié)課知識的探究活動,加深學生對解析法解決幾何問題的認識,從而領悟其中所蘊涵的數學思想,體驗探索中成功的喜悅,激發(fā)學習熱情,養(yǎng)成良好的學習習慣和品質。

教法學法為了實現上述教學目標,本節(jié)課采取以下教學方法:

(1)恰當的利用多媒體課件,通過學生熟悉的實際生活問題引入課題,拉近數學與現實的距離,激發(fā)學生的問題意識和求知欲,調動學生主體參與的積極性。

(2)采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學生思維的最近發(fā)展區(qū)上啟發(fā)誘導。

(3)在整個數學教學過程中,既要體現學生的主體地位,更要強調教師的主導地位,在科學講授的同時教會學生清晰的思維和嚴謹的推理。

在學法上注重以下幾點:

(2)在用代數法解決直線與圓的位置關系時,要能夠明確運算方向,把握關鍵步驟,正確的處理較為復雜數據。

整個教學過程是四步組成,自主學習,合作探究,老師輔導、課堂展示。共分為八個環(huán)節(jié),復習、獨立訓練、相互探討、老師參與、形成結論、課堂展示、評價(互評師評)、反思。

通過問題情境,激發(fā)學生的學習興趣,使學生找到要學的與以學知識之間的聯系;問題串的設置可讓學生主動參與到學習中來;在判斷方法的形成與應用的探究中,師生的相互溝通調動學生的積極性,培養(yǎng)團隊精神;知識的生成和問題的解決,培養(yǎng)學生獨立思考的能力,激發(fā)學生的創(chuàng)新思維;通過練習檢測學生對知識的掌握情況;根據學生在課堂小結中的表現和課后作業(yè)情況,查缺補漏,以便調控教學。

直線和圓的位置關系說課稿篇三

各位評委、老師,大家晚上好!我說課的題目是《直線與圓的位置關系》,我將通過以下五方面對本節(jié)課進行解說。分別是教材分析、學情分析、教法分析、學法分析、過程分析。

一、教材分析。

本節(jié)課位于高中數學人教a版必修二第四章第二節(jié)(第一課時),它是在學生初中已經學習了直線與圓的位置關系的基礎上,通過直線方程和圓的方程,利用坐標法對直線與圓的位置關系的進一步研究與探討。是從初等數學過渡到高等數學的開始和階梯。同時,這節(jié)課的方法和思想也為今后解決圓與圓的位置關系,以及圓錐曲線等幾何問題奠定了基礎。它起到了承前啟后的作用。

2.教學目標。

知識與技能:理解直線與圓的位置關系;學會利用幾何法和代數法解決直線和圓的有關問題。

過程與方法:通過直線與圓位置關系的探究活動,經歷知識的建構過程,培養(yǎng)學生獨立思考、自主探究、動手實踐、合作交流的學習方式。強化學生用坐標法解決幾何問題的意識,培養(yǎng)學生分析問題和靈活解決問題的能力。

情感、態(tài)度與價值觀:通過學生的自主探究、小組討論合作,培養(yǎng)學生的團隊精神和主動學習的良好習慣。

3.教學重、難點。

難點:把實際問題轉化為數學問題,建立相應的數學模型;靈活地運用“數形結合”、解析法來解決直線與圓的相關問題。

二、學情分析。

學生在初中已經學習了直線與圓的位置關系,在高中又學習了直線方程與圓的方程,并會用坐標法解決簡單幾何問題。這些都有助于學生進一步學習直線與圓的位置關系。而我們的學生已經具備了獨立思考和探究學習的能力,但又欠缺空間想象和實際應用能力。

三、教法分析。

根據以上分析,本節(jié)依據布魯納發(fā)現教學法,要學生通過建立模型、方法探究、合作交流、歸納總結的學習方式,以活動為主線,體現學生的主體地位。教師在本環(huán)節(jié)中作為問題的設計者、組織者、引導者、合作者,體現其主導地位。

四、學法分析。

問題是數學的核心,教師在學生思維發(fā)展的最近區(qū),通過不斷地設問,為學生創(chuàng)設情景,搭建平臺,提供一個自主探究,合作交流的環(huán)境,讓學生通過不斷地發(fā)現問題、分析問題、解決問題,以培養(yǎng)學生的思維能力。

五、教學過程。

教學就像一條河流,如何讓學生到達知識的彼岸,教師在這一過程中的設計與引導起到了至關重要的作用。而本節(jié)課我將從六個方面根據學生的實際情況進行一個設計。

(一)情境設計,鋪墊導入(三分鐘)。

教育的藝術在于創(chuàng)設恰當的情景。本節(jié)課創(chuàng)設的情景是以釣魚島問題導入(本環(huán)節(jié)大約三分鐘)。一艘日本漁船企圖非法登陸我國釣魚島,我國艦艇此刻正在附近海域巡邏。它們三者之間的位置關系如下:我國艦艇的雷達掃描半徑為30km,如果日本漁船不改變航線,我國艦艇能否通過雷達掃描發(fā)現它呢?情景一設計的目的在于讓學生構建恰當的數學模型,本質在于探究“直線與圓的位置關系”引出了課題,讓學生從數學角度看待日常生活中的問題,增強學習的趣味性,使愛國熱情轉化為探索和學習的動力。

問題作為引導的核心,在這個問題上,我設計了如下問題:問題1:你能利用已有的平面幾何知識建立適當的數學模型,來解決這一問題嗎?目的在于引導學生主動回憶初中所學的“直線與圓的三種位置關系”。并能說明這三種位置關系中公共點的個數以及圓心到直線的距離與半徑的大小關系。通過舊知識的回顧使學生發(fā)現新的問題,也使新的知識在原有的知識結構中找到伸展點,而這個伸展點就是問題2.(二)切入主題、提出課題(2分鐘)。

問題2:如何用直線方程和圓的方程來判斷它們之間的關系呢?

問題2切入了本節(jié)的中心議題,讓學生用自主探究的學習方式,引導學生用方程思想解決幾何的問題。

在此教師不用急于讓學生回答這個問題,而是通過一個具體的問題來進行解答。這一具體問題我選擇了課本的例1,之所以選擇例1是因為例1直間給出了直線與圓的方程。學生只需要思考能用幾種方法來解決和判斷直線與圓的位置關系。引出了本節(jié)的重點。而第二問還要求學生求出交點坐標,目的在于讓學生進一步認識方程組解得意義。

(三)探索研究、解決問題(10分鐘)。

通過例1這一具體問題之后,可以讓學生嘗試歸納判斷直線與圓的位置關系的方法,在此我設置了兩個活動?;顒佣阂獙W生通過合作交流的方式將全班分成小組進行合作交流探究?;顒尤阂獙W生通過歸納小結的學習方法,將各小組的成果進行分享,最后進行歸納總結。教師在這一過程中只需要做好引導者和組織者的作用。目的是讓學生主動的參與課堂,通過分析問題、解決問題培養(yǎng)學生的能力。而這種由特殊例子到一般方法的歸納,也符合學生的認知結構。讓學生在交流、探討和歸納的過程中理解和掌握本節(jié)課的重點。即直線與圓的位置關系的判斷方法。這里的方法可由學生歸納得出。第一種,幾何法,第二種,代數發(fā)。這兩種方法都體現了數學的思想,并且代數法對于今后解析幾何的方法應用較多,也為后面解決圓錐曲線問題提供了方法依據。

(四)新知應用、深化理解(20分鐘)。

掌握了方法接下來就是應用,請學生利用“幾何法”和“代數法”解決情景一中的問題,達到學以致用,鞏固方法的目的。在此教師可以讓兩名學生通過不同的方法在黑板上演練,再讓其他學生進行點評,教師在進行小結即可。

例2是本節(jié)的難點,如何突破難點呢?我將從例1的一個變式引出。求直線l被圓c截得的弦長ab.在此教師可以作適當的點撥,求弦長的方法很多,如兩點間距離公式,弦長公式以及圓心到直線的距離與半徑構建直角三角形利用勾股定理進行求解。通過一題多變,一題多解,不僅體現了新課標的要求,還讓學生在練習中拓展思維、活用方法,為接下來解決例2這一難點突破奠定基礎。

例2通過剛才的變式,由淺入深,引入例2,環(huán)環(huán)相扣,讓學生體會利用“幾何法”和“代數法”解決直線和圓相交時有關弦長的問題,突破本節(jié)難點。

掌握本節(jié)重點,突破難點之后,可以讓學生根據情景做適當的延伸。情景二:若我國艦艇雷達掃描半徑為rkm,此時日本非法漁船航線剛好和我國艦艇雷達掃描的圓形區(qū)域的邊緣相切,計算雷達掃描的半徑r的值。

情景二研究的是直線與圓相切的情況,同時是含有參數的問題,引導學生從運動變化的角度來看待問題,提高了思維的梯度。

情景三:對于同樣的情景,你還能根據“直線與圓的位置關系”設置出哪些問題呢?

這一問題,目的在于培養(yǎng)學生的創(chuàng)新意識,可以作為課后的拓展題,讓學生通過小組探究來完成。實際上學生創(chuàng)設問題的過程就是檢驗我們教學成果的過程。

(五)總結提升、形成方法(5分鐘)。

在課后總結中,讓學生通過三個方面進行總結。第一,方法總結,在直線與圓的位置關系中,你掌握了哪些方法呢?學會了哪些應用呢?你自己的思想上又得到了哪些提升呢?目的在于以自我小結的形式,對本節(jié)課進行簡單的回顧與梳理,也是對所學內容的再次鞏固與提升。

(六)課后作業(yè),鞏固提高在課后訓練中,針對學生不同層次,我設計了這三種題型:1.鞏固題,2.提高題,探究題。目的在于尊重學生的個體差異性,調動學生的積極性,使每一個學生在教學中都能夠有所發(fā)展。

(七)板書設計。

這是我的板書設計,本節(jié)課以多媒體演示為主,板書設計以簡潔明了為主,左邊主要羅列了主要的方法和應用。右邊作為例題演示和學生演練。

教學反思。

作為教育工作者,目的在于授之以漁。而教學過程意在于把科學知識作為培養(yǎng)學生思維能力的一個階梯。

本節(jié)課,以活動為主線,問題為載體,通過釣魚島問題導入,由淺入深,環(huán)環(huán)相扣,一個情景,兩種方法,三種問題,一氣呵成,這節(jié)課的重難點也得以突破。另外本節(jié)課還有許多不足,如合作學習沒達到預想的效果,組長沒能起到應有的作用。教師對有些知識強調、點評不到位等。

我的說課到此結束,不妥之處,敬請各位老師批評指正,謝謝!

直線和圓的位置關系說課稿篇四

1、教材分析:

《圓》這一章,是學生平面幾何學習中一個重要的內容,如何在圓的教學中,讓學生在直線型圖形研究的基礎上進一步去體會研究幾何圖形的思維和方法,深刻領悟幾何學的學科觀點,有著非常重要的意義。下面是《圓》這一章的框架圖:

2、學情分析:

通過前面8章的有關幾何的學習,學生已經具備了一定的空間概念和幾何直觀,具有研究幾何圖形的思維和方法,有了上節(jié)課點和圓的位置關系的鋪墊,學生對于探究直線和圓的位置關系并不會感到陌生。

根據教學內容的特點及學生的實際情況,確定了三個方面的目標:

2、在探究過程中,提高學生觀察、分析、抽象概括的能力,體會數學的基本思想和思維方式。

3、通過具體的探究活動,認識數學具有抽象、嚴謹的特點,體會數學的價值。

本節(jié)課的教學難點是能夠從幾何和代數兩個角度分析直線和圓的位置關系。

根據教學內容、教學目標和學生的認知水平,主要采取教師啟發(fā)講授,學生探究學習的教學方法,教學中使用了幾何畫板來輔助教學。

為達到本節(jié)課的教學目標,突出重點,突破難點,我把教學過程設計為四個階段:復習舊知,引入課題;探索歸納,得出結論;拓展運用,鞏固新知;歸納小結,提高認知。具體過程如下:

(一)復習舊知,引入課題。

提前準備好的學案上,只有一個o,如右圖,

按照相應要求作圖:

1、作點p。

2、過點p作點和圓的位置關系,為接下來探究直線和圓的位置關系奠定基礎。

對于問題2的預案:

提問1:分成幾類:

提問2:分類的依據是什么。

引導學生得出:根據直線和圓的公共點個數,可以把直線和圓的位置關系分為三類:相交、相切、相離,板書相關概念。

(二)探索歸納,得出結論:

剛才是從幾何的角度(交點個數)探究直線和圓的三種位置關系,這階段將從代數角度將直線和圓的位置關系數量化:

借助幾何畫板,讓學生從運動變化的角度去理解直線和圓的三種位置關系:

圓具有軸對稱性,直線也具有軸對稱性,所以這個組合圖形本身就具有軸對稱性,其對稱軸是過圓心垂直于該直線的,考慮到對稱軸與直線的這種垂直關系在運動的過程中具有不變性,所以我們在考慮用數量來刻畫直線和圓的位置關系時,要找的幾何量一定是和這種垂直關系密不可分的,因此,圓心到直線的距離就會被考慮,然后先讓學生猜想,再用幾何畫板演示加以嚴謹的證明驗證猜想。

本章的研究主線就是圓的對稱性,此環(huán)節(jié)的設計正符合這個研究邏輯,所以我認為此環(huán)節(jié)的設計是我的一個亮點。

(三)拓展運用,鞏固新知:

1、已知圓的直徑是13cm,設圓心到直線的距離是d。

(1)若d=4.5cm,則直線與圓_______,有______個公共點。

(2)若d=6.5cm,則直線與圓_______,有______個公共點。

(3)若d=8cm,則直線與圓_________,有______個公共點。

2、已知圓的半徑為r,直線上一點到圓心的距離為d,若d=r,則直線與圓的位置關系是()。

a、相交b、相切c、相離d、相切或相交。

本階段的教學主要是通過對例題和練習的思考,使學生初步掌握直線和圓的位置關系,并能簡單應用。

(三)歸納小結,提高認識:

知識層面上:

相交。

相切。

相離。

公共點的個數。

2

1

dr。

d=r。

dr。

公共點名稱。

交點。

切點。

直線名稱。

割線。

切線。

方法層面上:

經歷了從不同角度分析問題和解決問題的過程,掌握解決問題的一些基本方法。

布置作業(yè):學練優(yōu)p59,60。

直線和圓的位置關系說課稿篇五

薛老師執(zhí)教的高三文科復習課:《直線與圓的位置關系》,首先從一個引例出發(fā),讓學生嘗試作圖和驗證,得出知識要點,繼而在此基礎上繼續(xù)研究直線方程和軌跡等問題。例題只有一個,但小題很多,題題遞進,環(huán)環(huán)相扣,在此環(huán)節(jié)上教師以學生訓練為主,教師講授和引導為輔,共同完成本節(jié)課的整體教學內容。

我聽了薛老師的這節(jié)課認為本節(jié)課設計高度重視學生的主動參與、親自操作,讓學生從中去體驗學習知識的過程,同時,也注重培養(yǎng)學生的自主學習能力和創(chuàng)新意識。整體看來這節(jié)課的優(yōu)點很多,很值得我去學習。

總結起來,大概有以下幾個特點。

(一)注重一個“滲透”——德育滲透。

在數學教學中,我們常常把德育教育與辯證唯物主義、愛國主義情懷聯系在一起,借助古今中外數學史不惜把數學課上成政治課,卻成為一堂蹩腳的課。其實,通過數學問題的發(fā)生和解決過程的教學,培養(yǎng)與鍛煉學生知難而進的堅強意志,敗而不餒的心理素質,一絲不茍的學習品質,勤于思考的良好學風,勇于探索的創(chuàng)新精神,實事求是的科學態(tài)度,這也是是德育教育,更是數學本質上的德育教育。本課薛老師把這種德育教育滲透到教學的每一個環(huán)節(jié),力求“潤物細無聲”。當學生解題遇到困難時,教師能給予耐心的引導。但,在課堂上,處理第(3)小題第二問時,有一名男生利用圓的定義很巧妙地給出了軌跡方程,薛老師可能沒有很好地把握表揚的機會,而是詢問學生有否最后算出答案,顯得有些匆促。

(二)堅持兩個“原則”

1、例題設計注重分層教學,堅持面向全體學生的原則。

題目母體來源于學生現有教輔書《全品》,卻在原題基礎上進行了分層遞進的改編,讓不同的學生都有不同的收獲。以學生的最近發(fā)展區(qū)為指向,充分尊重了學生現有的認知水平和個性差異,為不同層次的學生采用適合自己個性的方法進行學習創(chuàng)造了條件。

2、教學過程授人以漁,堅持以學生發(fā)展為本的原則。

讓學生深刻經歷:通過作圖和求解基本例題回憶知識結構——通過嘗試深化知識內容——通過遞進擴展知識聯系,教會學生研究的方法,而不是結果。

(三)落實三個“容量”——知識量、活動量和思維量。

本節(jié)課所選內容以解析幾何為平臺,卻可以集函數性質、圖像、方程、不等式于一體,例題只有一題,但以此展開的小題卻逐層遞進和推進,容量大,難度高??上驳氖?,薛老師通過合理運用現代技術和整合例題,成功地豐富了知識量;加強探索與過程教學,有效地落實了思維量;突出學生板演與探究教學,巧妙地增加了活動量,值得借鑒。

(四)實現四個“轉變”——學生角色從被動到主動;教師角色從傳授到指導;學習理念從封閉到開放;學習形式從單一到多元。

本課初步實現了“四個轉變”是由于采用了探究式的教學策略,為學生提供開放性的學習內容、開放性的教育資源和開放性的教學形式。特別是向學生提供了更多的機會和時間,讓學生嘗試和探究、合作和交流、歸納和總結,最大限度地提高學生學習活動的自由度,促使學生思維空間的充分開放。

(五)培養(yǎng)五種“能力”——應用能力、探究能力、反思與提問能力、交流合作能力和創(chuàng)新能力。

本課從引入開始,充分放手讓學生動腦、動口、動手,使研究問題得以逐個深入,難點得以一個個突破,能力得以一點點培養(yǎng)。事實上,解析幾何復習課,重在數形結合,重在幾何性質,重在靜動結合,課堂貴在“生動”,所謂“生動”,是指“生”出“動”。要樹立生本意識,立足學生“可動”;設置問題探究,引領學生“會動”;課前充分預設,不怕學生“亂動”;及時表揚肯定,激勵學生“愿動”。

但是我認為這節(jié)課也有一些值得探討的問題:

第一、老師講的還是太多。聽說杜郎口中學要求老師每節(jié)課講課時間不能超過10分鐘,否則是不合格的。一堂課,就只有40分鐘,老師講多了,學生自然就參與少了。這樣的后果就會導致學生具體體驗時間不夠,同時規(guī)范操作和演練也不夠。

第二、在學生回答引入題時,假設直線方程時,學生沒有考慮到斜率是否存在的情況,這時,老師沒有及時進行補充和糾正。一個很明顯的后果就是導致在(2)問的板演中,學生解答出錯。

第三,學生板演時沒有很好地結合圖像進行解題,這時,老師應該要適時引導學生作好草圖。凸顯解題時要從宏觀到微觀,從直覺到精確,從定性到定量分析。

第四,本節(jié)課最大的特色就是很好的整合了例題,以一題可以掃遍所有的直線與圓的有關知識點,這是一種復習習慣和策略。教師在這個點上應該要向學生強調,引導學生今后復習也應該有意識地進行整合和提升,做到既“重復”,又“學習”,這才是復習。

第五,本節(jié)課還有一個線索,就是前面的題目基本上能借助幾何性質進行解題,而最后一問必須采用解析幾何的思路,就是用代數的方法解題,這實際上要求老師要進行總結,告訴學生直線與圓的位置關系解題時,先考慮幾何性質,再借助代數方法解決,這不僅是一般的解題思路,也為后面的直線與橢圓的位置關系埋下伏筆。

總之,這是一堂原生態(tài)的高三復習課,讓我獲益匪淺。以上僅是一家之言,在此權當拋磚引玉,謝謝大家!

直線和圓的位置關系說課稿篇六

5、過程與方法。

理解直線和圓的三種位置關系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應關系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數判斷直線與圓的位置關系,能用直線和圓的方程解決一些條件下圓的切線問題;領會數形結合的數學思想方法,提高發(fā)現問題、分析問題、解決問題的能力。

6、情感態(tài)度與價值觀。

通過對本節(jié)課知識的探究活動,加深學生對解析法解決幾何問題的認識,從而領悟其中所蘊涵的數學思想,體驗探索中成功的喜悅,激發(fā)學習熱情,養(yǎng)成良好的學習習慣和品質。

教法學法為了實現上述教學目標,本節(jié)課采取以下教學方法:

(1)恰當的利用多媒體課件,通過學生熟悉的實際生活問題引入課題,拉近數學與現實的距離,激發(fā)學生的問題意識和求知欲,調動學生主體參與的積極性。

(2)采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學生思維的最近發(fā)展區(qū)上啟發(fā)誘導。

(3)在整個數學教學過程中,既要體現學生的主體地位,更要強調教師的主導地位,在科學講授的同時教會學生清晰的思維和嚴謹的推理。

在學法上注重以下幾點:

(2)在用代數法解決直線與圓的位置關系時,要能夠明確運算方向,把握關鍵步驟,正確的處理較為復雜數據。

課堂結構設計:

整個教學過程是四步組成,自主學習,合作探究,老師輔導、課堂展示。共分為八個環(huán)節(jié),復習、獨立訓練、相互探討、老師參與、形成結論、課堂展示、評價(互評師評)、反思。

教學過程設計:

通過問題情境,激發(fā)學生的學習興趣,使學生找到要學的與以學知識之間的聯系;問題串的設置可讓學生主動參與到學習中來;在判斷方法的形成與應用的探究中,師生的相互溝通調動學生的積極性,培養(yǎng)團隊精神;知識的生成和問題的解決,培養(yǎng)學生獨立思考的能力,激發(fā)學生的創(chuàng)新思維;通過練習檢測學生對知識的掌握情況;根據學生在課堂小結中的表現和課后作業(yè)情況,查缺補漏,以便調控教學。

回顧反思,拓展延伸:

直線和圓的位置關系說課稿篇七

一、課程目標分析:

《普通高中數學課程標準》指出:在平面解析幾何初步的教學中,教師應幫助學生經歷如下過程:首先將幾何問題代數化,用代數的語言描述幾何要素及其關系,進而將幾何問題轉化為代數問題;處理代數問題;分析代數結果的幾何含義,最終解決幾何問題。這種思想應貫穿平面解析幾何教學的始終,幫助學生不斷地體會“數形結合”的思想方法。

二、教材分析:

1、教材的地位和作用:

《直線與圓的位置關系》這一節(jié)內容出現在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學主要是讓學生體會到用代數方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應用,也為后一小節(jié)《圓與圓的位置關系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內容,起著貫穿始終、應用反饋的重要作用,而且是貫徹“用代數方法處理幾何問題”思想和“數形結合”方法的重要的反映內容和工具。在本章中的作用非常重要。

2、教材重點、難點。

直線和圓的位置關系說課稿篇八

新課程指出:學生是學習的主體,是發(fā)展的主體。在課堂教學中,教師要將課堂的主動權讓給學生,作為教師應以“探究過程,探究方法,探究結果,運用結果”為主線安排教學進程,應高度重視學生的主動參與、親自研究、動手操作,讓學生從中去體驗學習知識的過程,引導學生在發(fā)現問題、分析問題、解決問題的同時,培養(yǎng)學生的自主學習能力和創(chuàng)新意識。

在《直線和圓的位置關系》這節(jié)課中,我首先由生活中的情景——日落引入,讓學生發(fā)現地平線和太陽位置關系的變化,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現直線和圓的三種位置關系,給出定義,聯系實際,由學生發(fā)現日常生活中存在的直線和圓相交、相切、相離的現象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發(fā)生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到生活之中處處有數學。

2.在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

3.新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2.雖然我在設計本節(jié)課時是體現讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。教師要根據情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內化知識。

總之,新課程的課堂教學要讓學生作為課堂教學的主體參與到課堂教學過程中來,充分展現自己的個性,施展自己的才華,使學生在參與和體驗的過程中真正成為學習的主人,養(yǎng)成勇于探索、敢于實踐的個性品質。與此同時,教師還要為學生的學習創(chuàng)造探究的環(huán)境,營造探究的氛圍,促進探究的`開展,把握探究的深度,評價探究的效果。

直線和圓的位置關系說課稿篇九

本節(jié)課教學我所面對的傳授對象是聾啞學生,根據聾生的特點在學生觀察教材123頁三幅照片時,我立刻告訴學生你說的對,這就是直線和圓的三種關系:相交、相切和相離。我認為是數學課而不是語文課,數學課只注重學生的觀察思維能力,不追求學生的語言表達能力和概括能力。

還有因為手語的手勢再多再細也不可能表達出所有的抽象的甚至連豐富的語言都不好表述的東西,因此在講解數學時,我追求細致,不要想很簡單,很明顯,而一帶而過。因此,教學時我多次強化學生對直線與圓的三種關系的理解,為學生探究點到直線的距離d和圓半徑r的大小關系。

然而數學教學時,該細的地方還是要細,這需要教師自己的把握,在學生輕而易舉回答出來的問題時,有時要帶領學生深入思考,并多問個為什么?比如在本課學生總結出:“圓的切線垂直于過切點的直徑”時。養(yǎng)成學生深入思考的好習慣,不要想當然!

直線和圓的位置關系說課稿篇十

b.會根據直線和圓的方程用代數法和幾何法判斷直線與圓的位置關系;

c.掌握直線和圓的位置關系判定的應用,會求已知圓的交線和切線方程。

(2)能力目標

讓學生通過觀察,分析,總結歸納出根據直線與圓的方程來判斷直線與圓的位置關系的方法,培養(yǎng)學生分析問題解決問題的能力,讓學生對坐標法有進一步的了解,并能用參數法、數形結合的方法去分析、解決相應的數學問題,同時訓練學生數學思維,培養(yǎng)學生尋求一題多解的能力。

(3)情感目標

通過學生自己動手實驗和探索,培養(yǎng)學生動手能力和發(fā)現問題的能力;通過師生互動,生生互動的教學活動過程,形成學生的體驗性認識,體會成功的愉悅,提高數學學習的興趣,樹立學好數學的信心,培養(yǎng)鍥而不舍的鉆研精神和合作交流的科學態(tài)度。

重點:直線和圓的三種位置關系

難點:直線和圓的三種位置關系的性質和判定的應用

教學方法:問題探究式、啟發(fā)式引導、參與式探究、互動式討論

學習方法:自主探究、觀察發(fā)現、合作交流、歸納總結。

教學手段:借助多媒體動態(tài)演示,構建學生探究式學習的教學環(huán)境。

1、創(chuàng)設情景、引入新課;

2、引導啟發(fā)、探索新知;

3、講練結合、鞏固新知;

4、知識拓展、深化提高;

5、小結新知,畫龍點睛

6、布置作業(yè),復習鞏固;

重新閱讀課本本節(jié)相關內容并預習下一節(jié)課內容。

直線與圓的位置關系是高考的考點之一,是在學生已有的平面幾何知識基礎上進行教學,以點與圓的位置關系上升為直線與圓的位置關系,從簡單到復雜,從幾何特征到代數問題(坐標法)的教學過程,它應用比較廣泛,同時也為后面圓和圓的位置關系作了鋪墊,對后面的解題及相關數學問題的解決將起到重要的作用,且本節(jié)是直線與圓錐曲線位置關系的基礎,故要求學生充分掌握。

針對上述情況,我精心設計教學過程,借助多媒體動態(tài)演示直線和圓的位置關系,直觀形象地展示了直線與圓的位置關系,化抽象為具體,以便學生更好的.理解他們之間的關系及其幾何特征,再引導學生把幾何形式的結論轉化為代數形式;教學過程中采用問題探究式、參與式探究、互動式討論等教學方法,為學生自主探究、合作交流構建一個好的平臺;分層次設置例題,讓全體學生都得到提升;講解例題時應用啟發(fā)式引導教學方法,不斷訓練學生數學思維,借助圖象分析題意,加深學生對數形結合思想了解;新課結束后,引導學生小結本課內容,培養(yǎng)學生歸納總結的能力。

直線和圓的位置關系說課稿篇十一

《直線和圓的位置關系的復習》一課的教學,可以說非常成功。教學設計充分體現了新的教學理念,重點突出、層次清楚、構思新穎,整個教學過程教師采用多樣化的呈現方式為學生搭建參與探究的平臺,高度重視學生的主動參與,有意識地為學生創(chuàng)設了良好的數學交流情境。注意學生的情感與態(tài)度,知識與技能的形成和發(fā)展,使每個學生都有表現的機會和獲得成功的體驗。

由于本節(jié)課綜合性強,涉及到的知識面廣,對學生的能力水平要求高。教師結合本節(jié)課的教學目標,突出重點,突破難點。采用教師啟發(fā)引導,學生合作交流的方式來組織本節(jié)課的教學。注重解題思路分析和方法引導,善于引導學生尋找圖形中的數量關系,選用適當的知識和方法正確解答問題。

在學習知識的同時,注意數學思想方法的滲透。在教學中,數學知識是一條明線,數學思想方法是一條暗線。崔老師在引導學生學習的同時,教給學生思考方法、學習方法和解決問題的方法,為學生未來發(fā)展服務,讓學生在腦海里留下數學意識,長期下去,學生將終身受用。

板書條理分明,布局合理,文字與圖形完美結合,板書設計不僅讓學生對直線和圓的位置關系圖形的特征一目了然,而且也便于揭示它們之間的區(qū)別和聯系。體現了板書的形式美和簡潔美,真正使板書起到了畫龍點睛的作用。

充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使題意理解更清楚,結論更準確。

教師教態(tài)自然,語言清晰,數學語言表述準確,操作演示熟練,提問率高,體現素質教育面向全體學生的要求。

教師注意培養(yǎng)學生的自信心,在教學過程的設計上體現了層次性和梯度性。防止學生對一些問題出現畏懼情緒,鼓勵學生敢于知難而進,讓學生樹立戰(zhàn)勝困難的勇氣和決心。例題的設計,按照由易到難的順序呈現,關于直線和圓的復習教學中能利用一個圖形提出盡可能多的問題,并盡可能的覆蓋到圓的大多數知識,盡可能的加強知識間的橫縱的聯系,盡可能滲透多種數學思想和方法,最大限度的榨取它的利用價值,達到了一線串珠的目的。體現了綜合性例題的大容量、大綜合的特點,非常有效地達成本節(jié)課的教學目標。

直線和圓的位置關系說課稿篇十二

本節(jié)課,我先讓學生在課前自行完成教學案中“課前預習與導學”這一部分,情況良好。上課后先信息反饋進行評講,然后引導學生回憶了點與圓的位置關系及如何用數量關系來判斷點與圓的位置關系。接著以《海上日出》圖創(chuàng)設情景,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現直線和圓的三種位置關系,給出定義,聯系實際,由學生發(fā)現日常生活中存在的直線和圓相交、相切、相離的現象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由小“練習”進行應用,最后通過“例題”“課堂檢測”去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1、在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

2、新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在小練習之后我及時地進行總結歸納方法,讓學生在以后解決實際問題過程中能一下子找到切入點,培養(yǎng)學生解決實際問題的能力。

同時,我也感覺到本節(jié)課的教學有不妥之處,主要有以下三點:

1、學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。講得過多,學生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W生類比點與圓的位置關系下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2、對于我們學生的情況,初三的教學始終沒有擺脫灌輸式教學,盡管課上也讓學生自主操作、思考,但老師講的太多,沒有給予學生足夠的探索、交流的時間,勢必會影響到部分學生的思維,限制了學生的發(fā)展。所以,我們也要學會該“放手時就放手”,大膽地讓學生去思考,也許會有意外的收獲。

3、對教材的把握,對學生的實情,在備課時都要考慮。在選題時不僅要照顧到基礎薄弱的同學,也要照顧到基礎好些的同學,適時選做。對于有些題可以適當地進行變式訓練,拓展靈活運用,活躍學生的思維。

總之,在今后的數學教學中還有很多需要我學習和掌握的東西,希望能和學生們一起共同進步,真正成為一名合格的數學教師。

直線和圓的位置關系說課稿篇十三

楊跟上。

一:教材:

人教版九年義務教育九年級數學上冊二:學情分析。

初三學生已經具備一定的獨立思考和探索能力,并能在探索過程中形成自己的觀點,能在傾聽別人意見的過程中逐漸完善自己的想法,因此本節(jié)課設計了探究活動,給學生提供探索與交流的空間,體現知識的形成過程。

三教學目標(知識,技能,情感態(tài)度、價值觀)。

1、知識與技能。

能綜合運用以前的數學知識解決與本節(jié)有關的實際問題。

3.情感態(tài)度與價值觀。

(1)通過和點與圓的位置關系的類比,學習直線與圓的位置關系,培養(yǎng)學生類比的思維方法。

(2)培養(yǎng)學生的相互合作精神四:教學重點與難點:

五:教學方法:

啟發(fā)探究。

六、教學環(huán)境及資源準備。

1、教學環(huán)境:學校多媒體教室。2.教學資源。

(1).教師多媒體課件,(2)學生準備硬幣或其他類似圓的用具。

1、自主學習策略:通過提出問題讓學生思考,幫助學生學會探索直線與圓的位置關系關系。

2、合作探究策略:通過學生動手操作與相互交流,激發(fā)學生學習興趣,讓學生在輕松愉快的教學氣氛下之下掌握直線與圓的位置關系。

3、理論聯系實際策略;通過學生綜合運用數學知識解決直線與圓的位置關系的實際問題,培養(yǎng)學生利用知識解決實際問題的能力。

教學流程:

一.復習回顧,導入新課。

由點和圓的位置關系設計了兩個問題,讓學生獨立思考,然后回答問題,為下面做準備。

二:合作交流,探求新知。

第一步,學生對直線與圓的公共點個數變化情況的探索。

通過學生動手操作和探索,然后相互交流,并畫出圖形,得出直線與圓的公共點個數的變化情況。

第二步,師生共同歸納出直線與圓相交、相切等有關概念。

1.設圓o的半徑為r,圓心o到直線的距離為d,那么直線與圓在不同的位置關系下,d與r有什么樣的數量關系?請你分別畫出圖形,認真觀察和分析圖形,類比點和圓的位置關系,看看d和r什么數量關系。

我設計了兩個問題,使學生學會通過計算圓心到直線的距離,來判斷直線與圓的位置關系。四:鞏固提高:

在本節(jié)的教學中,我設計了兩個練習、一個作業(yè)加以鞏固,使學生能更好的掌握本節(jié)內容。

直線和圓的位置關系說課稿篇十四

“國培計劃”初中數學——陳曉峰(江西省寧都五中)。

節(jié)課的教學,我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發(fā)生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到生活之中處處有數學。

2.在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

3.新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2.雖然我在設計本節(jié)課時是體現讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

直線和圓的位置關系說課稿篇十五

重點:的性質和判定.因為它是本單元的基礎(如:“切線的判斷和性質定理”是在它的基礎上研究的),也是高中解析幾何中研究的基礎.

難點:在對性質和判定的研究中,既要有歸納概括能力,又要有轉換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學生較難理解.

3.教法建議。

本節(jié)內容需要一個課時.

(2)在中,以“形”歸納“數”,以“數”判斷“形”為主線,開展在組織下,以學生為主體,活動式.

第12頁?。

直線和圓的位置關系說課稿篇十六

3、教學方法與手段:

教學方法:問題探究式、啟發(fā)式引導、參與式探究、互動式討論。

學習方法:自主探究、觀察發(fā)現、合作交流、歸納總結。

教學手段:借助多媒體動態(tài)演示,構建學生探究式學習的教學環(huán)境。

4、教學過程:

1、創(chuàng)設情景、引入新課;2、引導啟發(fā)、探索新知;3、講練結合、鞏固新知;

4、知識拓展、深化提高5、小結新知,畫龍點睛6、布置作業(yè),復習鞏固。

環(huán)節(jié)。

重新閱讀課本本節(jié)相關內容并預習下一節(jié)課內容。

直線與圓的位置關系是高考的考點之一,是在學生已有的平面幾何知識基礎上進行教學,以點與圓的位置關系上升為直線與圓的位置關系,從簡單到復雜,從幾何特征到代數問題(坐標法)的'教學過程,它應用比較廣泛,同時也為后面圓和圓的位置關系作了鋪墊,對后面的解題及相關數學問題的解決將起到重要的作用,且本節(jié)是直線與圓錐曲線位置關系的基礎,故要求學生充分掌握。

針對上述情況,我精心設計教學過程,借助多媒體動態(tài)演示直線和圓的位置關系,直觀形象地展示了直線與圓的位置關系,化抽象為具體,以便學生更好的理解他們之間的關系及其幾何特征,再引導學生把幾何形式的結論轉化為代數形式;教學過程中采用問題探究式、參與式探究、互動式討論等教學方法,為學生自主探究、合作交流構建一個好的平臺;分層次設置例題與練習,讓全體學生都得到提升;講解例題時應用啟發(fā)式引導教學方法,不斷訓練學生數學思維,借助圖象分析題意,加深學生對數形結合思想了解;新課結束后,引導學生小結本課內容,培養(yǎng)學生歸納總結的能力。

直線和圓的位置關系說課稿篇十七

這節(jié)課,我由生活中的情景——日落引入,讓學生發(fā)現地平線和太陽位置關系的變化,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現直線和圓的三種位置關系,給出定義,聯系實際,由學生發(fā)現日常生活中存在的直線和圓相交、相切、相離的現象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1。由日落引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發(fā)生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到數學無處不在,無時不有。

2。在探索直線和圓位置關系所對應的數量關系時,讓學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

3。新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

“國培計劃”初中數學——陳曉峰(江西省寧都五中)。

節(jié)課的教學,我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發(fā)生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到生活之中處處有數學。

2.在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

3.新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2.雖然我在設計本節(jié)課時是體現讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

直線和圓的位置關系說課稿篇十八

20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:

過程與方法目標:

2.通過例題教學,培養(yǎng)學生靈活運用知識的解決能力。

情感與態(tài)度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的關系、關注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉化的辯證唯物主義觀點。

利用多媒體放映落日的動畫,初中數學教案《數學教案-直線和圓的位置關系(公開課)》。引導學生從公共點個數和圓心到直線的.距離兩方面體會直線和圓的不同位置關系。

學生看投影并思考問題。

調動學生積極主動參與數學活動中.。

探究新知。

1、通過觀察直線和圓的公共點個數得出直線和圓相離、相交、相切的定義。

布置作業(yè)。

1、課本第101頁7.3a組第2、3題。

2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。

直線和圓的位置關系說課稿篇十九

重點:的性質和判定。因為它是本單元的基礎(如:“切線的判斷和性質定理”是在它的基礎上研究的),也是高中解析幾何中研究的基礎。

難點:在對性質和判定的研究中,既要有歸納概括能力,又要有轉換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學生較難理解。

3.教法建議。

本節(jié)內容需要一個課時。

(2)在中,以“形”歸納“數”,以“數”判斷“形”為主線,開展在組織下,以學生為主體,活動式.

第12頁。

【本文地址:http://mlvmservice.com/zuowen/12488411.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔