編寫教案時,教師應(yīng)結(jié)合自身教學(xué)經(jīng)驗和專業(yè)知識,注重實用性和可操作性。教案的編寫需要注意教學(xué)資源的充分利用和合理安排。下面是一些成功的教案案例,其中包含了一些獨特的教學(xué)思路和方法。
初中數(shù)學(xué)因式分解教案篇一
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗,完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學(xué)目標(biāo)。
(1)會推導(dǎo)乘法公式。
(2)在應(yīng)用乘法公式進(jìn)行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
(3)會用提公因式法、公式法進(jìn)行因式分解。
(4)了解因式分解的一般步驟。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點、難點和關(guān)鍵。
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進(jìn)行因式分解。
難點:正確運用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
3.讓學(xué)生掌握基本的數(shù)學(xué)事實與數(shù)學(xué)活動經(jīng)驗,減輕不必要的記憶負(fù)擔(dān).。
2.1平方差公式1課時。
2.2完全平方公式2課時。
初中優(yōu)秀......
初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學(xué),教案有利于教學(xué)水平的提高,有助于教研活動的開展。來參考自己需要的教案吧!下面是小編為......
初中數(shù)學(xué)因式分解教案篇二
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習(xí)題類型以填空題為多,也有選擇題和解答題。
多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進(jìn)行到每一個因式都不能再分解為止。分解因式的常用方法有:
如多項式。
其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。
(2)運用公式法,即用。
寫出結(jié)果。
(3)十字相乘法。
(4)分組分解法:把各項適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
(5)求根公式法:如果有兩個根x1,x2,那么。
1、教學(xué)實例:學(xué)案示例。
2、課堂練習(xí):學(xué)案作業(yè)。
3、課堂:
4、板書:
5、課堂作業(yè):學(xué)案作業(yè)。
6、教學(xué)反思:
初中數(shù)學(xué)因式分解教案篇三
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗,完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學(xué)目標(biāo)。
(1)會推導(dǎo)乘法公式。
(2)在應(yīng)用乘法公式進(jìn)行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
(3)會用提公因式法、公式法進(jìn)行因式分解。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點、難點和關(guān)鍵。
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進(jìn)行因式分解。
難點:正確運用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
3.讓學(xué)生掌握基本的數(shù)學(xué)事實與數(shù)學(xué)活動經(jīng)驗,減輕不必要的記憶負(fù)擔(dān).。
2.1平方差公式1課時。
2.2完全平方公式2課時。
2.3用提公因式法進(jìn)行因式分解1課時。
初中數(shù)學(xué)因式分解教案篇四
會應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力。
2、過程與方法。
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識的完整性。
3、情感、態(tài)度與價值觀。
培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實際問題中的應(yīng)用價值。
1、重點:利用平方差公式分解因式。
2、難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性。
3、關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來。
采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的'牽引下,推進(jìn)自己的思維。
一、觀察探討,體驗新知。
【問題牽引】。
請同學(xué)們計算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【學(xué)生活動】動筆計算出上面的兩道題,并踴躍上臺板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【學(xué)生活動】從逆向思維入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教師活動】引導(dǎo)學(xué)生完成a2—b2=(a+b)(a—b)的同時,導(dǎo)出課題:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
評析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式)。
二、范例學(xué)習(xí),應(yīng)用所學(xué)。
【例1】把下列各式分解因式:(投影顯示或板書)。
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。
【教師活動】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請5位學(xué)生上講臺板演。
【學(xué)生活動】分四人小組,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(5)m2(16x—y)+n2(y—16x)。
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
初中數(shù)學(xué)因式分解教案篇五
1、知識與能力:
1)進(jìn)一步鞏固相似三角形的知識.
2)能夠運用三角形相似的知識,解決不能直接測量物體的長度和高度(如測量金字塔高度問題、測量河寬問題)等的一些實際問題.
2.過程與方法:
經(jīng)歷從實際問題到建立數(shù)學(xué)模型的過程,發(fā)展學(xué)生的抽象概括能力。
3.情感、態(tài)度與價值觀:
1)通過利用相似形知識解決生活實際問題,使學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活。
2)通過對問題的探究,培養(yǎng)學(xué)生認(rèn)真踏實的學(xué)習(xí)態(tài)度和科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)方法,通過獲得成功的經(jīng)驗和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
(三)教學(xué)重點、難點和關(guān)鍵。
重點:利用相似三角形的知識解決實際問題。
難點:運用相似三角形的判定定理構(gòu)造相似三角形解決實際問題。
關(guān)鍵:將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用所學(xué)的知識來進(jìn)行解答。
【教法與學(xué)法】。
(一)教法分析。
為了突出教學(xué)重點,突破教學(xué)難點,按照學(xué)生的認(rèn)知規(guī)律和心理特征,在教學(xué)過程中,我采用了以下的教學(xué)方法:
1.采用情境教學(xué)法。整節(jié)課圍繞測量物體高度這個問題展開,按照從易到難層層推進(jìn)。在數(shù)學(xué)教學(xué)中,注重創(chuàng)設(shè)相關(guān)知識的現(xiàn)實問題情景,讓學(xué)生充分感知“數(shù)學(xué)來源于生活又服務(wù)于生活”。
2.貫徹啟發(fā)式教學(xué)原則。教學(xué)的各個環(huán)節(jié)均從提出問題開始,在師生共同分析、討論和探究中展開學(xué)生的思路,把啟發(fā)式思想貫穿與教學(xué)活動的全過程。
3.采用師生合作教學(xué)模式。本節(jié)課采用師生合作教學(xué)模式,以師生之間、生生之間的全員互動關(guān)系為課堂教學(xué)的核心,使學(xué)生共同達(dá)到教學(xué)目標(biāo)。教師要當(dāng)好“導(dǎo)演”,讓學(xué)生當(dāng)好“演員”,從充分尊重學(xué)生的潛能和主體地位出發(fā),課堂教學(xué)以教師的“導(dǎo)”為前提,以學(xué)生的“演”為主體,把較多的課堂時間留給學(xué)生,使他們有機(jī)會進(jìn)行獨立思考,相互磋商,并發(fā)表意見。
(二)學(xué)法分析。
按照學(xué)生的認(rèn)識規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體的指導(dǎo)思想,在本節(jié)課的學(xué)習(xí)過程中,采用自主探究、合作交流的學(xué)習(xí)方式,讓學(xué)生思考問題、獲取知識、掌握方法,運用所學(xué)知識解決實際問題,啟發(fā)學(xué)生從書本知識到社會實踐,學(xué)以致用,力求促使每個學(xué)生都在原有的基礎(chǔ)上得到有效的發(fā)展。
【教學(xué)過程】。
一、知識梳理。
1、判斷兩三角形相似有哪些方法?
1)定義:2)定理(平行法):。
3)判定定理一(邊邊邊):。
4)判定定理二(邊角邊):。
5)判定定理三(角角):。
2、相似三角形有什么性質(zhì)?
對應(yīng)角相等,對應(yīng)邊的比相等。
(通過對知識的梳理,幫助學(xué)生形成自己的知識結(jié)構(gòu)體系,為解決問題儲備理論依據(jù)。)。
二、情境導(dǎo)入。
胡夫金字塔是埃及現(xiàn)存規(guī)模的金字塔,被喻為“世界古代七大奇觀之一”。塔的4個斜面正對東南西北四個方向,塔基呈正方形,每邊長約230多米。據(jù)考證,為建成大金字塔,共動用了10萬人花了時間.原高146.59米,但由于經(jīng)過幾千年的風(fēng)吹雨打,頂端被風(fēng)化吹蝕.所以高度有所降低。
(數(shù)學(xué)教學(xué)從學(xué)生的生活體驗和客觀存在的事實或現(xiàn)實課題出發(fā),為學(xué)生提供較感興趣的問題情景,幫助學(xué)生順利地進(jìn)入學(xué)習(xí)情景。同時,問題是知識、能力的生長點,通過富有實際意義的問題能夠激活學(xué)生原有認(rèn)知,促使學(xué)生主動地進(jìn)行探索和思考。)。
三、例題講解。
例1(教材p49例3——測量金字塔高度問題)。
《相似三角形的應(yīng)用》教學(xué)設(shè)計分析:根據(jù)太陽光的光線是互相平行的特點,可知在同一時刻的陽光下,豎直的兩個物體的影子互相平行,從而構(gòu)造相似三角形,再利用相似三角形的判定和性質(zhì),根據(jù)已知條件,求出金字塔的高度.
解:略(見教材p49)。
問:你還可以用什么方法來測量金字塔的高度?(如用身高等)。
解法二:用鏡面反射(如圖,點a是個小鏡子,根據(jù)光的反射定律:由入射角等于反射角構(gòu)造相似三角形).(解法略)。
例2(教材p50練習(xí)?——測量河寬問題)。
《相似三角形的應(yīng)用》教學(xué)設(shè)計《相似三角形的應(yīng)用》教學(xué)設(shè)計分析:設(shè)河寬ab長為xm,由于此種測量方法構(gòu)造了三角形中的平行截線,故可得到相似三角形,因此有,即《相似三角形的應(yīng)用》教學(xué)設(shè)計.再解x的方程可求出河寬.
解:略(見教材p50)。
問:你還可以用什么方法來測量河的寬度?
解法二:如圖構(gòu)造相似三角形(解法略).
四、鞏固練習(xí)。
五、回顧小結(jié)。
一)相似三角形的應(yīng)用主要有如下兩個方面。
1測高(不能直接使用皮尺或刻度尺量的)。
2測距(不能直接測量的兩點間的距離)。
二)測高的方法。
測量不能到達(dá)頂部的物體的高度,通常用“在同一時刻物高與影長的比例”的原理解決。
三)測距的方法。
測量不能到達(dá)兩點間的距離,常構(gòu)造相似三角形求解。
(落實教師的引導(dǎo)作用以及學(xué)生的主體地位,既訓(xùn)練學(xué)生的概括歸納能力,又有助于學(xué)生在歸納的過程中把所學(xué)的知識條理化、系統(tǒng)化。)。
六、拓展提高。
怎樣利用相似三角形的有關(guān)知識測量旗桿的高度?
七、作業(yè)。
課本習(xí)題27.210題、11題。
初中數(shù)學(xué)因式分解教案篇六
1、知識與能力:
1)進(jìn)一步鞏固相似三角形的知識.
2)能夠運用三角形相似的知識,解決不能直接測量物體的長度和高度(如測量金字塔高度問題、測量河寬問題)等的一些實際問題.
2.過程與方法:
經(jīng)歷從實際問題到建立數(shù)學(xué)模型的過程,發(fā)展學(xué)生的抽象概括能力。
3.情感、態(tài)度與價值觀:
1)通過利用相似形知識解決生活實際問題,使學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活。
2)通過對問題的探究,培養(yǎng)學(xué)生認(rèn)真踏實的學(xué)習(xí)態(tài)度和科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)方法,通過獲得成功的經(jīng)驗和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
(三)教學(xué)重點、難點和關(guān)鍵。
重點:利用相似三角形的知識解決實際問題。
難點:運用相似三角形的判定定理構(gòu)造相似三角形解決實際問題。
關(guān)鍵:將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用所學(xué)的知識來進(jìn)行解答。
初中數(shù)學(xué)因式分解教案篇七
因式分解是第九章的難點。學(xué)生初學(xué)因式分解時往往要與乘法運算混淆。原因主要是概念不清。
在教學(xué)時,因式分解與乘法的區(qū)別是通過把等號兩邊的式子互相轉(zhuǎn)換位置而直觀得出。對于因式分解的方法,學(xué)生可通過自己的一系列練習(xí)實踐去體會。故不需要在開頭引入的地方多加鋪墊,浪費了一定的時間。
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運用的題目中,學(xué)生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導(dǎo)致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強(qiáng)。其實公式法分解因式。學(xué)生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進(jìn)行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進(jìn)行因式分解。
在復(fù)習(xí)課上以上存在的一些問題還要重點突出講解。幫助學(xué)生跟深刻的去認(rèn)識因式分解。
初中數(shù)學(xué)因式分解教案篇八
1.會求反比例函數(shù)的解析式;2.鞏固反比例函數(shù)圖象和性質(zhì),通過對圖象的分析,進(jìn)一步探究反比例函數(shù)的增減性.
【過程與方法】。
經(jīng)歷觀察、分析、交流的過程,逐步提高運用知識的能力.
【情感態(tài)度】。
提高學(xué)生的觀察、分析能力和對圖形的感知水平.
【教學(xué)重點】。
會求反比例函數(shù)的解析式.
【教學(xué)難點】。
反比例函數(shù)圖象和性質(zhì)的運用.
教學(xué)過程。
一、情景導(dǎo)入,初步認(rèn)知。
【教學(xué)說明】復(fù)習(xí)上節(jié)課的內(nèi)容,同時引入新課.
二、思考探究,獲取新知。
1.思考:已知反比例函數(shù)y=的圖象經(jīng)過點p(2,4)。
(1)求k的值,并寫出該函數(shù)的表達(dá)式;。
(2)判斷點a(-2,-4),b(3,5)是否在這個函數(shù)的圖象上;。
分析:
(1)題中已知圖象經(jīng)過點p(2,4),即表明把p點坐標(biāo)代入解析式成立,這樣能求出k,解析式也就確定了.
(2)要判斷a、b是否在這條函數(shù)圖象上,就是把a(bǔ)、b的坐標(biāo)代入函數(shù)解析式中,如能使解析式成立,則這個點就在函數(shù)圖象上.否則不在.
(3)根據(jù)k的正負(fù)性,利用反比例函數(shù)的性質(zhì)來判定函數(shù)圖象所在的象限、y隨x的值的變化情況.
【歸納結(jié)論】這種求解析式的方法叫做待定系數(shù)法求解析式.
2.下圖是反比例函數(shù)y=的圖象,根據(jù)圖象,回答下列問題:
(1)k的取值范圍是k0還是k0?說明理由;。
(2)如果點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點,試比較y1,y2的大小.分析:
(1)由圖象可知,反比例函數(shù)y=kx的圖象的兩支曲線分別位于第一、三象限內(nèi),在每個象限內(nèi),函數(shù)值y隨自變量x的增大而減小,因此,k0.
(2)因為點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點且-30,-20.所以點a、b都位于第三象限,又因為-3-2,由反比例函數(shù)的圖像的性質(zhì)可知:y1y2.
【教學(xué)說明】通過觀察圖象,使學(xué)生掌握利用函數(shù)圖象比較函數(shù)值大小的方法.
初中數(shù)學(xué)因式分解教案篇九
生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個面的交線。
側(cè)棱:相鄰兩個側(cè)面的交線。棱柱的所有側(cè)棱長都相等。
底面:棱柱有上、下兩個底面,形狀相同。
側(cè)面:棱柱的側(cè)面都是平行四邊形。
立體圖形的分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點、無頂點。
棱柱:分為直棱柱、斜棱柱。直棱柱的側(cè)面是長方形。
特殊的四棱柱:長方體、正方體。正方體的每個面都是正方形。
圓柱:上、下兩個面都是圓形,側(cè)面展開圖是長方形。
圓錐:底面是圓形,側(cè)面展開圖是扇形。
截面:用一個平面去截一個幾何體,截出的面。
球:用一個平面去截,截面圖形是圓形。
正方體的截面:可以是正方形、長方形、梯形、三角形。
圓柱體的截面:可以是長方形、圓形、橢圓形、三角形。
展開與折疊:兩個面出現(xiàn)在同一位置的展開圖形,是不可折疊的。
從三個方向看物體的形狀:正面看(主視圖)、左面看(側(cè)視圖)、上面看(俯視圖)。
初中數(shù)學(xué)因式分解教案篇十
2.學(xué)會求出某二元一次方程的幾個解和檢驗?zāi)硨?shù)值是否為二元一次方程的解;。
3.學(xué)會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;。
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的`方程.
1.情景導(dǎo)入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領(lǐng)取生活補(bǔ)助,得到方程:80a+150b=902880.2.
2.新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.
3.合作學(xué)習(xí):
4.課堂練習(xí):
1)已知:5xm-2yn=4是二元一次方程,則m+n=;。
2)二元一次方程2x-y=3中,方程可變形為y=當(dāng)x=2時,y=_。
5.課堂總結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);。
(2)二元一次方程解的不定性和相關(guān)性;。
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
本章的課后的方程式鞏固提高練習(xí)。
初中數(shù)學(xué)因式分解教案篇十一
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和素質(zhì)教育的要求,結(jié)合學(xué)生的認(rèn)知規(guī)律及心理特征而確定,即:七年級的學(xué)生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強(qiáng)的表現(xiàn)欲,同時又具備了一定的歸納、總結(jié)表達(dá)的能力。因此,確定如下教學(xué)目標(biāo):
(1).知識技能目標(biāo)。
讓學(xué)生掌握多邊形的內(nèi)角和的公式并熟練應(yīng)用。
(2).過程和方法目標(biāo)。
讓學(xué)生經(jīng)歷知識的形成過程,認(rèn)識數(shù)學(xué)特征,獲得數(shù)學(xué)經(jīng)驗,進(jìn)一步發(fā)展學(xué)生的說理意識和簡單推理,合情推理能力。
(3).情感目標(biāo)。
激勵學(xué)生的學(xué)習(xí)熱情,調(diào)動他們的學(xué)習(xí)積極性,使他們有自信心,激發(fā)學(xué)生樂于合作交流意識和獨立思考的習(xí)慣。。
2、教學(xué)重、難點定位。
教學(xué)重點是多邊形的內(nèi)角和的得出和應(yīng)用。
教學(xué)難點是探索和歸納多邊形內(nèi)角和的過程。
1、教材的地位與作用。
本課選自人教版數(shù)學(xué)七年級下冊第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,層層遞進(jìn),這樣編排易于激發(fā)學(xué)生的學(xué)習(xí)興趣,很適合學(xué)生的認(rèn)知特點。
2、聯(lián)系及應(yīng)用。
本節(jié)課是以三角形的知識為基礎(chǔ),仿照三角形建立多邊形的有關(guān)概念。因此。
多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會把復(fù)雜化為簡單,化未知為已知,從特殊到一般和轉(zhuǎn)化等重要的思想方法。而多邊形在工程技術(shù)和實用圖案等方面有許多的實際應(yīng)用,下一節(jié)平面鑲嵌就要用到,讓學(xué)生接觸一些多邊形的實例,可以加深對它的概念以及性質(zhì)的理解。
學(xué)生對三角形的知識都已經(jīng)掌握。讓學(xué)生由三角形的內(nèi)角和等于180°,是一個定值,猜想四邊形的內(nèi)角和也是一個定值,這是學(xué)生很容易理解的地方。由幾個特殊的四邊形的內(nèi)角和出發(fā),譬如長方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個定值,這個定值是360°。要得到四邊形的內(nèi)角和等于360°這個結(jié)論最直接的方法就是用量角器來度量。讓學(xué)生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導(dǎo)學(xué)生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應(yīng)用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學(xué)生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導(dǎo),學(xué)習(xí)將新問題化歸為已有結(jié)論的思想方法,這里學(xué)生都容易理解。課堂教學(xué)設(shè)計中,在探究五邊形,六邊形和七邊形的內(nèi)角和時,讓學(xué)生動手實踐,設(shè)置探究活動二,為了讓學(xué)生拓寬思路,從不同的角度去思考這個問題,這個活動對學(xué)生的動手能力要求進(jìn)一步提高了,學(xué)生對這個問題的理解稍微有些難度,但學(xué)生可根據(jù)自己本身的特點來加以補(bǔ)充和完善。在教學(xué)設(shè)計中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內(nèi)各個成員需要分工協(xié)作,才能夠順利的把任務(wù)完成;最后,學(xué)生還需要把自己的思維從感性認(rèn)識提升到理性認(rèn)識的高度,這樣就培養(yǎng)了學(xué)生合情推理的意識。
本節(jié)課借鑒了美國教育家杜威的"在做中學(xué)"的理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間"的思想,我確定如下教法和學(xué)法:
1、教學(xué)方法的設(shè)計。
我采用了探究式教學(xué)方法,整個探究學(xué)習(xí)的過程充滿了師生之間,學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。
2、活動的開展。
利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
3、現(xiàn)代教育技術(shù)的應(yīng)用。
我利用課件輔助教學(xué),適時呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強(qiáng)直觀效果,提高課堂效率。探究活動在本次教學(xué)設(shè)計中占了非常大的比例,探究活動一設(shè)置目的讓學(xué)生動手實踐,并把新知識與學(xué)過的三角形的相關(guān)知識聯(lián)系起來;探究活動二設(shè)置目的讓學(xué)生拓寬思路,為放開書本的束縛打下基礎(chǔ);培養(yǎng)學(xué)生動手操作的能力和合情推理的意識。通過師生共同活動,訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神;使學(xué)生懂得數(shù)學(xué)內(nèi)容普遍存在相互聯(lián)系,相互轉(zhuǎn)化的特點。練習(xí)活動的設(shè)計,目的一檢查學(xué)生的掌握知識的情況,并促進(jìn)學(xué)生積極思考;目的二凸現(xiàn)小組合作的特點,并促進(jìn)學(xué)生情感交流。
以上是我對《多邊形的內(nèi)角和》的教學(xué)設(shè)計說明。
初中數(shù)學(xué)因式分解教案篇十二
王老師的《因式分解》這節(jié)課,他上的這節(jié)課每個環(huán)節(jié)層層遞進(jìn),落實有效,教學(xué)流程自然流暢,有獨創(chuàng)性。教學(xué)設(shè)計張弛有度,實施過程中有水到渠成的銜接美。教師教態(tài)大方,親和力強(qiáng),對學(xué)生啟發(fā)點撥到位,駕馭課堂的能力強(qiáng),整節(jié)課,學(xué)生在愉悅、寬松和諧的學(xué)習(xí)氛圍中,學(xué)得輕松,學(xué)得愉快。收到良好的教學(xué)效果。其中印象最深的環(huán)節(jié)有:
1.新課引入十分好,但沒把握好進(jìn)一步解讀課題的機(jī)會。
2.教師結(jié)構(gòu)設(shè)計的很好,教學(xué)過程中相當(dāng)自然。
3.課堂小結(jié)很好,把因式分解(平方差公式)的特點進(jìn)行了全面的概括,但略顯課堂時間較緊。
4.練習(xí)設(shè)計由易到難,層層遞進(jìn),若教師再講的少一點,教學(xué)效果可能較佳。
5.作為一名實習(xí)教師,在原有的基礎(chǔ)上有很多進(jìn)步,課上得相當(dāng)不錯。
6.教師的'語言親和力強(qiáng),學(xué)生和教師配合默契,課堂氣氛高漲,但略顯教師講課過多。
7.陳老師能根據(jù)我班級學(xué)生特點,設(shè)計教學(xué)內(nèi)容,教學(xué)效果體現(xiàn)得更佳。
8.教師在教學(xué)過程中缺少讓學(xué)生“感悟”的過程。
9.教師教學(xué)語言規(guī)范,教態(tài)自然,對學(xué)生有親和力,教室互相到位,對學(xué)生的學(xué)習(xí)有一定的幫助。
10.能為學(xué)生提供大量數(shù)學(xué)活動的機(jī)會,讓學(xué)生成為課堂學(xué)習(xí)的主人。
通過這次評課,讓我在教材教法、課堂教學(xué)策略等方面受益匪淺,并希望課堂上一些新理念、策略充實以后教學(xué)實踐中。
初中數(shù)學(xué)因式分解教案篇十三
1、理解并掌握三角形中位線的概念、性質(zhì),會利用三角形中位線的性質(zhì)解決有關(guān)問題。
2、經(jīng)歷探索三角形中位線性質(zhì)的過程,讓學(xué)生實現(xiàn)動手實踐、自主探索、合作交流的學(xué)習(xí)過程。
3、通過對問題的探索研究,培養(yǎng)學(xué)生分析問題和解決問題的能力以及思維的靈活性。
4、培養(yǎng)學(xué)生大膽猜想、合理論證的科學(xué)精神。
探索并運用三角形中位線的性質(zhì)。
運用轉(zhuǎn)化思想解決有關(guān)問題。
創(chuàng)設(shè)情境——建立數(shù)學(xué)模型——應(yīng)用——拓展提高。
情境創(chuàng)設(shè):測量不可達(dá)兩點距離。
活動一:剪紙拼圖。
操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形。
觀察、猜想:四邊形bcfd是什么四邊形。
探索:如何說明四邊形bcfd是平行四邊形?
活動二:探索三角形中位線的性質(zhì)。
應(yīng)用。
練習(xí)及解決情境問題。
例題教學(xué)。
操作——猜想——驗證。
拓展:數(shù)學(xué)實驗室。
小結(jié):布置作業(yè)。
初中數(shù)學(xué)因式分解教案篇十四
1.通過實驗,使學(xué)生相信經(jīng)過大量的重復(fù)實驗后得到的頻率值確實可以作為隨機(jī)事件每次發(fā)生的機(jī)會的估計值,體會隨機(jī)事件中所隱含著的確定性內(nèi)涵。
2.使學(xué)生知道,通過實驗的方法,用頻率估計機(jī)會的大小,必須要求實驗是在相同條件下進(jìn)行的。且在相同條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但個人所得的值也并不一定相同。
3.培養(yǎng)學(xué)生合作學(xué)習(xí)的能力,并學(xué)會與他人交流思維的過程和結(jié)果。
重點:頻率與機(jī)會的關(guān)系。
難點:如何用頻率估計機(jī)會的大小?教學(xué)準(zhǔn)備數(shù)枚相同的圖釘。
一、提出問題。
上一節(jié)課,通過一系列的實驗和觀察,我們已經(jīng)知道:實驗是估計機(jī)會大小的一種方法。我們可以通過實驗,觀察某事件出現(xiàn)的`頻率,當(dāng)頻率值逐漸穩(wěn)定時,這個值就可以作為我們對該事件發(fā)生機(jī)會的估計。
下面讓我們看另一類問題:
一枚圖釘被拋起后釘尖觸地的機(jī)會有多大?
二、分組實驗。
1.兩個學(xué)生一個小組,一人拋擲,一人記錄。
每個小組拋擲40次,記錄出現(xiàn)釘尖觸地的頻數(shù)。
教師負(fù)責(zé)把各小組的結(jié)果登錄在黑板上。
3.列出統(tǒng)計表,繪制折線圖。
4.根據(jù)實驗結(jié)果估計一下釘尖觸地的機(jī)會是百分之幾?
三、深入思考。
如果兩個小組使用的是兩種不同形狀的圖釘,那么這兩種圖釘釘尖觸地的機(jī)會相同嗎?
能把兩個小組的實驗數(shù)據(jù)合起來進(jìn)行實驗嗎?
四、概括小結(jié)。
從上面的問題可以看出:
1.通過實驗的方法用頻率估計機(jī)會的大小,必須要求實驗是在相同條件下進(jìn)行的。比如,以同樣的方式拋擲同一種圖釘。
2.在相同的條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但每人所得的值也并不一定相同。
五、用心觀察。
觀察課本第105頁表15.2.1和圖15.2.2。
當(dāng)實驗進(jìn)行到多少次以后,所得頻率值就趨于平穩(wěn)了?
(小結(jié):實驗到頻率值較穩(wěn)定時,結(jié)果比較可靠。這個頻率值也就可以作為這個事件發(fā)生機(jī)會的估計值。)。
六、鞏固練習(xí)。
課本第107頁練習(xí)第1、2題。
七、課堂小結(jié)。
這節(jié)課你有什么收獲?還有哪些問題需要老師幫你解決的?
注意:通過實驗的方法用頻率估計機(jī)會大小,必須要求實驗是在相同條件下進(jìn)行的。
八、布置作業(yè)。
1、課本第108頁習(xí)題15.2第2題。
2、課本第106頁做一做。
2、數(shù)字之積為奇數(shù)與偶數(shù)的機(jī)會。
【本文地址:http://mlvmservice.com/zuowen/12022448.html】