詩歌是用感性語言描寫具體事物或抒發(fā)抽象情感的一種文學形式??偨Y要具備一定的前瞻性,給出未來的發(fā)展方向。下面是小編整理的一些總結實例,供大家學習和參考。
比的基本性質(zhì)說課稿一等獎篇一
教材是教師實施教學的重要內(nèi)容和媒介,在教學中,我們可以創(chuàng)造性地使用教材,可以使用不同的教學手段開展教學活動。但是,教材所蘊含的基本知識、基本技能、思想方法和學生要積累的活動經(jīng)驗是千變?nèi)f變不能離其中,所有的教學行為,都要為之服務。因此,吃透教材,既要研究教材提供的顯性材料,更要深度挖掘期中的隱性素材,才能把握好教學的要求,達到教學的預期目標。
《分數(shù)的基本性質(zhì)》這一內(nèi)容,初乍一看,就一內(nèi)容:分數(shù)的的分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。學生對這個基本性質(zhì)的理解和應用并不難,關鍵是這個性質(zhì)是怎么得到的?這需要我們通過動手操作,動態(tài)地展示知識的生成過程,通過歸納、數(shù)形結合、類比等思想方法讓學生感悟知識的來龍去脈,溝通知識之間的聯(lián)系。
教材中,是通過三個環(huán)節(jié)去實現(xiàn)這一目標的:
環(huán)節(jié)一:通過分餅,出示“分子、分母不同,但分數(shù)大小相等”的顯性材料,從具體的“形”去展示教學內(nèi)容。
環(huán)節(jié)二:通過舉例、驗證,發(fā)現(xiàn)分子、分母的變化規(guī)律,歸納出分數(shù)的基本性質(zhì),從“數(shù)”去探究教材的隱性素材。
環(huán)節(jié)三:根據(jù)分數(shù)與除法的關系,利用整數(shù)的商不變規(guī)律去說明和印證分數(shù)的基本性質(zhì)。
教學中,我們往往知識關注到了教材中的顯性素材,忽略了重要的隱性素材,進而影響到我們的教學環(huán)節(jié)的設置、素材的準備、內(nèi)容的安排、目標的制定,使得我們的教學看似行云流水,實是淺顯單薄的結局。
因此,只有吃透教材,才能真正實現(xiàn)“向40分鐘要效率”的目的,真正落實教學的目標。
比的基本性質(zhì)說課稿一等獎篇二
“分式的基本性質(zhì)(第1課時)”是人教版八年級數(shù)學下冊第十五章第一節(jié)“分式”的重點內(nèi)容之一,是在小學學習了分數(shù)的基本性質(zhì)的基礎上進行的,是分式變形的依據(jù),也是進一步學習分式的通分、約分及四則運算的基礎,使學生掌握本節(jié)內(nèi)容是學好本章及以后學習方程、函數(shù)等問題的關鍵。
難點:靈活運用分式的基本性質(zhì),進行分式恒等變形、變號。
1)通過小組合作探究分式的基本性質(zhì),利用問題引導學生回憶分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。
2)引導學生用語言和式子表示分式的基本性質(zhì)并通過針對練習使學生對其有更深的理解。
3)通過例題的講解,讓學生初步理解“性質(zhì)”,再通過不同類型的練習,使其掌握“性質(zhì)”的運用。
4)引導學生對本節(jié)課進行小結,使學生的知識結構更合理、更完善。
眾所周知,關注學情是教學內(nèi)在的需要。我們的學校剛剛建校2周年,學生的基礎相對比較薄弱,在數(shù)學知識點運用方面問題較多。此外,學生的課外學習幾乎無人督促,而學生又缺少自主學習的能力,所以班里的學生在學習成績上都存在著嚴重的兩級分化。同時體現(xiàn)出及格率低、優(yōu)秀率低等問題。且升本教育模式在我校沒有大面積推廣,因此我們數(shù)學組在本學期內(nèi)進行小專題實驗:如何提高課堂實效性?在教學中我們應該多注重基礎知識的應用,讓學生多練多想,同時注重激發(fā)學生的學習興趣,從多方面吸引學生的注意力。
1、知識與技能。
(2)靈活運用“性質(zhì)”進行分式的變形。
2、數(shù)學思考。
通過類比分數(shù)的基本性質(zhì),探索分式的基本性質(zhì),初步掌握類比的思想方法。
3、解決問題:通過探索分式的基本性質(zhì),積累數(shù)學活動經(jīng)驗。
4、情感態(tài)度價值觀。
通過研究解決問題的過程,培養(yǎng)學生合作交流意識與探究精神。
基于本節(jié)課的特點:
課堂教學采用了“問題—觀察—思考—提高”的步驟,使學生初步體驗到數(shù)。
學是一個充滿著觀察、思考、歸納、類比和猜測的探索過程。
根據(jù)教材分析和目標分析,確定本節(jié)課主要采用啟發(fā)引導探索的教學方法。學生在教師營造的“可探索”的環(huán)境里,積極參與,互相討論,一步步地理解分式的基本性質(zhì),并通過應用此性質(zhì)進行不同的練習,讓學生得到更深刻的體會,實現(xiàn)教學目標。有方法就要有手段進行依托,我所采用的教學手段是:多媒體輔助教學通過課件演示,創(chuàng)設問題,讓學討論、交流、總結。教師耐心引導、分析、講解和提問,并及時對學生的意見進行肯定與評議,從而突出教師是學生獲取知識的啟發(fā)者、引導者、幫助者和參與者的形象。
現(xiàn)代新教育理念認為,學習數(shù)學不應只是單調(diào)刻板的簡單模仿、機械背誦與操練,而應該采用有意義的,富有挑戰(zhàn)性的學習內(nèi)容來引起學生的興趣。要達到學生主動學習的目的,本節(jié)課采用學生小組合作交流自主探索,觀察發(fā)現(xiàn),師生互動的學習方式。學生通過自主探究-自主總結-自主提高,突出學生是學習的主體,他們在感知知識的過程中,無疑提高了探索-發(fā)現(xiàn)-實踐-總結的能力。同時強化了學生以舊知識類比得出新知識的能力。
一、小組合作,探索新知:
三、基礎訓練,鞏固新知。
四、知識拓展,深化提高。
1、如果把分式abab,字母a,b的值分別擴大為原來的2倍,則分式的值為。
a.擴大為原來的2倍。
b.縮小到原來的。
c.不變。
d.縮小到原來。
板書設計:
比的基本性質(zhì)說課稿一等獎篇三
宋賀彩科長和王麗老師的《分數(shù)的基本性質(zhì)》兩節(jié)課各有特色,下面就這兩節(jié)課談談自己的體會。宋科長的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。這節(jié)課充分運用知識的遷移,調(diào)動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質(zhì)”復習引入,通過一組填空題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變。”再根據(jù)分數(shù)與除法德關系,引導學生把除法算式改寫成分數(shù)的形式,從而概括出分數(shù)的基本性質(zhì)。練習題的設計也是由淺入深,尤其是分數(shù)大小的比較中,“分子分母都不相同的怎樣比較大小”時,讓學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。王麗老師的《分數(shù)的基本性質(zhì)》一節(jié)課,充分體現(xiàn)了新的課程標準與新理念,給我的感受也很深刻。首先這節(jié)課的引入設計得很好,從學生的興趣出發(fā),通過孫悟空給猴子們分甘蔗,大猴子分得每根甘蔗的1/2,小猴子分得每根甘蔗的2/4,勞猴子分得每根甘蔗的3/6,小猴子說分得不公平,由此組織學生展開討論,這樣一下子就吸引了學生的'注意力,激發(fā)了學生學習積極性和興趣。學生自己通過合作學習探討得出:
1/2=2/4=3/6之后又引導學生去發(fā)現(xiàn)這些分數(shù)之間的變化規(guī)律,從而得出分數(shù)的基本性質(zhì),并強調(diào)了“同時”、“相同的數(shù)”、“0除外”等關鍵處。練習題的設計也是形式多樣,尤其是“小游戲”,老師說分母,學生說分子或老師說分子,學生說分母;“連續(xù)寫出多個相等的分數(shù)”等都是從學生的興趣出發(fā),調(diào)動了學生的多向思維,效果也不錯。
聽了李老師的一節(jié)“分數(shù)的基本性質(zhì)”的數(shù)學課,給我留下了深刻的印象。
是數(shù)學學習的方法,從而激勵學生進一步地主動學習,我認為這是本節(jié)課一大亮點。
但是,我感覺本課教學中,驗證得還不夠透徹,部分同學還有疑慮。如果能讓每位學生在自己準備的紙上畫一畫、折一折、或剪一剪,通過動手操作來驗證自己的猜想是否正確,從而培養(yǎng)學生的動手能力,以及觀察問題解決問題的能力。
沈老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在沈老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節(jié)課談談自己的體會。
1.教材簡析《分數(shù)的基本性質(zhì)》是小學數(shù)學教材第十冊的內(nèi)容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質(zhì)的基礎。分數(shù)的基本性質(zhì)是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
2、教材處理。
(1)堅持以本為本的原則,把教材中的陳述性教學為猜想與驗證性發(fā)現(xiàn)。
(2)把總結式教學為學生自我發(fā)現(xiàn)、自我總結的探究性學習。
(3)以教師的主導地位轉(zhuǎn)化為學生為主體的學生探究性學習。
3、教學過程這節(jié)課充分運用知識的遷移,調(diào)動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質(zhì)”復習引入,通過一組練習題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變。”
在新授過程中,沈老師沒有單一地把今天所要學習的內(nèi)容直接出示給學生,而是把一種靜態(tài)的數(shù)學知識變?yōu)橐环N讓學生在一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質(zhì),從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。整個課堂創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”
貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質(zhì)疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。沈老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
比的基本性質(zhì)說課稿一等獎篇四
1、使學生理解和掌握分數(shù)的基本性質(zhì),能應用“性質(zhì)”解決一些簡單問題。
2、培養(yǎng)學生觀察、分析、思考和抽象、概括的能力。
3、滲透“形式與實質(zhì)”的辯證唯物主義觀點,使學生受到思想教育。
認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、整數(shù)的互化方法。今天我們繼續(xù)學習分數(shù)的有關知識。
例1:用分數(shù)表示下面各圖中的陰影部分,并比較它們的大小。
1、分別出示每一個圓,讓學生說出表示陰影部分的分數(shù)。
(1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
(2)同樣大的圓,陰影部分占圓的幾分之幾?
(3)同樣大的圓,陰影部分用分數(shù)表示是多少?
2、觀察比較陰影部分的大?。?/p>
(1)從4幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等。)。
(2)陰影部分的大小相等,可以用等號連接起來。
3、分析、推導出表示陰影部分的分數(shù)的大小也相等:
(1)4幅圖中陰影部分的大小相等。那么,表示這4幅圖的4個分數(shù)的大小怎么樣呢?(這4個分數(shù)的大小也相等)。
(2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來)。
4、觀察、分析相等的分數(shù)之間有什么關系?
(1)觀察轉(zhuǎn)化成,的分子、分母發(fā)生了什么變化?(的分子、分母都乘上了2或的分子、分母都擴大了2倍。)。
(2)觀察例2:比較的大小。
1、出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù)。
2、觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大小:從數(shù)軸上可以看出:
3、觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律。
(1)這三個分數(shù)從形式上看不同,但是它們實質(zhì)上又都相等。(教師板書:)。
(2)你們分析一下,各用什么樣的方法就都可以轉(zhuǎn)化成了呢?
1、觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律?“分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變。”
2、為什么要“零除外”?
3、教師小結:這就是今天這節(jié)課我們學習的內(nèi)容:“分數(shù)的基本性質(zhì)”(板書:“基本性質(zhì)”)。
4、誰再說一遍什么叫分數(shù)的基本性質(zhì)?教師板書字母公式:
1、請同學們回憶,分數(shù)的基本性質(zhì)和我們以前學過的哪一個知識相類似?(和除法中商不變的性質(zhì)相類似。)。
(1)商不變的性質(zhì)是什么?(除法中,被除數(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變。)。
(2)應用商不變的性質(zhì)可以進行除法簡便運算,可以解決小數(shù)除法的運算。
2、分數(shù)基本性質(zhì)的應用:我們學習分數(shù)的基本性質(zhì)目的是加深對分數(shù)的認識,更主要的是應用這一知識去解決一些有關分數(shù)的問題。
例3:把和化成分母是12而大小不變的分數(shù)。
1、把下面各分數(shù)化成分母是60,而大小不變的分數(shù)。
2、把下面的分數(shù)化成分子是1,而大小不變的分數(shù)。
3、在里填上適當?shù)臄?shù)。
4、的分子增加2,要使分數(shù)的大小不變,分母應該增加幾?你是怎樣想的?
5、請同學們想出與相等的分數(shù)。規(guī)律:這個分數(shù)的值是,然后只要按自然數(shù)的順序說出分子是1、2、3、4、……分母是分子的4倍為:4、8、12、16……無數(shù)個。
今天這節(jié)課我們學習了什么知識?懂得了一個什么道理?分數(shù)的基本性質(zhì)是什么?這是學習分數(shù)四則運算的基礎,一定要掌握好。
1、指出下面每組中的兩個分數(shù)是相等的還是不相等的。
2、在下面的括號里填上適當?shù)臄?shù)。
比的基本性質(zhì)說課稿一等獎篇五
11月25日,我有幸聽了曾小豆名師工作室成員張xx老師的一堂復習課。張老師展示的是《圓的基本性質(zhì)復習課》。
課上,張老師以“轉(zhuǎn)”和“折”兩個角度引出圓的旋轉(zhuǎn)不變性和軸對稱性。并以圓的`旋轉(zhuǎn)性為出發(fā)點將弦與圓周角的問題拋出,讓學生思考多種求解方法,從而簡單的復習圓心角、弧、弦心距、圓周角、弦等知識點的聯(lián)系以及垂徑定理的運用。在老師的引導下,進一步加深了對圓的基本性質(zhì)的了解和認識。
本節(jié)課,張老師設計的綜合型較強的圓與動點問題,是本節(jié)課的亮點所在,在給定的條件下,老師先讓學生嘗試性的出題,然后學生自己解決,課堂效果較好,學生樂學其中。最后老師出手,將難題拋出,學生獨立思考并分析解決。整堂課,思路清晰,內(nèi)容循序漸進,符合學生的認知水平。另外,張老師的將圓的知識結構化,問題設計又充分體現(xiàn)著綜合性,結合富有新意的板書,使人印象深刻。
比的基本性質(zhì)說課稿一等獎篇六
今天聽了丁老師執(zhí)教的《比的基本性質(zhì)》一課。丁老師圍繞活動主題,注重培養(yǎng)學生的數(shù)學思想,注重學生為教學主體,教師為教學的引導者、合作者,教學方法靈活,教學效果良好。
1、課堂教學中都體現(xiàn)了類推的數(shù)學思想,轉(zhuǎn)化的`思想,開課伊始對分數(shù)基本性質(zhì)、除法商不變性質(zhì)的復習,在教學中,由最簡分數(shù)到最簡整數(shù)比,這些由舊知的復習到新知的引入與理解,充分體現(xiàn)了數(shù)學中的類推思想和轉(zhuǎn)化思想,不僅教會學生學習的方法,更提高了學生的學習能力,教學效果良好。
2、教學中做到了分散難點,抓住重點,突破難點,在課堂教學中,抓住了理解比的基本性質(zhì),利用學生課前閱讀,各類判斷題的判斷,讓學生對比的基本性質(zhì)得到了充分的理解,并在教學中,有效建立分數(shù)的基本性質(zhì)、商不變性質(zhì)與比的基本性質(zhì)的關系,分散了教學的難點,抓住重點,突破了難點,教學收到良好的效果。
3、課堂容量大,丁老師的教學根據(jù)六年級學生的特點,課堂教學容量大,將課堂教學看作是考試一樣,引導學生在緊張、高效的情況下學習、了解、鞏固、提高。
教學中注重了學生在判斷中理解比的基本性質(zhì),化簡比與求比值的區(qū)別,但缺乏學生親自動手化簡的過程,如果讓學生自己親自去化簡,會充分理解比的基本性質(zhì),會應用比的基本性質(zhì)。
比的基本性質(zhì)說課稿一等獎篇七
《分數(shù)的基本性質(zhì)》是小學數(shù)學教材第十冊的內(nèi)容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是后面進一步學習通分、約分、比的基本性質(zhì)的基礎,而通分、約分又是分數(shù)計算的基礎,因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。本節(jié)課與傳統(tǒng)的概念教學相比,有很大的改進,體現(xiàn)了新的教學理念,主要表現(xiàn)在以下幾個方面:
《數(shù)學課程標準》指出:“教師是數(shù)學學習的組織者、引導者與合作者?!?/p>
在本節(jié)課中,李老師很好的為我們詮釋了這句話。:老師為學生提供了有趣的故事情境以及大量的數(shù)學素材,讓學生去觀察、感悟,及時精辟的啟發(fā)點撥,加上極具親和力的自然交流。這些都體面了教師是數(shù)學學習的組織者、引導者與合作者。從中也看出李老師那種超強的課堂駕馭能力。
興趣的是最好的老師,李老師充分的利用這一點,以一個精彩的智力故事:和尚分餅引入新課,直接為教學服務,給人以開門見山的感覺,給學生制造懸念,并引導學生自主探究、小組合作交流,在變與不變中發(fā)現(xiàn)規(guī)律、總結規(guī)律。
在練習這一環(huán)節(jié),李老師精心設計了由淺入深的題目,既鞏固了新知有發(fā)展了學生的能力。不管多么完美的課堂,總會留有小小的遺憾,這也是我們不斷探究的動力。在本節(jié)課中老師出示第二組分數(shù)時,如果讓學生動手操作,既鍛煉了學生的能力,又可從中感知分數(shù)的基本性質(zhì)。
李老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在李老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節(jié)課談談自己的'體會。
這節(jié)課充分運用知識的遷移,調(diào)動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質(zhì)”復習引入,通過一組練習題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變。”
想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質(zhì)疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。李老師老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
比的基本性質(zhì)說課稿一等獎篇八
大家上午好!
我說課的內(nèi)容是:人教版小學數(shù)學課標教材五年級下冊75頁—76頁《分數(shù)基本性質(zhì)》。下面我就從教材分析、學情分析、教學目標、教法學法及教學過程五個方面來談一下教學過程設計及設計意圖。
本節(jié)的內(nèi)容屬于概念教學?!斗謹?shù)基本性質(zhì)》在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質(zhì)的基礎,還是約分、通分的依據(jù)。
學生已經(jīng)清楚理解分數(shù)的意義,明確分數(shù)與除法的關系,商不變性質(zhì)等知識,這些都為本節(jié)課學習做了知識上的鋪墊。分數(shù)的基本性質(zhì)是一種規(guī)律性知識,分數(shù)的分子、分母變了,分數(shù)的大小卻沒變。學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律,掌握新知識。
綜合分析課程標準要求及學生實際,我確定本節(jié)教學目標如下:
1.理解和掌握分數(shù)的基本性質(zhì),并會運用分數(shù)的基本性質(zhì)把不同的分數(shù)化成分母(或分子)相同而大小不變的分數(shù)。
2.初步養(yǎng)成觀察、比較、抽象概括的邏輯思維能力,并且在自主探究中正確認識和理解變與不變的辯證關系。
3.受到數(shù)學思想的熏陶,養(yǎng)成樂于探究的學習態(tài)度。
教學重點:理解掌握分數(shù)的基本性質(zhì),它是約分、通分的依據(jù)。
教學難點:讓學生自主探索、發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關的問題。
根據(jù)本節(jié)課的教學目標,考慮到學生已有的知識、生活經(jīng)驗和認知特點,結合了教材內(nèi)容,本一課我主要采用猜想驗證與探索發(fā)現(xiàn)的教學模式。在分數(shù)的基本性質(zhì)過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。通過了觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用,激發(fā)學生學習興趣,同時讓學生獲得成功體驗。
本一節(jié)課的教學過程我分五個部分進行:
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創(chuàng)設問。
題情境,揭示本節(jié)課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數(shù)基本性質(zhì)。
第三部分:合作探究,發(fā)現(xiàn)規(guī)律。主要的是學生找出規(guī)律,并利用規(guī)律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發(fā)現(xiàn)規(guī)律”可以細化成為三個環(huán)節(jié):
環(huán)節(jié)一:動手操作,進行比較
這一環(huán)節(jié)是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數(shù)表示涂色部分,并比較大小。此環(huán)節(jié)的設計主要是培養(yǎng)學生的比較能力。
環(huán)節(jié)二:呈現(xiàn)問題,引導觀察
這一環(huán)節(jié)主要是呈現(xiàn)給學生這樣的一個問題,“第一環(huán)節(jié)中的分數(shù)的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環(huán)節(jié)的設計主要是培養(yǎng)學生的`觀察能力。
環(huán)節(jié)三:交流匯報,得出規(guī)律
這一環(huán)節(jié)主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調(diào)0除外”,鞏固結論。最終推導出分數(shù)的基本性質(zhì)----分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。此環(huán)節(jié)的設計主要是培養(yǎng)學生的抽象概括能力。
應該強調(diào)的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。
以上是我對《分數(shù)基本性質(zhì)》一節(jié)的教學設計意圖,有不當之處,請各位批評指導。
比的基本性質(zhì)說課稿一等獎篇九
新課標中指出“小學數(shù)學教學必須從學生的生活實際出發(fā),設計富有情趣和意義的活動,使他們從周圍熟悉的事物中學習數(shù)學,運用數(shù)學?!逼鋵嵕褪亲寣W生帶著已有的生活經(jīng)驗、認知經(jīng)驗進入課堂,參與學習。在認知經(jīng)驗中,學生已經(jīng)理解了除法的意義與基本性質(zhì)、分數(shù)的意義與基本性質(zhì),以及分數(shù)與除法的關系等知識,掌握了分數(shù)乘、除法的計算方法,會解答分數(shù)乘、除法實際問題且理解了比的意義。有了這些知識的儲備,學生只要進行知識的遷移、類比就可以自主探究出比的基本性質(zhì)。學生理解并掌握比的基本性質(zhì),不但能加深對商不變性質(zhì)、分數(shù)的基本性質(zhì)、比的意義、比和分數(shù)、比和除法等知識的理解與掌握,而且也為以后學習比的應用,比例知識,正、反比例打好基礎。
二、教材處理。
根據(jù)教材的編排和學生已有的知識經(jīng)驗,我對本段教材的教學作出以下兩點處理:
原教材聯(lián)系比和除法、分數(shù)關系,通過“想一想”啟發(fā)學生找出比中有什么樣的規(guī)律?然后概括比的基本性質(zhì)。我認為這樣的編排是一種純數(shù)理之間的推理,是符號之間的運算,欠缺生活氣息,難以激發(fā)學生的探究熱情。為此,我創(chuàng)設了一個生活情境,讓學生在解決生活問題的過程中激發(fā)探究欲望,不著痕跡地完成了“比的基本性質(zhì)”的探究過程。
2、例1的教學。
例題由兩道題組成。
第(1)題采用“神州五號”的題材。此素材有利于滲透情感價值觀的教育,且蘊含了相似變換的數(shù)學思想,是非常好的編排。
第(2)題給出的兩個比,我認為過于單調(diào),且沒能涵蓋比的各種呈現(xiàn)形式,為體現(xiàn)課堂的動態(tài)生成,教學資源的豐富性,我采用了開放性的教學內(nèi)容,讓學生在學習第(1)題的基礎上自主舉例練習化簡整數(shù)與分數(shù)、分數(shù)與分數(shù)、整數(shù)與小數(shù)、小數(shù)與小數(shù)、分數(shù)與小數(shù)等各種比。
以上兩點處理均基于數(shù)學教育的生活化、數(shù)學資源的多元化的現(xiàn)代數(shù)學教育教學理念進行個性處理的,并以此提升學生在課堂教學中的主體地位,體現(xiàn)課堂教學的動態(tài)生成。
三、教學目標。
2、能力目標:運用比的基本性質(zhì),讓學生通過嘗試來化簡并探討出不同類型比的多種化簡方法,從而培養(yǎng)學生的應用能力和創(chuàng)新能力。
3、情感目標:感受生活中處處有數(shù)學,數(shù)學就在我們身邊。培養(yǎng)學生積極、自主的學習探究興趣,使每個學生都嘗到成功的喜悅。
四、教學策略。
1、堅持“發(fā)展為本”,促進學生個性發(fā)展,并在時間和空間諸方面為學生提供發(fā)展的充分條件,以培養(yǎng)學生的實踐能力、探索能力和創(chuàng)新精神為目標。在教學過程中,注意引導學生怎樣有序觀察、怎樣概括結論,通過一系列活動,培養(yǎng)學生動手、動口、動腦的能力,使學生的觀察能力、抽象概括能力逐步提高,教會學生學習。使學生通過自己的努力有所感受,有所感悟,有所發(fā)現(xiàn),有所創(chuàng)新。
2、小學生學習的數(shù)學應該是生活中的數(shù)學,是學生“自己的數(shù)學”。讓學生在生活情境中“尋”數(shù)學,在實踐操作中“做”數(shù)學,在現(xiàn)實生活中“用”數(shù)學。
3、“學以致用”是學習的出發(fā)點和歸宿點,也是學習數(shù)學的終結所在。讓學生感到數(shù)學的有趣和可學,我們還應注重將數(shù)學知識提升應用到生活中,提高學生處理問題的實際能力,讓學生真正做到會學習、會創(chuàng)造、會生活的一代新人,讓數(shù)學課堂真正成為學生活動的、創(chuàng)造的課堂。
五、教學程序設計。
(一)創(chuàng)設生活情境,以激發(fā)學生的探索欲望。
10克果珍;第二杯200毫升的水,20克果珍;第三杯400毫升的水,40克果珍.同時我也以此在講臺上做了這個實驗,同學們會興致盎然,想盡各種辦法幫助小明。
(設計意圖是:因為每一個學生都是熱情的,都是樂于助人的,尤其是愿意幫助同學解決問題,因此一聽說幫助同學,學生會產(chǎn)生極大的興趣,興趣就是學生思維的原動力,只要有興趣,就會產(chǎn)生創(chuàng)造性的源泉。另外小明的困難又是學生熟悉的生活情境,這有利于學生憑借生活經(jīng)驗主動探索,實現(xiàn)生活經(jīng)驗數(shù)學化,同時又感受到“數(shù)學源于生活”。)。
同學們幫助小明解決問題,有的利用商不變性質(zhì),有的利用分數(shù)的基本性質(zhì)。學生在師生互動中說出商不變性質(zhì),分數(shù)的基本性質(zhì)的內(nèi)容。(屏幕出示文字內(nèi)容。)我接著詢問在分數(shù)的基本性質(zhì)里,有哪些關鍵詞?在商不變的性質(zhì)里,有哪些關鍵詞?缺少他們行嗎?為什么?通過類比讓學生想到比的基本性質(zhì),從而引出課題。
(設計意圖是:先通過學生回憶已學舊知,進而猜想比的基本性質(zhì)從而引出課題,放飛了學生思維,讓他們自主地依據(jù)已有知識經(jīng)驗,在觀察、合作、猜想、交流中展開合理的想象與多角度思考。)。
接下來,讓學生觀察商不變性質(zhì)與分數(shù)的基本性質(zhì),猜一猜,想一想,比的基本性質(zhì)應該是怎樣的呢?小組討論,學生根據(jù)討論結果發(fā)表意見,師生共同總結比的基本性質(zhì)的內(nèi)容。最后強調(diào)學習了比的基本性質(zhì),哪些詞語是很重要,提醒同學們注意“同時、相同、0除外”這些關鍵詞。
(設計意圖是:讓學生體會到充分利用已有知識自學新知的學習方法,進一步弄清了比、除法、分數(shù)之間的聯(lián)系與區(qū)別。然后通過引導學生用語言描述,共同完善比的基本性質(zhì),使學生在這一過程中,領悟了利用舊知學習新知的學習方法,溝通了知識間的聯(lián)系,又培養(yǎng)了學生初步的類比推理能力。)。
(三)理解最簡整數(shù)比。
通過類比讓學生明白利用商不變性質(zhì),我們可以進行除法的簡算;根據(jù)分數(shù)的基本性質(zhì),我們可以把分數(shù)約分成最簡分數(shù)。同樣應用比的基本性質(zhì),可以把比化成最簡單的整數(shù)比。小組討論怎么理解“最簡單的整數(shù)比”這個概念?然后達成共識:
(1)是一個比;
(2)前項、后項必須是整數(shù),不能是分數(shù)或小數(shù);
(3)前項與后項互質(zhì)。
(設計意圖是“最簡單的整數(shù)比”是本節(jié)課教學的難點,所以先類比然后讓學生討論最后對這個概念產(chǎn)生共識的方法,讓學生在獨立思考、互動交流中自發(fā)地嘗試利用已有的知識來解讀新概念。)。
(四)教學例1。
1、教學第(1)題。
(1)出示例1的第(1)題。
(2)讓學生閱讀例題,說說圖片中的事件,并按要求列出兩個比,然后嘗試運用比的基本性質(zhì)把兩個比化成兩個最簡單的整數(shù)比。
(3)師生點評,小結。
(1)要求:分小組進行探究活動,每小組分別舉出整數(shù)與分數(shù)、分數(shù)與分數(shù)、整數(shù)與小數(shù)、小數(shù)與小數(shù)、分數(shù)與小數(shù)的一個例,并在小組內(nèi)完成探究練習。
(2)小組匯報探究成果。
(3)簡單小結各種比的化簡辦法。
(這樣的設計充分體現(xiàn)了學生的主體地位,把課堂交給學生,讓課堂教學資源多元化,讓學生在提出問題、解決問題中提升學習能力,在探究活動中體會到學習數(shù)學的樂趣)。
(五)應用與拓展。
1、完成教材46頁的“做一做”。
2、游戲:小蝸牛找家。
3、判斷。
(1)比的前項和后項都乘5,比值不變。()。
(2)比的前項擴大2倍,要使比值不變,后項應除以2。()。
(3)2:12化成最簡整數(shù)比是3:48。()。
4、完成教材48頁第6題。
(設計意圖:層次性訓練中,提高學生知識技能,發(fā)展學生個性。第1、2題是基礎性練習,讓學生鞏固比的基本性質(zhì)的應用。第3題是判斷題,設計目的是加深學生對比的基本性質(zhì)的理解。第四題使用討論形式,通過全班的辯論,提高了學生解決問題的能力。)。
比的基本性質(zhì)說課稿一等獎篇十
1.使學生理解和掌握分數(shù)的基本性質(zhì),能應用“性質(zhì)”解決一些簡單問題。
2.培養(yǎng)學生觀察、分析、思考和抽象、概括的能力。
3.滲透“形式與實質(zhì)”的辯證唯物主義觀點,使學生受到思想教育。
教學過程。
一、談話我們已經(jīng)學習了分數(shù)的意義,認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、整數(shù)的互化方法。今天我們繼續(xù)學習分數(shù)的有關知識。
二、導入新課例1.用分數(shù)表示下面各圖中的陰影部分,并比較它們的大小。
1、分別出示每一個圓,讓學生說出表示陰影部分的分數(shù)。
(1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
(2)同樣大的.圓,陰影部分占圓的幾分之幾?
(3)同樣大的圓,陰影部分用分數(shù)表示是多少?
2、觀察比較陰影部分的大?。?/p>
(1)從4幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等。)。
(2)陰影部分的大小相等,可以用等號連接起來。
3、分析、推導出表示陰影部分的分數(shù)的大小也相等:
(1)4幅圖中陰影部分的大小相等。那么,表示這4幅圖的4個分數(shù)的大小怎么樣呢?(這4個分數(shù)的大小也相等)。
(2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來)。
4、觀察、分析相等的分數(shù)之間有什么關系?
(1)觀察轉(zhuǎn)化成,的分子、分母發(fā)生了什么變化?(的分子、分母都乘上了2或的分子、分母都擴大了2倍。)。
(2)觀察例2.比較的大小。
1、出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù)。
2、觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大?。簭臄?shù)軸上可以看出:
3、觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律,
1、觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律?“分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變?!?/p>
2、為什么要“零除外”?
3、教師小結:這就是今天這節(jié)課我們學習的內(nèi)容:“分數(shù)的基本性質(zhì)”(板書:“基本性質(zhì)”)。
4、誰再說一遍什么叫分數(shù)的基本性質(zhì)?教師板書字母公式:
1、請同學們回憶,分數(shù)的基本性質(zhì)和我們以前學過的哪一個知識相類似?(和除法中商不變的性質(zhì)相類似。)。
(1)商不變的性質(zhì)是什么?(除法中,被除數(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變。)。
(2)應用商不變的性質(zhì)可以進行除法簡便運算,可以解決小數(shù)除法的運算。2、分數(shù)基本性質(zhì)的應用:我們學習分數(shù)的基本性質(zhì)目的是加深對分數(shù)的認識,更主要的是應用這一知識去解決一些有關分數(shù)的問題。例3把和化成分母是12而大小不變的分數(shù)。
板書:
教師提問:
(1)?為什么?依據(jù)什么道理?(,因為分母2乘上6等于12,要使分數(shù)的大小不變,分子1也要乘上6.所以,)。
(2)這個“6”是怎么想出來的?(這樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)。
(3)?為什么?依據(jù)的什么道理?(,因為分母24除以2等于12,要使分數(shù)的大小不變,分子10也得除以2,所以,)。
(4)這個“2”是怎么想出來的?(這樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是10÷2=5)。
比的基本性質(zhì)說課稿一等獎篇十一
教完“比的基本性質(zhì)”后,我不停地在思考一個問題:學生學習數(shù)學知識有一個最重要的基礎:已有知識,尤其對六年級學生而言,他們在以前學習的過程中,積累了豐富的數(shù)學知識,盡管這些知識的獲得有的來自于他人的幫助,有的來自于自身的感悟,但是不管怎樣,不管其來源如何,既然學生已經(jīng)掌握,就納入到了學生已有的知識結構體系中,這些的確是客觀存在的現(xiàn)實,并作為小學生已有知識的一部分構成進一步學習新知的數(shù)學資源?!稊?shù)學新課程標準》指出:“數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上”。小學生已有的知識是學生進行數(shù)學學習的重要資源。
其實,對于小學生而言,由于他們已經(jīng)有了許多相關的數(shù)學知識,很多教材中的“新知識”對于學生來講并非“新知識”。正因為這樣,我理解的小學生數(shù)學學習的實質(zhì)是,用自己已有的知識與新知進行交互作用,進而重新建構自己的知識體系的過程。學生以前學習的“商不變的規(guī)律”、“分數(shù)的基本性質(zhì)”、“比與分數(shù)、除法之間的關系”和今天學習的“比的基本性質(zhì)”相互聯(lián)系起來,讓學生在已有知識的基礎上學習新知就可以起到事半功倍的效果。
因此,學生的已有知識理所當然地成為他們數(shù)學學習的一個重要基礎,進而成為我們進行數(shù)學教學的一個龐大資源庫。而這些學生已經(jīng)掌握的數(shù)學知識,為他們進一步學習數(shù)學提供了一個有利的條件。教師如果能夠注意到這些情況,并將學生已有的知識科學合理進行利用,與學習數(shù)學新知互相結合起來,必將起到良好的效果。因此,關注學生已有的知識,貼近學生的實際情況,既是數(shù)學學科的特點所決定的,更是數(shù)學學習所必需的。
比的基本性質(zhì)說課稿一等獎篇十二
今天我向大家介紹的是數(shù)學六年級新教材第一章“分數(shù)”中的第二課時“分數(shù)的基本性質(zhì)”。在本堂課的教學設計中,試圖突出以下兩個特點:
(1)逐步引導學生實現(xiàn)學習方式的轉(zhuǎn)變:由學生習慣于課堂上聽教師講授為主的學習方式,轉(zhuǎn)變?yōu)閷W生自主學習探究的學習方式。教師為學生提供一個發(fā)展的空間,引導學生自己通過動手操作、觀察猜測、說理驗證等學習環(huán)節(jié),運用自主探索、合作交流等學習方式,去探索,去發(fā)現(xiàn),去體驗,教師作為指導者給予啟發(fā)、點撥。希望通過這樣的設計,能逐步引導學生形成并且正在逐步形成積極思考、自主探索、相互合作、嚴謹求實的品質(zhì)。
(2)強調(diào)知識發(fā)生的過程,加強數(shù)學思想方法的滲透:由學生熟悉的給定理、做練習的數(shù)學課模式,轉(zhuǎn)變?yōu)橥怀鲋R發(fā)生過程,強調(diào)數(shù)學思想方法的數(shù)學學習過程。通過給學生設置一個具體的情境問題,激起學生的求知欲望,教師引導學生探索發(fā)現(xiàn)其中的數(shù)學規(guī)律,并用已經(jīng)學過的知識和方法去嘗試說理驗證。通過這樣的數(shù)學學習過程,學生能親身體驗科學研究的一般過程,并從中體會科學探索的嚴謹品質(zhì),同時在要求學生說理驗證的過程中可以啟發(fā)學生建立新舊知識之間的聯(lián)系,實現(xiàn)知識點的增長和遷移的特點。
在前一年我曾執(zhí)教過六年級數(shù)學,通過這次的備課,我發(fā)現(xiàn):在“分數(shù)的基本性質(zhì)”這一課的教學安排中,新老教材對知識的發(fā)生和形成過程的處理方法有較大的區(qū)別。據(jù)我個人的觀點,老教材在引入時有針對性的復習分數(shù)與除法的關系和除法中商不變的性質(zhì),之后通過類比來實現(xiàn)知識點的遷移和增長,這樣的設計安排學生能較好的體會到各知識點之間的內(nèi)在聯(lián)系,學習的數(shù)學概念有較強的系統(tǒng)性;新教材則更強調(diào)學生通過自身的努力,經(jīng)過動手操作實踐的過程,來獲得親身探究的直觀感受和體驗,之后再設法把感性認識上升到理性思考的高度,這樣的設計安排突出的特點是學生有更多的動手操作機會,能留下強烈的直觀感受,對培養(yǎng)學生逐步形成自主探究的良好的學習方式有很大的幫助。教學目標:在理解分數(shù)意義的基礎上,通過操作、觀察,探索分數(shù)的基本性質(zhì),體驗分數(shù)性質(zhì)的“探究發(fā)現(xiàn)——說理檢驗”的學習過程,并會運用分數(shù)的基本性質(zhì)將一個分數(shù)變化為分母(或分子)不同而大小保持不變的分數(shù)。學會面對新問題時,敢于面對、積極探索、發(fā)現(xiàn)規(guī)律,并能從原有知識中找到理論依據(jù),體會新舊知識間的內(nèi)在聯(lián)系,通過自身的努力,實現(xiàn)知識點的遷移和增長。通過數(shù)學課的學習活動,盡快熟悉新同學,逐步養(yǎng)成認真傾聽同學意見、相互合作、相互交流、積極探索的品質(zhì)。
教學過程:
一創(chuàng)設情境,引出問題,引導探索,猜測規(guī)律提出問題:一張涂色的紙,涂色部分占這張紙的3/4。請同學們分別用這樣的紙折成不同等分的圖案,看看你們能發(fā)現(xiàn)什么結論呢?通過教師的引導,學生們可以發(fā)現(xiàn):在這些大小相同、不同等分的紙中,涂色部分分別占紙的3/4、6/8、9/12、12/16,這些分數(shù)的大小是相等的,即:3/4=6/8=9/12=12/16。由分數(shù)3/4的分子、分母分別同乘以2、3、4可得分數(shù)6/8、9/12、12/16。而分數(shù)12/16、9/12、6/8的分子、分母分別同除以4、3、2可得分數(shù)3/4。鼓勵學生大膽猜測。由折紙這樣具體的情境問題來引發(fā)學生的思考,既能激發(fā)學生的學習興趣,學生又能真切的體會到數(shù)學就在我們身邊;安排動手操作的學習環(huán)節(jié),之后通過觀察和找規(guī)律來進行探究性學習,符合六年級學生的認知程度,能讓他們體會到數(shù)學學習的樂趣。折紙這樣的操作雖然看似簡單,其實能反映出很多數(shù)學問題,例如通過折紙可以幫助學生體會圖形的翻折對稱中隱含的圖形特征和邊角的數(shù)量關系。我們應該盡量挖掘類似的簡單有效的方法,讓學生的數(shù)學學習過程手腦并用、輕松有趣。在探索過程中,教師的引導是非常重要的一個的環(huán)節(jié),尤其是如何設問。
在此,我就提出幾個設問僅供大家參考。雙色紙上有幾個小長方形?綠色部分占這張紙的幾分之幾?你能將它折成幾個大小相同的小長方形?綠色部分分別占了幾分之幾?這些分數(shù)有什么關系?這些分數(shù)之間有什么規(guī)律?在本節(jié)課之前,學生對分數(shù)的意義、分數(shù)與除法的關系已經(jīng)有了初步的認識,在說理過程中,會很自然的運用到分數(shù)和除法的關系,以及除法中商不變的性質(zhì)。分數(shù)和除法的關系就是前一節(jié)課的學習內(nèi)容,學生印象還比較深刻,較易聯(lián)想起來;除法中商不變的性質(zhì)可能學生一時之間不容易回想起來,但它和分數(shù)的基本性質(zhì)相似性極高。安排這樣的說理環(huán)節(jié),可以使學生體會到新舊知識之間的內(nèi)在聯(lián)系,體會到學習的過程就是知識點的遷移和增長過程。三運用性質(zhì),鞏固提高例題1試舉出幾個與分數(shù)18/48大小相等的分數(shù)。教材上是“試舉出三個與分數(shù)2/5相等的分數(shù)”。做改動的目的有兩個:一是學生可以從中體會分子、分母不但可以同乘一個數(shù)而且可以同除一個數(shù);二是不明確寫幾個,來引發(fā)學生思考這樣的分數(shù)可以寫幾個?例題2把2/5和8/60分別化成分母是15且與原分數(shù)大小相等的分數(shù)。練習1在括號內(nèi)填上適當?shù)臄?shù),使等式成立:
(1)9/15=3×()/5×()。
(2)2×()/9×()=8/()。
(3)5×()/2×()=()/14。
(4)15÷()/20÷()=()/42。
試各寫出三個與下列分數(shù)分母不同而大小相等的分數(shù):
(1)1/4。
(2)5/7。
(3)4/6。
(4)10/43。
分別用數(shù)軸上的點表示分數(shù)1/2,2/4,4/8,你能得到什么結論?4把2/3和8/30分別化成分母是15且大小相等的分數(shù)。5在括號中填上適當?shù)臄?shù):
(1)1/4=()/12。
(2)3/7=()/56。
(3)6/5=30/()。
(4)()/10=4/20。
(5)36/24=()/8。
(6)7/35=1/()。
(7)18/()=6/12。
(8)20/16=5/()。
四、課堂小結。
比的基本性質(zhì)說課稿一等獎篇十三
今天我說課的內(nèi)容是《分數(shù)的基本性質(zhì)》。下面我將從“說教學理念、說教材、說教法、說學法、說教學程序、說板書設計”六個方面來說課。
一、本課的教學理念有:
1、以學生發(fā)展為本,著力強化主體意識。
2、從學生已有的認知發(fā)展水平和知識經(jīng)驗出發(fā),為學生提供充分從事數(shù)學活動的機會,變“學數(shù)學”為“做數(shù)學”。
3、致力于改變學生的學習方式,關注過程,讓學生經(jīng)歷知識的形成過程,感受驗證、轉(zhuǎn)化等數(shù)學思想方法。
二、說教材。
《分數(shù)的基本性質(zhì)》一課是義務教材六年制數(shù)學第十冊第四單元的一個內(nèi)容。這部內(nèi)容的學習是在學生學習了分數(shù)的意義、分數(shù)與除法的關系、商不變性質(zhì)等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。
根據(jù)教材內(nèi)容和學生的認識知規(guī)律,將本課的教學目標擬定如下:
1、知識與技能:理解和掌握分數(shù)的基本性質(zhì),知道分數(shù)基本性質(zhì)與整數(shù)除法中商不變性質(zhì)的關系。能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母相同而大小相等的分數(shù);培養(yǎng)學生觀察、比較及動手實踐的能力,進一步發(fā)展學生的思維。
2、情感、態(tài)度:激發(fā)學生積極主動的情感狀態(tài),養(yǎng)成注意傾聽的習慣。
本課的教學重點和難點:理解和掌握分數(shù)的基本性質(zhì),會運用分數(shù)的基本性質(zhì)。
三、說教法。
樹立以“以學生發(fā)展為本”、“以學定教”、“教為學服務”的思想,因此在教學中,我采用引導自學、合作探索相結合法,讓學會運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同但大小相等的分數(shù),有效地提高了教學效率。在知識的鞏固階段,我還采用組織練習法,當然以上這些教法并不是孤立存在的,本著“一法為主,多法為輔”的思想,我將多種教法進行優(yōu)化組合,以達到促進學生學習方式的轉(zhuǎn)變,實現(xiàn)教學目標的目的。
四、說學法。
1、學生在運用分數(shù)的基本性質(zhì)時,引導學生采用自主發(fā)現(xiàn)法、操作體驗法,學生在折紙上畫出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發(fā)現(xiàn)。之后老師通過啟發(fā)學生運用分數(shù)的基本性質(zhì),證明那三個分數(shù)大小相等,讓嘗試中發(fā)現(xiàn),在實踐中體驗。從而加深學生對分數(shù)基本性質(zhì)的理解。
2、在學習例題的過程中教師先采用啟發(fā)法,再采用自自學嘗試法,獨立自主地學習將分數(shù)化成分母不同但大小相同的分數(shù),并嘗試完成做一做,達到檢驗自學的目的。
五、說教學程序。
一、設疑激趣,引入新課。
教育學家布朗曾提出:“情境通過活動來合成知識,興趣最好的老師”。
這樣通過故事激發(fā)學生的學習興趣,為后面的學習做好了鋪墊。
二、自主探索,學習新知。
新課標強調(diào),要讓學生在實踐活動中進行探索性的學習。根據(jù)這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。
1、小組合作,讓學生用一張紙代替餅,試著分分看。經(jīng)歷驗證猜想——學生操作驗證——集體匯報交流——展示成果四個過程。
學生得出:這三個分數(shù)相等關系,分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
師:誰能用一句話把這個變化規(guī)律敘述出來呢?
生:從左往右看,分數(shù)的分子、分母同時擴大了,也就分子分母都乘了一個相同的數(shù),但三個分數(shù)的大小沒有變。
師:你們觀察的真仔細!請大家給點掌聲好嗎?(出示課件)老師這樣敘述的“分數(shù)的分子、分母都乘上同一個數(shù),分數(shù)大小不變”。
4、讓學生從右到左觀察等式分子和分母又如何變化的呢?誰能用一句話把這個變化規(guī)律敘述出來?小組討論后,同樣的方法讓學生小結規(guī)律,并請同學給予評價,讓學生抒發(fā)自己的見解,體現(xiàn)課堂教學的民主化。然后教師在課件中補充“或者除以”四個字,小結分數(shù)的基本性質(zhì)。
5、接著讓學生四人小組一起做游戲,運用分數(shù)的基本性質(zhì),由一位同學說一個分數(shù),然后其他同學依次說出相等的分數(shù),不能重復,看看誰又快又準。
結束游戲,教師提問,現(xiàn)在我們知道分數(shù)的分子、分母都乘上或除以同一個數(shù),分數(shù)大小不變。剛剛大家做游戲,有沒有人使用了0呢?大家想一想0可以不可以呢?讓學生回答:分數(shù)的分母不能為零。我在課件中填上“零除外”三個紅色的字,以便引起學生的注意。
6、教師引導:“學了分數(shù)的基本性質(zhì)到底有什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術?!苯又寣W生練習課本例題2,兩名學生上臺演板,其他學生點評。學生自己小結方法。
教育家波利亞指出:學習任何新知的最佳途徑由學生自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深,也最容易掌握內(nèi)在規(guī)律和聯(lián)系。教學中給學生提供自主探究、合作交流的天地,積極為學生創(chuàng)設主動學習的機會,提供嘗試探索的空間,學生能主動從不同方面,不同角度思考問題,尋求解決途徑。同時還培養(yǎng)學生的合作意識,使不同的想法得到交流,實現(xiàn)知識的學習、互補。
三、分層練習,鞏固深化。
只有通過相應的練習,才能更好地鞏固新知,形成技能。在練習的安排上我注重層次性,滲透多樣性,讓學生理解用所學的知識可以解決不同類型的問題,進一步提高解題能力。
1、涂一涂練習14,第1、7題。
因為要給空格上色,所以答案并不唯一,通過這兩題不僅能讓學生回憶探究發(fā)現(xiàn)規(guī)律的過程,充分體現(xiàn)了“玩中學,學中玩”的新課程理念。
2、說一說完成練習14,第8題。
我想通過這道題讓學生進一步加深對分數(shù)基本性質(zhì)的形成過程的理解,從而培養(yǎng)學生的語言表達能力。
3、想一想:第5、9、10題(選擇一題做為作業(yè))。
在這我讓同學們充分發(fā)揮想象,靈活運用分數(shù)的基本性質(zhì)。為后面學習約分和通分的知識奠定基礎。
四、暢談收獲,小結全課。
讓學生自己總結所學內(nèi)容,暢談收獲和感受,培養(yǎng)學生的概括能力和語言表達能力。
整節(jié)課中,我力求做到始終引導學生主動觀察、充分體驗、動手實踐、積極創(chuàng)新,努力做到既注重學生的獨立思考,又注重合作交流,既重視知識與能力的共進,又關注情感和體驗的提高,讓學生全面、深刻地理解分數(shù)的基本性質(zhì)。
比的基本性質(zhì)說課稿一等獎篇十四
比的基本性質(zhì)的學習是學生在理解了比和分數(shù)、除法的關系以及掌握了商不變的性質(zhì)和分數(shù)基本性質(zhì)的基礎上來學習的。我先通過讓學生回憶商不變性質(zhì)和分數(shù)的基本性質(zhì),讓侯根據(jù)上節(jié)課學習的比的意義里比,除法和分數(shù)的關系讓學生推導比的基本性質(zhì),比的前項和后項同時乘或除以一個相同的數(shù)(零除外),比值不變。在這個過程中,培養(yǎng)了學生只是遷移和總結歸納的能力。
在講解化簡比的時候,還是讓學生回憶分數(shù)的基本性質(zhì),我們知道,一般情況都要用分數(shù)的最簡形式表示結果,那么比是否也有最簡形式呢?然后學生展開交流,小組合作,令我以外的是學生討論的結果竟然是那么的恰當,節(jié)省我很多講授的時間,也就給練習更多的時間。但是學生在總結上語言還是不夠簡練,需要教師的引導。
在教學過程中對學生的能力還是把控不夠,不敢放手讓學生探討,教師扮演的角色時間過于多,教師的語言組織能力還需加強,在各個環(huán)節(jié)的銜接上有些欠缺,備課時多學情還沒備到位。
比的基本性質(zhì)說課稿一等獎篇十五
一、學習目標:
二、教學過程:
(一)溫故知新(考考你的眼力)判斷下面的方程是不是一元一次方程?不是的請說明理由。
1、2+x=52、x+y=23、x2+y=5。
4、1+2=35、x2–3=26、3x–2x=3。
由小組合作完成,請一個同學起來點評。
(二)情景導入。
1、看下面一組式子,請你添上適當?shù)臄?shù)或者式子,保證等式還成立。
1+2=32x+3x=5x。
1+2+____=3+____2x+3x+_____=5x+___。
1+2-____=3-____2x+3x-_____=5x-___。
再換一個數(shù)或者式子試試。同桌交流一下答案。
歸納發(fā)現(xiàn)規(guī)律:由此你發(fā)現(xiàn)等式有什么性質(zhì)?
2、再看一組式子:請你添上適當?shù)腵數(shù)使等式還成立。
8=8x=x。
換一個數(shù)試試:小組交流:看看你添的數(shù)和其他同學一樣嗎?
歸納發(fā)現(xiàn)規(guī)律:由此你又發(fā)現(xiàn)了等式有什么性質(zhì)?
用數(shù)學符號表示:(1)若________=__________(________)。
則__________=____________。
(2)若_________=__________(________)。
則_________=____________。
(三)拓展延伸你會用等式的性質(zhì)來解決以下問題嗎?試試看!
2、從x=y能得到嗎?理由是:______________________。
比的基本性質(zhì)說課稿一等獎篇十六
著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質(zhì)的基礎,還是約分、通分的依據(jù)。
學生已經(jīng)清楚理解分數(shù)的好處,明確分數(shù)與除法的關系,商不變
性質(zhì)等知識,這些都為本節(jié)課學習做了知識上的鋪墊。分數(shù)的基本性質(zhì)是一種規(guī)律性知識,分數(shù)的分子、分母變了,分數(shù)的大小卻沒變。學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律,掌握新知識。
綜合分析課程標準要求及學生實際,我確定本節(jié)教學目標如下:
1.理解和掌握分數(shù)的基本性質(zhì),并會運用分數(shù)的基本性質(zhì)把不同
的分數(shù)化成分母(或分子)相同而大小不變的.分數(shù)。
2.初步養(yǎng)成觀察、比較、抽象概括的邏輯思維潛力,并且在自主探究中正確認識和理解變與不變的辯證關系。
3.受到數(shù)學思想的熏陶,養(yǎng)成樂于探究的學習態(tài)度。
教學重點:理解掌握分數(shù)的基本性質(zhì),它是約分、通分的依據(jù)。
教學難點:讓學生自主探索、發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關的問題。
根據(jù)本節(jié)課的教學目標,思考到學生已有的知識、生活經(jīng)驗和認
知特點,結合教材資料,本課我主要采用猜想驗證與探索發(fā)現(xiàn)的教學模式。在分數(shù)的基本性質(zhì)過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。透過觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用,激發(fā)學生學習興趣,同時讓學生獲得成功體驗。
本節(jié)課的教學過程我分五個部分進行
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創(chuàng)設問
題情境,揭示本節(jié)課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數(shù)基本性質(zhì)。
第三部分:合作探究,發(fā)現(xiàn)規(guī)律。主要的是學生找出規(guī)律,并利用規(guī)律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發(fā)現(xiàn)規(guī)律”能夠細化為三個環(huán)節(jié):
環(huán)節(jié)一:動手操作,進行比較
這一環(huán)節(jié)是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數(shù)表示涂色部分,并比較大小。此環(huán)節(jié)的設計主要是培養(yǎng)學生的比較潛力。
環(huán)節(jié)二:呈現(xiàn)問題,引導觀察
這一環(huán)節(jié)主要呈現(xiàn)給學生這樣一個問題,“第一環(huán)節(jié)中的分數(shù)的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環(huán)節(jié)的設計主要是培養(yǎng)學生的觀察潛力。
環(huán)節(jié)三:交流匯報,得出規(guī)律
這一環(huán)節(jié)主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調(diào)0除外”,鞏固結論。最終推導出分數(shù)的基本性質(zhì)----分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。此環(huán)節(jié)的設計主要是培養(yǎng)學生的抽象概括潛力。
就應強調(diào)的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。
以上是我對《分數(shù)基本性質(zhì)》一節(jié)的教學設計意圖,有不當之處,請各位批評指導。
比的基本性質(zhì)說課稿一等獎篇十七
1、使學生理解掌握比的基本性質(zhì),能應用比的基本性質(zhì)進行比的化簡。
2、培養(yǎng)學生類比、推理和概括思維能力。
1、前面我們認識了比,想一想2:4與6:12這兩個比的大小是相等的嗎?你能證明嗎?----小研究(后附)。
(1)4人小組交流(2)全班交流。
(3)比值相等可以證明,還可以運用學過的哪個知識也可以證明呢?
(4)商不變的性質(zhì)是不是對每個比都適用呢?自己舉例試一試。
4、學生齊讀,我們學習比的基本性質(zhì)有什么作用呢?分數(shù)的性質(zhì)可以使分數(shù)化簡,比的性質(zhì)同樣可以使比化簡,那么,什么樣的比才是最簡單的整數(shù)比呢?(比的前項和后項是互質(zhì)數(shù))最簡單的整數(shù)比就簡稱為最簡比。
5、你能舉例說幾個最簡比嗎?說得很好,在計算結果時,我們一般要得到最簡比。
1、小組交流。
2、全班交流。
小結:化簡比時,我們一般利用比的性質(zhì)把比的前項和后項化成整數(shù),再化簡比較快。但在比的前項和后項都是分數(shù)時,用求比值的方法較快,只是注意最后結果要寫成真分數(shù)、假分數(shù)或比的形式。
結合學生的匯報,引導學生注意化簡比和求比值的區(qū)別。化簡比:它是為了得到一個最簡單的整數(shù)比。結果可以寫成比的形式,也可以寫成分數(shù)的形式,但不能寫成帶分數(shù)、小數(shù)獲整數(shù)的形式。
1、學校體育室有10個籃球,15個足球,籃球與足球的個數(shù)比是()。
2、李師傅8小時生產(chǎn)了72個零件,李師傅生產(chǎn)零件總個數(shù)和時間的比是()。
3、拓展練習。
3:8=(3+6):(8+)。
(讓學生分小組討論方法)。
這節(jié)課有哪些收獲?師生共同總結。
()年()班姓名。
你知道2:4與6:12這兩個比的大小相等嗎?你能證明嗎?你有什么發(fā)現(xiàn)?
方法一。
方法二。
方法三。
方法四。
我的發(fā)現(xiàn):
聰明的同學:請你結合這節(jié)課所學的知識化簡下面各比,說說你有什么發(fā)現(xiàn)?
序號。
比
我的方法。
(寫出過程)。
1
14:21。
2
36:15。
3
1/6:2/9。
4
2/3:3/4。
5
1.25:2。
6
5.6:4.2。
我的發(fā)現(xiàn):
比的基本性質(zhì)說課稿一等獎篇十八
1,充分體現(xiàn)了學生的主體性,放手到位.
在探究比的基本性質(zhì)時,教師先讓學生在已有的知識基礎上大膽猜想,然后讓學生以同桌為單位進行驗證,展示驗證過程,再讓學生歸納出比的基本性質(zhì);在探究化簡比的方法時,教師安排了兩次活動,第一次,安排學生獨立自主探究,解決例1第一部分,第二次,由于內(nèi)容有一定難度,教師讓學生以小組(4人)為單位,先自己思考,再小組內(nèi)交流方法并解決問題,最后全班展示交流,總結方法,解決了例1第二部分.在本節(jié)課的兩次新知學習中,教師沒有過多講解,方法的探究,結論的歸納都是出自學生之口,學生真正經(jīng)歷了知識的產(chǎn)生過程.
2,深挖教材并合理進行調(diào)整.
在探究化簡比的方法時,教材例1中只安排了整數(shù)比整數(shù),分數(shù)比分數(shù),小數(shù)比整數(shù)三種類型,基于對教材知識體系和學生實際的了解,教師把“做一做中的小數(shù)比小數(shù),小數(shù)比分數(shù)兩種類型的題充實到例1中,這樣使學生較全面的掌握了化簡比的方法,降低了練習難度,效果較好.
3,整堂課體現(xiàn)了大容量快節(jié)奏,練習設計形式多樣.
習設計層次性強,有梯度,題型靈活多樣,尤其是快樂ab卷中設計了兩種難度的練習,供不同層次的學生選擇,關注了全體.
4,注重了多元化的評價.
教師在教學過程中,不僅注重了對學生個體的評價還注重了對小組合作學習的評價,同時也注重了培養(yǎng)學生的評價意識.在談收獲時,學生也能夠正確地對組內(nèi)成員進行評價,合作意識得以凸顯;尤其在快樂ab卷中,教師設計了學生自評,組內(nèi)成員互評,對教師課堂教學的評價版塊,這種多元化評價的設計既有利于學生的發(fā)展又有利于教師課堂教學的改善.
值得商榷之處:。
1,個別環(huán)節(jié)沒有抓住,失去了生成時機.
例如:在學生總結比的基本性質(zhì)時,個別學生說出了”0除外“,這時教師就應該抓住這一問題,為什么”0除外",進行強化,砸實這個知識點.
2,學生學習熱情不夠高.
教師在今后教學中應在創(chuàng)設情境和設計過渡語方面下功夫,力求充分調(diào)動學生的學習熱情.
比的基本性質(zhì)說課稿一等獎篇十九
《分數(shù)的基本性質(zhì)》這一課是課改版小學數(shù)學教材第十冊的教學內(nèi)容,學習本內(nèi)容之前,學生已清楚理解分數(shù)的意義,明確分數(shù)與除法的關系,商不變性質(zhì)等知識,這些都為本課學習做了知識上的鋪墊。分數(shù)的基本性質(zhì)是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種變與不變中發(fā)現(xiàn)規(guī)律。
2、知識間的聯(lián)系:
七冊:商不變性質(zhì)十冊:分數(shù)的基本性質(zhì)十二冊:比的基本性質(zhì)。
同時《分數(shù)的基本性質(zhì)》也是學生學習分數(shù)加減法的基礎。所以,本節(jié)課的教學內(nèi)容具有比較重要的地位。
二、指導思想與設計理念。
新的課程標準提出:教師應向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法。
根據(jù)這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質(zhì),從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規(guī)律的結論和應用,而應有意識地突出思想和方法?;谝陨纤伎?,本課讓學生經(jīng)歷:舊知喚醒(復習商不變性質(zhì)與分數(shù)與除法的關系)新知猜想(分數(shù)中是否有類似的性質(zhì),如果有,是一個什么樣的性質(zhì)?)實踐探究(看圖分類)得出結論(研究卡)深化認識(對結論的理解,嘗試練習,理解其中的變與不變,能用字母來表示式子)練習提高(基本題、綜合題、加深題)數(shù)學建模(用字母來表示分數(shù)的基本性質(zhì))建立聯(lián)系(分數(shù)的基本性質(zhì)與商不變性質(zhì)的聯(lián)系)。讓學生對于分數(shù)的基本性質(zhì)能在數(shù)學的層面上有一個較為完整、清晰與明確的掌握。
三、學情分析。
前測:(問卷形式)。
問題1:你知道分數(shù)的基本性質(zhì)嗎?你是怎樣理解的,試著舉例說明。
2:試著做一做下面這些題比較大?。?/p>
4/7○2/71/2○2/43/5○9/15。
分析:暫無。
結論:暫無。
四、教學目標及重難點。
教學目標:
1、讓學生經(jīng)歷分數(shù)基本性質(zhì)的探究過程,理解和掌握分數(shù)的基本性質(zhì),初步建立數(shù)學模型。
2、利用分數(shù)的基本性質(zhì)把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。
3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數(shù)學學習興趣。
教學重點:
解決策略:通過讓學生經(jīng)歷猜想驗證得出結論實踐練習這樣的學習過程,掌握知識的要點:什么是同時?方法是:乘或除以,要點:相同的數(shù)(0除外),最終:分數(shù)的大小不變。
教學難點:
解決策略:通過初步建立數(shù)學模型,使學生對分數(shù)的基本性質(zhì)這個結論能夠擺脫表象的依賴,即對具體事物或圖例,從而從而成熟地思考、理解。
五、教法學法:
教法:樹立以以學生發(fā)展為本、以學定教的思想,為實現(xiàn)教學目標,有效地突出重點、突破難點,我遵循學生的認知規(guī)律,以建構主義學習理論為指導,在探究分數(shù)的基本性質(zhì)過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規(guī)律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發(fā)現(xiàn)法組織教學。
學法:有效的數(shù)學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數(shù)化成分母不同但大小相同的分數(shù),并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用、激發(fā)學生學習愛好,同時讓學生獲得成功體驗。
六、教學過程。
一、遷移舊知.提出猜想。
1回憶舊知。
活動:猜信封。通過猜信封中的數(shù)或算式,引導學生回憶分數(shù)與除法的關系。媒體演示:分數(shù)與除法的關系:
被除數(shù)除數(shù)=。
通過誰能說一道與23商一樣的除法算式?引導學生回憶什么是商不變的性質(zhì)?媒體出示:商不變的性質(zhì):。
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。
2、提出猜想:
既然分數(shù)與除法的關系這么緊密.除法有商不變性質(zhì),那分數(shù)是否也會有這樣的性質(zhì),請大家大膽猜想一下。學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。
二、驗證猜想,建構新知。
環(huán)節(jié)1、看圖分類。
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數(shù),并把相同的分數(shù)分在一起。
通過動手操作,使學生不僅明白它們相等,滲透它們是因為什么而相等的為后面的實驗做好準備,避免學生出現(xiàn)盲目行動,同時也是為學生探究方法的多元化創(chuàng)造條件。
環(huán)節(jié)2、討論方法。
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2=2/4=4/8。
通過讓學生表述怎么判斷它們相等的鍛煉學生的表達能力。
3、研究規(guī)律。
利用研究卡進行研究。
確定的研究對象。
分子和分母同時乘上或者。
除以一個相同的數(shù)。
得到的分數(shù)。
研究對象與得到的分數(shù)相等嗎?
相等()不相等()。
猜想是否成立?
成立()不成立()。
充分利用學生的生成資源:揭示課題:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
第二層:教師通過追問和簡單的練習重點處理分數(shù)基本性質(zhì)的關鍵詞,滲透變與不變的數(shù)學思想。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)。
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數(shù)的大小不變)。
師:分子與分母是怎樣變化的?(同時乘或除以相同的數(shù),0除外)。
環(huán)節(jié)4、質(zhì)疑完善。
3/4=3()/4()。
師:括號中可以填哪些數(shù)?
預設:可以填無數(shù)個數(shù)。
師:如果只用一個數(shù)來表示,填什么數(shù)好?
預設:字母。
師:這個字母有什么特殊要求嗎?(0除外)。
得到一個初級的數(shù)學模型。3/4=3x/4x(x0)。
讓學生打開課本進行閱讀、內(nèi)化,并想一想還有什么問題嗎?
通過這個環(huán)節(jié)的練習,進行第一次數(shù)學建構。
三、練習升華。
通過以下練習進一步鞏固分數(shù)的基本性質(zhì),使學生初步利用分數(shù)的基本性質(zhì)把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。
2、把5/6和1/4都化為分母為12而大小不變的分數(shù)。
3、把2/3和3/4都化為分子為6而大小不變的分數(shù)。
4、把2/5的分子加上2以后,要使分數(shù)的大小不變,分母應加上多少?
5、和哪一個分數(shù)大,你能講出判斷的依據(jù)嗎?
四、總結延伸。
師:這節(jié)課學了什么?
師:如果一個分數(shù)為a/b,你能用一個式子來表示分數(shù)的基本性質(zhì)嗎?
a/b=ax/4x(x0)或a/b=ax/4x(x0)。
在這個環(huán)節(jié)中,數(shù)學的模型才真正的建立。模型一方面便于學生記憶,便于學生理解意義,而且數(shù)學化地表示數(shù)學也是高年級學生所必備的。
五、作業(yè)p87-1、2。
板書設計。
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
68。
34。
1216。
【本文地址:http://mlvmservice.com/zuowen/11735389.html】