最新四自由度工業(yè)機器人(五篇)

格式:DOC 上傳日期:2023-01-11 13:55:03
最新四自由度工業(yè)機器人(五篇)
時間:2023-01-11 13:55:03     小編:zdfb

無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。范文怎么寫才能發(fā)揮它最大的作用呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。

四自由度工業(yè)機器人篇一

introduction to robotics

mechanics and control

機器人學(xué)入門

力學(xué)與控制

別: 機械與汽車工程系 專學(xué)業(yè)生

名姓

稱: 機械設(shè)計制造及其自動化 名: 郭仕杰

學(xué)

號:

06101315 指導(dǎo)教師姓名、職稱: 賀秋偉 副教授

完成日期 2014 年2 月28日 introduction to robotics

mechanics and control

abstract this book introduces the science and engineering of mechanical branch of the robot has been in several classical field main related fields such as mechanics, control theory, computer this book, chapter 1 through 8 topics ranging from mechanical engineering and mathematics, chapter 9 through 11 cover control theory of material, and twelfth and 13 may be classified as computer science addition, this book emphasizes the computational aspects of the problem;for example, each chapter it mainly mechanical has a brief section book is used to teach the class notes introduction to robotics, stanford university in the fall of 1983 to first and second versions have been through 2002 in use from 1986 the third version can also benefit from the revised and improved due to feedback from many to all those who modified the author's book is suitable for advanced undergraduates the first grade students have contributed to the dynamics and linear algebra course in advanced language program in a basic course of addition, it is helpful, but not absolutely necessary, let the students finish the course control purpose of this book is a simple introduction to the material, intuitive ically, does not need the audience mechanical engineer strict, although much of the material is from the the stanford university, many electrical engineers, computer scientists, mathematicians find this book very we only on the important part to main content

1、background

the historical characteristics of industrial automation is popular during the period of rapid as a cause or an effect of automation technology, period of this change is closely linked to the world of industrial robots, can be identified in a unique device 1960's, with the development of computer aided design(cad)system and computer aided manufacturing(cam)system, the latest trends, automated manufacturing technology is the leading industrial automation through another transition, its scope is still the northern america, machinery and equipment used in early 80's of the 20th century, the late 80's of the 20th century a short then, the market more and more(figure 1.1), although it is affected by economic fluctuations, all the 1.2 shows the robots were installed in a large number of annual world industrial y, the number of japan's report is different from other areas: they count the number of machine of robot in other parts of the world are not considered robot(instead, they would simply be considered “factory machines”).therefore, the reported figures for the japanese of the main reason for the growth in the use of industrial robots is that they are falling .1.3 shows that, in the last century 90's ten years, robot prices dropped although human labor the same time, the robot is not only cheaper, they become more effective and faster, more accurate, more we factor these quality adjusted to the number, the use of robots to decrease the cost of even than their price tag cost-effective in the robot they become, as human labor to become more expensive, more and more industrial work become robot automation is the most important trend to promote the industrial robot market second trend is, in addition to the economic, as robots become more can become more tasks they can do, may have on human workers engaged in dangerous or rial robots perform gradually get more complex, but it is still, in 2000, about 78% installation welding or material handling robot in usa robot.a more challenging field, industrial robots, accounted for 10% book focuses on the dynamics and control of the most important forms of industrial robot, is the industrial robot is sometimes ent, as shown in figure 1.4 is always included, and cnc milling machine(nc)is usually difference lies in the programmable complex place if a mechanical device can be programmed to perform a variety of applications, it may be an industrial is the part of a limited class of tasks are considered fixed the purpose of this difference, do not need to be discussed;the basic properties of most materials suitable for various programmable general, the mechanical and control research of the mechanical hand is not a new science, but a collection of the theme from the “classic” ical engineering helps to machine learning methods for static and dynamic mathematical description of movement of the tool manipulator space supply and other e design evaluation tool to realize the motion and force the desired algorithm control ical engineering technology applied in the design of electrical engineering technology for sensor applied in design and industrial robot interface sensor, are programmed to perform the required task of basic computer science and the s:

figure 1.1: shipments of industrial robots in north america in millions of us

dollars

figure 1.2: yearly installations of multipurpose industrial robots for 1995-2000 and

forecasts for 2001-2004

figure 1.3: robot prices compared with human labor costs in the 1990s

figure 1.4:the adept 6 manipulator has six rotational joints and is popular in many sy of adept technology, inc.2、control of mechanical arm in the study of robots, 3d spatial position we constantly to the object of objects are all manipulator links, parts and tools, it deals, and other objects in the robot's a coarse and important level, these objects are described by two attributes: the position and course, a direct interest in the topic is the attitude in which we represent these quantities and manipulate their order to describe the human body position in space and direction, we will always highly coordinate system, or frame, rigid we continue to describe the position and orientation of the reference frame of the coordinate framework can be used as a reference system in the expression of a body position and direction, so we often think of conversion or transformation of the body of these properties from one frame to another 2 chapter discusses the convention methods of dealing with job descriptions discussed method of treating and post convention described positioning and manipulation of coordinate system the quantity and mathematics developed skills relevant to the position and rotation of the description and is very useful in the field of rigid tics is the science of sports, the movement does not consider the force which resulted in the scientific research of kinematics, a position, velocity, acceleration, and the location variable high order derivative(with respect to time of all or any of the other variables(s)).therefore, the kinematics of manipulator is refers to the geometric and temporal characteristics of all manipulator comprises nearly rigid connection, which is the relative movement of the joint connection of adjacent nodes are usually instrument position sensor, so that adjacent link is a relative position the case of rotating or rotary joint, the displacement is called the joint robots including sliding(or prism)connection, in which the connection between the relative displacement is a translation, sometimes called the joint manipulator has a number of independent position variables are specified as the mechanism to all parts of is a very general term, any example, a four connecting rod mechanism has only one degree of freedom(even with three members of the movement).in the case of the typical industrial robots, because the robots is usually an open kinematic chain, because each joint position usually define a variable, the node is equal to the number of degrees of free end of the link chain consisting of the manipulator end ing to the application of robot, the end effector can be a starting point, the torch, electromagnet, or other usually by mechanical hand position description framework description tool, which is connected to the end effector, relative to the base, the base of the mobile the study of mechanical operation of a very basic problem is the is to compute the position of mechanical static geometric problems in hand terminal ically, given a set of joint angles, the forward kinematics problem is to compute the position and orientation relative to the base of the tool mes, we think this is a change from the joint space is described as a manipulator position that cartesian space description.“this problem will be discussed in the 3 the 4 chapter, we will consider the inverse kinematics problems are as follows: the end effector position and direction of the manipulator, computing all possible joint angle, can be used to achieve the position and direction of a given.(see figure 1.7.)this is a practical problem of manipulator is is quite a complex geometry problem, the conventional solution in tens of thousands of humans and other biological systems time every a case like a robot simulation system, we need to create computer control algorithm can make the some ways, the solution to this problem is the most important element in the operating is quite a complex geometry problem, the conventional solution in tens of thousands of humans and other biological systems time every a case like a robot simulation system, we need to create computer control algorithm can make the some ways, the solution to this problem is the most important element in the operating can use this problem as a mapping on 3d descartes ”position“ space ”position“ in the robot joint need will occur when the 3d spatial objects outside the specified of this kind of algorithm some early robot, they just transfer(sometimes by hand)required for the position, and then be recorded as a common set of values(i.e., as a position in joint space for later playback).obviously, if the playback position and motion pattern recording and joint of the purely robot in cartesian space, no algorithm for the joint space is r, the industrial robot is rare, the lack of basic inverse kinematics inverse kinematics problem is not a simple forward kinematics of equation of motion is nonlinear, their solution is not always easy(or even possible in a closed form).at the same time, the existing problems of solutions and multiple solutions study of these problems provides an appreciation of what the human mind nervous system is achieved when we, there seems to be no conscious thought, object movement and our arms and hands lator is a solution of the presence or absence of a given definition of work area.a solution for the lack of means of mechanical hands can not reach the desired position and orientation, because it is in the manipulator working addition to static positioning problem, we can analyze the robot y, the analysis in the actuator velocity, it is convenient to define a matrix called the jacobi matrix of the speed of jacobi matrix specified in descartes from the velocity mapping space and joint space.(see figure 1.8.)this mapping configuration of the manipulator changes the natural some point, called a singularity, this mapping is not to make the phenomenon are important to the understanding of the mechanical hand designers and s:

figure 1.5: coordinate systems or ”frames“ are attached to the manipulator and to

objects in the 1.6: kinematic equations describe the tool frame relative to the base frame

as a function of the joint 1.7: for a given position and orientation of the tool frame, values for the joint variables can be calculated via the inverse 1.8: the geometrical relationship between joint rates and velocity of the end-effector can be described in a matrix called the jacobian.3、symbol symbol is always the problems in science and this book, we use the following convention: first: usually, uppercase variables vector or lowercase :tail buoy use(such as the widely accepted)indicating inverse or transposed :tail buoy not subject to strict conventions, but may be that the vector components(for example, x, y, z)or can be used to describe the pbo / p in a position of the :we will use a lot of trigonometric function, we as a cosine symbol angle e1 can adopt the following methods: because the e1 = ce1 = the vector sign note general: many mechanics textbook treatment number of vector at a very abstract level and often used vector is defined relative to expression in different coordinate most obvious example is, in addition to vector is relative to a given or known a different frame of is usually very convenient, resulting in compact structure, elegant example, consider the angular velocity, connected in series with the last body ° w4 'four rigid body(such as the manipulator links)relative to the fixed seat to the angular velocity vector addition, angular velocity equation at last link we can write a very simple vector:

however, unless the information is relative to a common coordinate system, they cannot be concluded, therefore, although elegant, equation(1.1) of the ”work“.a case study of the manipulator, such statements,(1.1)work coordinate system hidden bookkeeping, which is often we need to ore, in this book, we put the symbol reference frame vectors, we don't and carrier, unless they are in the same coordinate this way, we derive expressions for computing numerical solution, ”bookkeeping" problem can be directly applied to the y the robot is a typical electromechanical integration device, it uses the latest research results of machinery and precision machinery, microelectronics and computer, automation control and drive, sensor and information processing and artificial intelligence and other disciplines, with the development of economy and all walks of life to the automation degree requirements increase, the robot technology has been developing rapidly, the emergence of a variety of robotic utility of robot products, not only can solve many practical problems difficult to solve by manpower, and the promotion of industrial automation present, the research and development of robot relates to many aspects of the technology, the complexity of system structure, development and development cost is generally high, limiting the application of the technology, to some extent, therefore, the development of economic, practical, high reliability of robot system with a wide range of social significance and economic on the design of mechanical structure and drive system, the kinematics and dynamics of the cleaning robot is tics analysis is the basis of path planning and trajectory control of the manipulator, the kinematics analysis, inverse problem can complete the operation of space position and velocity mapping to drive space, using the homogeneous coordinate transformation method has been the end of manipulator position and arthrosis transform relations between the angle, geometric analysis method to solve the inverse kinematics problem of manipulator, provides a theoretical basis for control system robot dynamics is to study the relationship between the motion and force of science, the purpose of the study is to meet the need of real-time control, this paper use straightaway language introduced the related mechanical industrial robots and control knowledge for us, pointing the way for our future research is a very complicated learning, in order to go into it, you need to constantly learn, the road ahead is long, i shall search.機器人學(xué)入門

力學(xué)與控制

摘要

本書介紹了科學(xué)與工程機械操縱。這一分支學(xué)科的機器人已經(jīng)在幾個經(jīng)典的領(lǐng)域為基礎(chǔ)的。主要的相關(guān)的領(lǐng)域是力學(xué),控制理論,計算機科學(xué)。在這本書中,第1章通過8個主題涵蓋機械工程和數(shù)學(xué),第9章通過11個蓋控制理論材料,第12和13章可能被歸類為計算機科學(xué)材料。此外,這本書強調(diào)在計算方面的問題;例如,每章這方面主要以力學(xué)有一個簡短的章節(jié)計算考慮。這本書是從課堂筆記用來教機器人學(xué)導(dǎo)論,斯坦福大學(xué)在1983的秋天到1985。第一和第二版本已經(jīng)通過2002在從1986個機構(gòu)使用。第三版也可以從中受益的使用和采用的修正和改進(jìn)由于許多來源的反饋。感謝所有那些誰修正了作者的朋友們。這本書是適合高年級本科生一年級的課程。如果學(xué)生已經(jīng)在靜力學(xué)的一門基礎(chǔ)課程有助于動力學(xué)和線性代數(shù)課程可以在高級語言程序。此外,它是有幫助的,但不是絕對必要的,讓學(xué)生完成入門課程控制理論。本書的目的是在一個簡單的介紹材料,直觀的方式。具體地說,觀眾不需要嚴(yán)格的機械工程師,雖然大部分材料是從那場。在斯坦福大學(xué),許多電氣工程師,計算機科學(xué)家,數(shù)學(xué)家發(fā)現(xiàn)這本書很易讀。在這里我們僅對其中重要部分做出摘錄。

主要內(nèi)容

1、背景

工業(yè)自動化的歷史特點是快速變化的時期流行的方法。無論是作為一個原因或一個效果,這種變化的時期自動化技術(shù)是緊密聯(lián)系在一起的世界經(jīng)濟。利用工業(yè)機器人,成為可識別在1960年代的一個獨特的裝置,隨著計算機輔助設(shè)計(cad)系統(tǒng)和計算機輔助制造(cam)系統(tǒng)的特點,最新的趨勢,制造業(yè)的自動化過程。這些技術(shù)是領(lǐng)先的工業(yè)自動化 通過另一個過渡,其范圍仍然是未知的。在美國北部,在早期有機器設(shè)備多采用世紀(jì)80年代,其次是上世紀(jì)80年代后期一個簡短的拉。自那時起,市場越來越多的(圖1.1),雖然它是受經(jīng)濟波動,是所有市場。圖1.2顯示的機器人被安裝在大數(shù)每年世界各國的工業(yè)區(qū)。值得注意的是,日本的報告數(shù)量有所不同從其他地區(qū)一樣:他們算一些機器的機器人在世界的其他地方都沒有考慮機器人(而不是,他們會簡單地認(rèn)為是“工廠的機器”)。因此,該報告的數(shù)字為日本有些夸大。

在工業(yè)機器人的使用增長的一個主要原因是他們正在下降成本。圖1.3表明,在上世紀(jì)90年代的十年中,機器人的價格下降了雖然人類的勞動成本增加。同時,機器人不只是越來越便宜,他們變得更有效更快,更準(zhǔn)確,更靈活的。如果我們的因素這些質(zhì)量調(diào)整成數(shù),使用機器人的成本下降甚至比他們的價格標(biāo)簽更快。在他們的工作機器人變得更具成本效益的,作為人類勞動繼續(xù)變得更加昂貴,越來越多的工業(yè)工作成為機器人自動化的候選人。這是最重要的趨勢推動了工業(yè)機器人的市場增長。第二個趨勢是,除了經(jīng)濟,隨著機器人變得更能成為他們能夠做的更多以上的任務(wù),可能對人類工人從事危險的或不可能的。工業(yè)機器人執(zhí)行逐步得到更多的應(yīng)用復(fù)雜的,但它仍然是,在2000年,大約78%安裝在美國進(jìn)行焊接或材料搬運機器人的機器人。

一個更具挑戰(zhàn)性的領(lǐng)域,工業(yè)機器人,占10%裝置。這本書著重于力學(xué)和最重要的形式控制的工業(yè)機器人,機械手。到底什么是工業(yè)機器人是有時辯論。設(shè)備,如圖1.4所示是總是包括在內(nèi),而數(shù)控(nc)銑床通常不。區(qū)別在于的可編程的復(fù)雜的地方如果一個設(shè)備機械設(shè)備可以被編程為執(zhí)行各種應(yīng)用程序,它可能是一個工業(yè)機器人。這是最機部分有限的一類的任務(wù)被認(rèn)為是固定的自動化。為目的本文的區(qū)別,不需要討論;大多數(shù)材料的基本性質(zhì)適用于各種可編程機。

總的來說,其力學(xué)和控制機械手的研究不是一個新的科學(xué),而只是一個收集的主題從“經(jīng)典”的領(lǐng)域。機械工程有助于機器學(xué)習(xí)方法靜態(tài)和動態(tài)的情況下。數(shù)學(xué)描述空間供應(yīng)工具機械手的運動和其他屬性??刂评碚撎峁┝斯ぞ咭詫崿F(xiàn)所期望的運動和力的應(yīng)用評價算法設(shè)計。電氣工程技術(shù)施加在傳感器的設(shè)計電氣工程技術(shù)施加在傳感器的設(shè)計和工業(yè)機器人接口,與計算機科學(xué)的基礎(chǔ)這些設(shè)備進(jìn)行編程以執(zhí)行所需任務(wù)。

附圖:

圖1.1在數(shù)以百萬計的人在美國北部的工業(yè)機器人的出貨量美元

圖1.2 年安裝的多用途的工業(yè)機器人1995-2000年和2001年至2004年預(yù)測

圖1.3 機器人的價格與上世紀(jì)90年代的人類勞動成本的比較

圖1.4 嫻熟的6臂有六個轉(zhuǎn)動關(guān)節(jié)(流行于眾多制造行業(yè))

2、力學(xué)和機械臂的控制

機器人的研究中,我們不斷的關(guān)注對象的位置三維空間。這些對象是機械手的鏈接,零件和工具,它的交易,并在機器人的環(huán)境的其他對象。在一個粗而重要的水平,這些對象是由兩個屬性描述:位置和方向。當(dāng)然,一個直接感興趣的話題是態(tài)度在我們所代表的這些量和操縱他們的數(shù)學(xué)。

為了描述人體在空間中的位置和方向,我們將始終高度坐標(biāo)系統(tǒng),或框架,嚴(yán)格的對 象。然后我們繼續(xù)相對于一些參考描述該幀的位置和方向坐標(biāo)系統(tǒng)。任何框架可以作為一個參考系統(tǒng)內(nèi)的表達(dá)一個身體的位置和方向,所以我們經(jīng)常認(rèn)為轉(zhuǎn)化或改變身體的這些屬性從一幀到另一個的描述。2章討論了公約的方法處理與職位描述討論了公約的方法處理與職位描述定位和操縱這些量與數(shù)學(xué)不同的坐標(biāo)系統(tǒng)。發(fā)展良好的技能有關(guān)的位置和旋轉(zhuǎn)的描述甚至在剛體機器人領(lǐng)域是非常有用的。

運動學(xué)是科學(xué)的運動,對運動不考慮力這導(dǎo)致它。在運動學(xué)的科學(xué)研究,一個位置,速度,加速度,和所有的高階導(dǎo)數(shù)的位置變量(相對于時間或任何其他變量(s))。因此,機械手的運動學(xué)研究是指所有的運動的幾何和時間特性。機械手包括近剛性連接,這是由關(guān)節(jié)連接允許相鄰鏈接的相對運動。這些節(jié)點通常儀表有位置傳感器,使鄰近的鏈接是相對位置測量。在旋轉(zhuǎn)或旋轉(zhuǎn)接頭的情況下,這些位移被稱為關(guān)節(jié)角度。一些機器人包含滑動(或棱鏡)連接,其中之間的聯(lián)系相對位移是一個翻譯,有時也被稱為聯(lián)合偏移量。機械手具有數(shù)獨立的位置的變量會被指定為定位該機制的所有部分。這是一個總稱,任何機制。為例如,一個四連桿機構(gòu)只有一個自由度(即使有三運動的成員)。在典型的工業(yè)機器人的情況下,因為機器人通常是一個開放的運動鏈,因為每個關(guān)節(jié)的位置通常定義一個變量,節(jié)點的數(shù)目等于自由度。

在鏈接組成的機械手的末端執(zhí)行器的自由端鏈。根據(jù)機器人的應(yīng)用,末端執(zhí)行器可以是一個抓手,焊槍,電磁鐵,或其他裝置。我們一般通過描述工具的框架描述的機械手的位置,這是連接到端部執(zhí)行器,相對于底座,所對移動機械手的基礎(chǔ)。在機械操作的研究一個非?;镜膯栴}就是了運動學(xué)。這是計算的位置的靜態(tài)幾何問題機械手的末端定位。具體而言,給定一組關(guān)節(jié)角,正向運動學(xué)問題是計算位置和方向工具架相對于底座。有時,我們認(rèn)為這是改變從關(guān)節(jié)空間描述為一個機械手位置的表示笛卡爾空間的描述?!斑@個問題將在3章探討。在4章中,我們將考慮的逆運動學(xué)問題。這個問題提出了如下:給出了末端執(zhí)行器的位置和方向機械手,計算所有可能的關(guān)節(jié)角度,可以用來實現(xiàn)這個給定的位置和方向。(見圖1.7。)這是一個根本性的問題機械手的實際應(yīng)用。這是一個相當(dāng)復(fù)雜的幾何問題,常規(guī)的解決在人類和其他生物系統(tǒng)時間每天成千上萬。在一個案例像一個機器人仿真系統(tǒng),我們需要創(chuàng)建的控制算法計算機可以使這個計算。在某些方面,這個問題的解決方案是在操作系統(tǒng)中最重要的元素。

這是一個相當(dāng)復(fù)雜的幾何問題,常規(guī)的解決在人類和其他生物系統(tǒng)時間每天成千上萬。在一個案例像一個機器人仿真系統(tǒng),我們需要創(chuàng)建的控制算法計算機可以使這個計算。在某些方面,這個問題的解決方案是在操作系統(tǒng)中最重要的元素。

我們可以把這個問題作為一個映射在三維笛卡爾的“位置”空間的“位置”在機器人的關(guān)節(jié)內(nèi)的空間。這需要自然會出現(xiàn)每當(dāng)目標(biāo)外部三維空間指定的坐標(biāo)。一些早期的機器人缺乏這種算法,他們只是轉(zhuǎn)移(有時用手)所需的的位置,然后被記錄為一組共同的值(即,作為一個位置關(guān)節(jié)空間)用于以后回放。顯然,如果機器人用純粹的模式記錄和關(guān)節(jié)的位置和運動的播放,沒有算法有關(guān)的關(guān)節(jié)空間的笛卡爾空間是必要的。然而,是罕見的工業(yè)機器人,缺乏基本的逆運動學(xué)算法。逆運動學(xué)問題不是簡單的正向運動學(xué)一個。由 于運動方程是非線性的,他們的解決方案并不總是容易(甚至可能在一個封閉的形式)。同時,對存在的問題解和多解的出現(xiàn)。這些問題的研究提供了一個欣賞什么人的心靈神經(jīng)系統(tǒng)是實現(xiàn)當(dāng)我們,似乎沒有有意識的思考,移動和我們的雙臂和雙手操作的對象。一個解的存在或不存在的定義工作區(qū)一個給定的機械手。一個解決方案的缺乏意味著機械手不能達(dá)到所需的位置和方向,因為它在機械手的外工作區(qū)。

除了處理靜態(tài)定位問題,我們不妨分析機器人的運動。通常,在執(zhí)行機構(gòu)的速度分析,它是方便的定義一個矩陣的數(shù)量稱為機械手的雅可比矩陣.指定的速度雅可比矩陣在笛卡爾從關(guān)節(jié)空間的速度映射空間。(見圖1.8。)這種映射配置的自然變化機械手的變化。在某些點,稱為奇點,這映射是不使轉(zhuǎn)化。這一現(xiàn)象的理解是設(shè)計師和用戶的重要機械手。

附圖:

圖1.5 坐標(biāo)系統(tǒng)或“幀”連接到機械手環(huán)境中的物體

圖1.6運動學(xué)方程描述刀具架相對于底座作為一個聯(lián)合變量的函數(shù)

圖1.7 對于一個給定的位置和方向的工具框架,值為關(guān)節(jié)變量可以通過逆運動學(xué)計算

圖1.8 聯(lián)合率和速度之間幾何關(guān)系端部執(zhí)行器可以在一個矩陣描述了所謂的雅可比矩陣

3、標(biāo)識符號

符號一直是科學(xué)和工程問題。在這本書中,我們使用以下公約: 第一、通常,大寫變量表示的向量或矩陣。小寫的變量的標(biāo)量。第二、尾標(biāo)使用(如被廣泛接受的)指示逆或轉(zhuǎn)置矩陣。

第三、尾標(biāo)不受嚴(yán)格的公約,但可能表明向量的組件(例如,x,y,z)或可用于述在pbo / p一個螺栓的位置。

第四、我們將使用許多三角函數(shù),我們?yōu)橐粋€余弦符號角e1可以采用下列方式:因

為e1 = ce1 = c1。

在一般的矢量符號注:許多力學(xué)教材處理矢量在一個非常抽象的層次上的數(shù)量和經(jīng)常使用向量定義相對于在表達(dá)不同的坐標(biāo)系統(tǒng)。最明顯的例子是,除了向量是給定的或已知的相對于不同的參考系。這是通常很方便,導(dǎo)致結(jié)構(gòu)緊湊,有優(yōu)雅的公式。為例如,考慮角速度,在串聯(lián)連接的最后一次身體°w4 '四剛體(如機械手的鏈接)相對的固定座鏈。由于角速度矢量相加,我們可以寫一個非常簡單的向量的最后環(huán)節(jié)的角速度方程:

然而,除非這些量是相對于一個共同的坐標(biāo)表示系統(tǒng),他們不能總結(jié),所以,雖然優(yōu)雅,方程(1.1)隱藏大部分的“工作”的計算。為研究個案機械手,這樣的陳述,(1.1)隱藏簿記的工作坐標(biāo)系統(tǒng),這往往是我們需要實踐的想法。因此,在這本書中,我們把符號參考框架向量,我們不要和載體,除非他們在同一坐標(biāo)系統(tǒng)。在這種方式中,我們推導(dǎo)出的表達(dá)式,解決“記賬”問題可直接應(yīng)用于實際的數(shù)值計算。

總結(jié)

機器人是典型的機電一體化裝置,它綜合運用了機械與精密機械、微電子與計算機、自動控制與驅(qū)動、傳感器與信息處理以及人工智能等多學(xué)科的最新研究成果,隨著經(jīng)濟的發(fā)展和各行各業(yè)對自動化程度要求的提高,機器人技術(shù)得到了迅速發(fā)展,出現(xiàn)了各種各樣的機器人產(chǎn)品。機器人產(chǎn)品的實用化,既解決了許多單靠人力難以解決的實際問題,又促進(jìn)了工業(yè)自動化的進(jìn)程。目前,由于機器人的研制和開發(fā)涉及多方面的技術(shù),系統(tǒng)結(jié)構(gòu)復(fù)雜,開發(fā)和研制的成本普遍較高,在某種程度上限制了該項技術(shù)的廣泛應(yīng)用,因此,研制經(jīng)濟型、實用化、高可靠性機器人系統(tǒng)具有廣泛的社會現(xiàn)實意義和經(jīng)濟價值。在完成機械結(jié)構(gòu)和驅(qū)動系統(tǒng)設(shè)計的基礎(chǔ)上,對物料抓取機械手運動學(xué)和動力學(xué)進(jìn)行了分析。運動學(xué)分析是路徑規(guī)劃和軌跡控制的基礎(chǔ),對操作臂進(jìn)行了運動學(xué)正、逆問題的分析可以完成操作空間位置和速度向驅(qū)動空間的映射,采用齊次坐標(biāo)變換法得到了操作臂末端位置和姿態(tài)隨關(guān)節(jié)夾角之間的變換關(guān)系,采用幾何法分析了操作臂的逆向運動學(xué)方程求解問題,對控制系統(tǒng)設(shè)計提供了理論依據(jù)。機器人動力學(xué)是研究物體的運動和作用力之間的關(guān)系的科學(xué),研究的目的是為了滿足是實時性控制的需要,本文用通俗易懂的語言為我們介紹了工業(yè)機器人的相關(guān)力學(xué)與控制的知識,為我們以后的研究方向指明了道路。機器人的研究是一門非常復(fù)雜的學(xué)問,為了深入去探究它的方方面面,就需要不斷的去學(xué)習(xí),正所謂路漫漫其修遠(yuǎn)兮,吾將上下而求索。

四自由度工業(yè)機器人篇二

動態(tài)優(yōu)化的一種新型高速,高精度的三自由度機械手

彭蘭(蘭朋)②,魯南立,孫立寧,丁傾永

(機械電子工程學(xué)院,哈爾濱理工學(xué)院,哈爾濱 150001,中國)(robotics institute。harbin institute of technology,harbin 150001,p。r。china)

摘要

介紹了一種動態(tài)優(yōu)化三自由度高速、高精度相結(jié)合,直接驅(qū)動臂平面并聯(lián)機構(gòu)和線性驅(qū)動器,它可以提高其剛度進(jìn)行了動力學(xué)分析軟件adams仿真模擬環(huán)境中,進(jìn)行仿真模擬實驗.設(shè)計調(diào)查是由參數(shù)分析工具完成處理的,分析了設(shè)計變量的近似的敏感性,包括影響參數(shù)的每道光束截面和相對位置的線性驅(qū)動器上的性能.在適當(dāng)?shù)姆绞较?,模型可以獲得一個輕量級動態(tài)優(yōu)化和小變形的參數(shù)。一個平面并聯(lián)機構(gòu)不同截面是用來改進(jìn)機械手的.結(jié)果發(fā)生明顯的改進(jìn)后的系統(tǒng)動力學(xué)仿真分析和另一個未精制一個幾乎是幾乎相等.但剛度的改進(jìn)的質(zhì)量大大降低,說明這種方法更為有效的。

關(guān)鍵詞: 機械手、adams、優(yōu)化、動力學(xué)仿真

0 簡介

并聯(lián)結(jié)構(gòu)機械手(pkm)是一個很有前途的機器操作和裝配的電子裝置,因為他們有一些明顯的優(yōu)勢,例如:串行機械手的高負(fù)荷承載能力,良好的動態(tài)性能和精確定位的優(yōu)點等.一種新型復(fù)合3一dof臂的優(yōu)點和串行機械手,也是并聯(lián)機構(gòu)為研究對象,三自由度并聯(lián)機器人是少自由度并聯(lián)機器人的重要類型。三自由度并聯(lián)機器人由于結(jié)構(gòu)簡單,控制相對容易,價格便宜等優(yōu)點,具有很好的應(yīng)用前景。但由于它們比六自由度并聯(lián)機器人更復(fù)雜的運動特性,增加了這類機構(gòu)型綜合的難度,因此對三自由度并聯(lián)機器人進(jìn)行型綜合具有理論意義和實際價值。本文利用螺旋理論對三自由度并聯(lián)機器人進(jìn)行型綜合,以總結(jié)某些規(guī)律,進(jìn)一步豐富型綜合理論,并為新機型的選型提供理論依據(jù),以下對其進(jìn)行闡述。

如圖-1所示 機械手組成的平面并聯(lián)機構(gòu)(ppm)包括平行四邊形結(jié)構(gòu)和線性驅(qū)動器安裝在ppm.兩直接驅(qū)動電機c整合交流電高分辨率編碼器的一部分作為驅(qū)動平面并聯(lián)機械裝置.線型致動器驅(qū)動的聲音線圈發(fā)動機.這被認(rèn)為是理想的驅(qū)動短行程的一部分.作為一個非換直接驅(qū)動類,音圈電機可以提供高位置敏感和完美的力量與中風(fēng)的角色,高精密線性編碼作為回饋部分保證在垂直方向可重復(fù)性。

另一方面,該產(chǎn)品具有較高的剛度比串行機械手,因為它的特點和低封閉環(huán)慣性轉(zhuǎn)矩。同時,該系統(tǒng)可以克服了柔性耦合力學(xué)彈性、齒輪、軸承、被撕咬支持,連接軸和其他零件,包括古典驅(qū)動設(shè)備,因此該機械手是更容易得到動力學(xué)性能好、精度高。

圖-1 3自由度的混合結(jié)構(gòu)的機械手

當(dāng)長度的各個環(huán)節(jié)的平面并聯(lián)機時,構(gòu)決定于運動學(xué)分析和綜合[4-7],機械優(yōu)化設(shè)計的首要任務(wù),應(yīng)加大僵硬、降低質(zhì)量.關(guān)于幾個參數(shù)模型.這是它重要和必要的影響,研究了各參數(shù)對模型表現(xiàn)以進(jìn)一步優(yōu)化。本文就開展設(shè)計研究工具,通過參數(shù)分析亞當(dāng)斯,又要適當(dāng)?shù)姆绞絹慝@得一個輕量級的優(yōu)化和小變形系統(tǒng)。仿真模型

adams(automatic dynamic analysis 0f mechanical system)自動機械系統(tǒng)動力學(xué)分析是一個完美的軟件,對機械系統(tǒng)動力學(xué)模擬可處理機制包括有剛性和靈活的部分,仿真模型可以創(chuàng)造出機械手的亞當(dāng)斯環(huán)境 如圖-2。oxyz是全球性的參考幀,并oxyz局部坐標(biāo)系,兩個直流驅(qū)動電機、交流和02m o1a表示,與線性驅(qū)動器ch被視為剛性轉(zhuǎn)子轉(zhuǎn)動慣量電機傳動的120kg/cm2。大眾的線性驅(qū)動器是1.5kg,連接ab、德、03f和lj被視為柔性體立柱、橫梁gk,通用公司和公里,形成一個三角形,也被當(dāng)作柔性傳動長度的鏈接是決定提前運動學(xué)設(shè)計為ab =o3f = 7cm,de=ij=7cm,gk= 7cm,gm =11.66cm,= 8.338cm。其它維度,這個數(shù)字是01a = 02m =7cm,cb=cd=hj 2.5cm。ef=eg=jk= 3cm。

雖然總平面并聯(lián)機構(gòu)的運動都是在水平、垂直和水平剛度必須在豎向剛度特征通常低于水平僵硬,因為它的角色在垂直懸臂梁的截面尺寸計算每一束平面并聯(lián)機構(gòu)和相對位置的線性驅(qū)動器是兩個非常僵硬的影響因素的系統(tǒng)。

運動支鏈可分為三類:“主動鏈(由驅(qū)動器賦予確定獨立運動的支鏈。一般是單驅(qū)動器控制一個自由度的運動),從動鏈(不帶驅(qū)動器、被迫作確定運動的支鏈。又分為以下兩種:約束鏈:獨立限制機構(gòu)自由度的從動鏈。冗余鏈:重復(fù)限制機構(gòu)自由度的從動鏈)復(fù)合鏈(有單驅(qū)動器、但限制一個以上的機構(gòu)自由度的支鏈,實際是主動鏈與約束鏈的組合)-并聯(lián)機構(gòu)是由這幾種支鏈用不同形式組合起來的。動鏈中的約束鏈除了可以提高機構(gòu)剛度和作為測量鏈外,其更主要的作用是用來約束動平臺的某一個或幾個自由度,以使其實現(xiàn)預(yù)期的運動。

圖-2 仿真模型 仿真模擬結(jié)果

在本節(jié)中,平均位移的末端是用來描述動態(tài)剛度,這是在不同的配置在不同的線性驅(qū)動器向前,從最初的位置的目的地,一般的豎向位移的機械手是作為目標(biāo)來研究豎向剛度,平均差別的橫坐標(biāo)、縱坐標(biāo)點之間有一個剛性數(shù)學(xué)模型,模型,作為目標(biāo)來研究水平剛度。

并聯(lián)機器人的構(gòu)型設(shè)計即型綜合是并聯(lián)機器人設(shè)計的首要環(huán)節(jié),其目的是在給定所需自由度和運動要求條件下,尋求并聯(lián)機構(gòu)桿副配置、驅(qū)動方式和總體布局等的各種可能組合。國內(nèi)的許多學(xué)者正致力于這方面的研究,其中比較有代表性的有如下幾種方法:”黃真為代表的約束綜合法;楊廷力等人的結(jié)構(gòu)綜合法;代表的李代數(shù)綜合法。以上各種方法自成體系,各有特點,都缺乏理論的完備性。本文提出添加約束法,是從限制自由度的角度出發(fā),增加約束,去除不需要的自由度,因每條主動鏈只有一個驅(qū)動裝置,讓其控制一個自由度,其余自由度通過純約束鏈去除,這樣可以使主、從動運動鏈的作用分離,運動解耦,有利于控制。具有三自由度的并聯(lián)機床,當(dāng)采用條主動支鏈作為驅(qū)動時,機構(gòu)就需要約束另三個自由度,通過選擇無驅(qū)動裝置的從動鏈來完成,則整個機構(gòu)成為有確定運動的三自由度的并聯(lián)機構(gòu)。黃真等提出的約束綜合法對完全對稱的少自由度并聯(lián)機器人機構(gòu)進(jìn)行了型綜合,完全對稱的支鏈結(jié)構(gòu)相同,都屬于復(fù)合鏈,每條支鏈除都有一個單驅(qū)動器,控制一個自由度外,還應(yīng)約束一個以上自由度才能使機構(gòu)的六個自由度全部受控,使機構(gòu)有確定的運動。

2.1 截面效應(yīng)

扭轉(zhuǎn)變形位移的連結(jié)將會引起的,所以,扭轉(zhuǎn)常數(shù)的橫截面,重力是研究裝系統(tǒng)來研究,采取扭轉(zhuǎn)剛度的垂直切片lxx不變的各個環(huán)節(jié)和梁作為設(shè)計變量的變化,從 0.1 x 105mm4 與 3.5 x 105 mm4。

圖-3 不斷的效果在垂直變形扭轉(zhuǎn)

圖-3顯示了平均位移與截面扭轉(zhuǎn)常數(shù)末端的各個環(huán)節(jié)和梁,根據(jù)它的變化速率的環(huán)節(jié),是最大的,ab是鏈接,lj依次分別gk梁和km有在豎向剛度性能。其他的仿真結(jié)果表明,水平位移之間的差異進(jìn)行比較,結(jié)果表明該模型體育智力h和剛性模型變化小就改變了恒定不變的時候扭加載慣性力的線性驅(qū)動器,但是水平位移的變化,這意味著在這種模擬豎向變形的生產(chǎn)水平位移系統(tǒng)機械手。注意端面線性驅(qū)動器的主要原因是水平變形、線性驅(qū)動器機器人是由兩個節(jié)點c和h.所以,我們計算了不同的z-coordinate攝氏度之間,如圖所示,在圖4-扭轉(zhuǎn)常數(shù)的影響差別的鏈接德。其次是最有效的通用和連接梁,連接o3f,梁gk有效果。

因此,應(yīng)采取ab和連接區(qū)段大扭常數(shù)的免疫力,豎向剛度較大并行扭轉(zhuǎn)不變的鏈接德也使較少的均勻性,降低線性驅(qū)動器不可以降低水平變形。

圖-4 在不影響扭不變

如圖-

5、6所展示的影響是區(qū)域慣性轉(zhuǎn)矩的設(shè)計變量是區(qū)域剛度和慣性轉(zhuǎn)矩的各個環(huán)節(jié)和梁lz,圖顯示增加lw卡爾減少的速度高于垂直位移的不斷增加ixx扭轉(zhuǎn)。這個yxx ab、梁的鏈接,鏈接o3f是iyy三個主要因素決定了豎向剛度。

圖-6 所示 鏈接的ab、梁公里,連接03f也是其中的三個主要因素決定的均勻性線性傳動裝置、不同的分析結(jié)果表明,izz效果好,具有至少兩個垂直和水平剛度,這意味著這種結(jié)構(gòu),具有足夠的水平,降低izz剛度的鏈接和增加iyy ab、梁的鏈接,鏈接o3f公里的好方法,優(yōu)化系統(tǒng)。

圖-5 瞬間的慣性效應(yīng)對垂直位移

圖-6 轉(zhuǎn)動慣量不平衡的影響

2.2影響的線性驅(qū)動器的相對位置

線性執(zhí)行器的慣性是主要載荷之一,在機械手的運動,不同的相對應(yīng)的垂直位置產(chǎn)生不同的變形,圖7顯示了絕對平均的最終效應(yīng)垂直位移時驅(qū)動馬達(dá)以恒定的加速度旋轉(zhuǎn),我們可以看到,過低或過高的相對位置會造成比格變形,最好的位置是一對z = 24毫米的地方大概是從中間環(huán)節(jié)連接o3f到 ab.圖-7

影響線性驅(qū)動器的相對位置

分析改進(jìn)的機械手

根據(jù)上述模擬結(jié)果,所有改進(jìn)的機械手的設(shè)計,時間如下:鏈接截面ab,de,lj 與30mm的基礎(chǔ)和高度,10毫米的厚度;鏈接o3f和矩形空心梁與30mm的基礎(chǔ)和高度工型鋼,l0mm法蘭和6mm網(wǎng);梁競,通用汽車與8mm的堅實基礎(chǔ)和30mm高的矩形。

圖-8 梯形運動姿態(tài)

圖-9中回應(yīng)的是機械手,相比之下,圖-10中提高初始的反應(yīng),在其中所有的鏈接和機械手的矩形截面梁的堅實基礎(chǔ),用30毫米,高度的差異是曲線,c和h的曲線積分,二是垂直位移的末端,改進(jìn)系統(tǒng)中最大位移0.7um最初的0.12um相比,爭論的振動激勵后仍停留在o.06um±0.15% s±o.05um相比的初始變形改善系統(tǒng)的初始小于前者具有較少的慣性,因為在相同的步伐不斷加快,保持振動瓣膜差不多一樣,它對這整個系統(tǒng)中來說,仍然改善系統(tǒng)的剛度,幾乎相當(dāng)于初始制度,針對大規(guī)模的平面并聯(lián)機構(gòu)在該系統(tǒng)相比下降了30%,這樣的初始優(yōu)化是有效的。

圖-9、圖-10 動態(tài)響應(yīng)

結(jié)論

本文設(shè)計了一種新型三自由度機械手變量的敏感性進(jìn)行了研究在adams環(huán)境中,可以得出以下結(jié)論:

1)機器人具有較大的水平剛度,最終水平位移,效應(yīng)主要是由機械手垂直變形造成的,因此,更重要的是增加的幅度比剛度豎向剛度。

2)參數(shù)ixx,iyy并鏈接'截面剛度izz有不同的效應(yīng),iyy已經(jīng)對垂直剛度的影響最大,ixx在第二位的是,ixx具有在垂直剛度的影響最小,他們都較少對水平比垂直剛度剛度。3)橫截面的不同環(huán)節(jié)都有不同的影響,連線豎向剛度ab和德應(yīng)該使用區(qū)扭轉(zhuǎn)常數(shù)和慣性力矩大,如變形、長方形、橫梁km,線 03f應(yīng)該使用區(qū)段形梁等重大時刻轉(zhuǎn)動慣量、橫梁gk,和gm 可以使用盡可能的一小部分,從而降低了質(zhì)量。4)最佳的線性驅(qū)動器的相對位置可以減少變形,最好的位置是垂直的平行結(jié)構(gòu)。5)改進(jìn)的機械手的動態(tài)分析表明該優(yōu)化設(shè)計方法研究的基礎(chǔ)上的效率。

參考文獻(xiàn)

[

l

]

dasgupta b,mmthyunjayab t s。the stewart platform manipulator:a review。mechat~m and machine theory,200o。35(1):15—40

[ ] xi f,zhang d,xu z,et al。a comparative study on tripod u ts for machine lo0ls。intemational journal of machine tools&manufacture,2003,43(7):721—730

[ ]

zhang d,gosselin c m。kinetostatic analysis and optimization of the tricept machine tool family。in:proceedings of year 2000 parallel kinematic machines international conference,ann arbor,michigan,2001,174—188 [ ]

gosselin c m,angeles j。a globe preference index for the kinematic optimum of robotic manipulator。asme journal of mechanical,l991,113(3):220—226 [ ]

gao f,i,iux j,gruverw a。performance evaluation of two-degree-of-freedom planar parallel robots。mechanism and machine theory,l998,33(6):661-668

[ ] huang t,li m,li z x,et al。optimal kinematic design of 2-dof oaralel manipulator with well shahed workspace bounded by a specified conditioning index ieee transactions of robot and automation,2004,20,(3):538—543 [ ] gosselin c m,wang j。singularity loci ofplanarparallel manipulator with revoluted actuators。robotics and autonomousm,1997,2l(4):377 398 [ ] yiu y k,cheng h,xiong z h,et al。on the dvnamies of parallel mmfipulators proc。of

ieee inemational conference on robotics& automation。20o1。3766 3771 [ ] chakarov d。study ofthe antagoni~ie stifness of parallel manipulators with actuation redundancy。mechanism and machine

theory,2004,39(6):583—60l [ 10 ] shab~a a a。dynamics of multibody systems。cambridge:cambridge university press,l998。270-3 l0

四自由度工業(yè)機器人篇三

六自由度并聯(lián)機器人基于grassmann-cayley代數(shù)的奇異性條件

patricia ben-horin和moshe shoham,會員,ieee

摘要

本文研究了奇異性條件大多數(shù)的六自由度并聯(lián)機器人在每一個腿上都有一個球形接頭。首先,確定致動器螺絲在腿鏈中心。然后用凱萊代數(shù)和相關(guān)的分解方法用于確定哪些條件的導(dǎo)數(shù)(或剛度矩陣)包含這些螺絲是等級不足。這些工具是有利的,因為他們方便操縱坐標(biāo)-簡單的表達(dá)式表示的幾何實體,從而使幾何解釋的奇異性條件是更容易獲得。使用這些工具,奇異性條件(至少)144種這類的組合被劃定在四個平面所相交的一個點上。這四個平面定義為這個零距螺絲球形關(guān)節(jié)的位置和方向。指數(shù)terms-grassmann-cayley代數(shù),奇點,三條腿的機器。

一、介紹

在過去的二十年里,許多研究人員廣泛研究并聯(lián)機器人的奇異性。不像串聯(lián)機器人,失去在奇異配置中的自由度,盡管并聯(lián)機器人的執(zhí)行器都是鎖著但是他們的的自由度還是可以獲得的。因此,這些不穩(wěn)定姿勢的全面知識為提高機器人的設(shè)計和確定機器人的路徑規(guī)劃是至關(guān)重要的。

主要的方法之一,用于尋找奇異性并行機器人是基于計算雅可比行列式進(jìn)行的。gosselin和安杰利斯[1]分類奇異性的閉環(huán)機制通過考慮兩個雅克比定義輸入速度和輸出速度之間的關(guān)系。當(dāng)圣魯克和gosselin[2]減少了算術(shù)操作要求定義的雅可比行列式高夫·斯圖爾特平臺(gsp),從而使數(shù)值計算得到多項式。

另一個重要的工具,為分析螺旋理論中的奇異性,首先闡述了1900的論文[6]和開發(fā)機器人應(yīng)用程序。幾項研究已經(jīng)應(yīng)用這個理論找到并聯(lián)機器人的奇異性,例如,[11]-[14]。特別注意到情況,執(zhí)行機構(gòu)是線性和代表螺絲是零投的。在這些情況下,奇異的配置是解決通過使用幾何,尋找可能的致動器線依賴[15]-[17]。其他分類方法閉環(huán)機制可以被發(fā)現(xiàn)在[18]-[22]。

在本文中,我們分析了奇異點的一大類三條腿的機器人,在每個腿鏈有一個球形接頭上的任何點。我們只關(guān)注了正運動學(xué)奇異性。首先,我們發(fā)現(xiàn)螺絲相關(guān)執(zhí)行機構(gòu)的每個鏈。因為每一個鏈包含一個球形接頭,自致動器螺絲是相互聯(lián)合的,他們是通過球形關(guān)節(jié)的零螺距螺桿螺絲。然后我們使用grassmann-cayley代數(shù)和相關(guān)的發(fā)展獲得一個代數(shù)方程,它源于管理行機器人包含的剛度矩陣。直接和高效檢索的幾何意義的奇異配置是最主要的一個優(yōu)點,在這里將介紹其方法。

雖然之前的研究[53]分析7架構(gòu)普惠制,各有至少三條并發(fā)關(guān)節(jié),本文擴展了奇點分析程度更廣泛的一類機器人有三條腿和一個球形關(guān)節(jié)。使用降低行列式和grassmann-cayley運營商我們獲得一個通用的條件,這些機器人的奇異性提供在一個簡單的幾何意義方式計算中。

本文的結(jié)構(gòu)如下。第二節(jié)詳細(xì)描述了運動學(xué)結(jié)構(gòu)的并聯(lián)機器人。第三節(jié)包含一個簡短的在螺絲和大綱性質(zhì)的背景下驅(qū)動器螺絲,零距螺絲作用于中心的球形關(guān)節(jié)。第四部分包含一個介紹grassmann-cayley代數(shù)的基本工具用于尋找奇異性條件。這部分還包括剛度矩陣(或?qū)?shù))分解成坐標(biāo)自由表達(dá)。第五節(jié)中一個常見的例子給出了這種方法。最后,第六章比較了使用本方法結(jié)果與結(jié)果的其他技術(shù)。

二、運動構(gòu)架

本文闡述了6自由度并聯(lián)機器人有六間連通性基礎(chǔ)和移動平臺。肖海姆和羅斯[54]提供了調(diào)查可能的結(jié)構(gòu),產(chǎn)生基于流動公式6自由度的grubler和kutzbach。他們尋找了所有的可能性,滿足這個公式對關(guān)節(jié)的數(shù)目和任何鏈接。gsp和三條腿的機器人結(jié)構(gòu)的一個子集所列出的6自由度shoham和羅斯。一個類似的例子也證實了了podhorodeski和pittens[55],他發(fā)現(xiàn)了一個類的三條腿的對稱并聯(lián)機器人,球形關(guān)節(jié)、轉(zhuǎn)動關(guān)節(jié)的平臺在每個腿比其他結(jié)構(gòu)潛在有利。正如上面所討論的,大多數(shù)的報告文獻(xiàn)限制他們的分析結(jié)構(gòu)和球形關(guān)節(jié)位于移動平臺和棱柱關(guān)節(jié)作為驅(qū)動的關(guān)節(jié)。在這個分類,我們包括五種類型的關(guān)節(jié)和更多的可選職位的球形關(guān)節(jié)。

我們處理機器人有三個鏈連接到移動平臺,每個驅(qū)動有兩個1自由度關(guān)節(jié)或一個二自由度關(guān)節(jié)。這些鏈不一定是平等的,但都有移動和連接六個基地和之間的平臺。除了球形接頭(s),關(guān)節(jié)考慮是棱鏡(p),轉(zhuǎn)動(r)、螺旋(h)、圓柱(c)和通用(u),前三個是1自由度關(guān)節(jié)和最后兩個二自由度的關(guān)節(jié)。所有的可能性都顯示在表i和ii。該列表只包含機器人,有平等的連鎖,總計144種不同的結(jié)構(gòu),但是機器人與任何可能的組合鏈也可以被認(rèn)為是membersof這類方法。組合的總數(shù),大于500 000,計算方式如下:

三、管理方法

本節(jié)涉及螺絲和平臺運動的確定。因為考慮機器人有三個串行鏈,每個驅(qū)動器螺絲的方向可以由其互惠到其他關(guān)節(jié)螺釘固定在鏈條。被動球形接頭在每個鏈部隊驅(qū)動器螺絲為零距(行)并且通過它的中心。因此,三個平面是創(chuàng)建中心位于自己的球形關(guān)節(jié)。

以下簡要介紹了螺旋理論,廣泛的解決[7],[73],[75];我們解決在第二節(jié)中列出相互的所有關(guān)節(jié)螺釘系統(tǒng)。

上述類的機器人的幾何結(jié)果奇點現(xiàn)在相比其他方法獲得的結(jié)果要準(zhǔn)確。首先,我們比較奇異條件在上述3 gsp平臺與結(jié)果報告線幾何方法。

根據(jù)相對幾何條件的他行方法區(qū)分不同的幾種類型沿著棱鏡致動器[81]的奇異性。我們表明,所有這些奇異點是特定情況下的條件通過(17 c)提供,這是有效的三條腿以及6:3 gsp平臺的機器人的考慮。這種結(jié)構(gòu)的奇異的配置根據(jù)線幾何分析包括五種類型:3 c、4 b、4 d,5 a和5 b[17],[36]。

四、奇異性分析

本節(jié)確定奇異性條件定義在第二節(jié)的機器人。第一部分包括尋找方向的執(zhí)行機構(gòu)的行動路線,基于解釋第三節(jié)中介紹。他行通過球形接頭中心,而他們的方向取決于關(guān)節(jié)的分布和位置。第二部分包括應(yīng)用程序的方法使用了grassmann-cayley代數(shù)在第四節(jié)定義奇點。因為每對線滿足在一個點(球形接頭),所有例子的解決方案是象征性地平等,無論點位置的腿或腿的對稱性。我們從文獻(xiàn)中舉例說明使用三個機器人的解決方案。

1.方向的致動器螺絲

第一個例子是3-prps機器人提出behi[61][見圖3(a)]。對于每個腿驅(qū)動螺絲躺在這家由球形接頭中心和轉(zhuǎn)動關(guān)節(jié)軸。特別是,致動器螺桿是垂直于軸的,和致動器螺桿是垂直于軸的,這些方向被描繪在圖3(b)。第二個例子是the3-usr機器人提出simaan et al。[66][見圖4(a)]。每條腿有驅(qū)動器螺絲躺在通過球形接頭中心和包含轉(zhuǎn)動關(guān)節(jié)軸中。驅(qū)動器螺絲穿過球形接頭中心并與轉(zhuǎn)動關(guān)節(jié)軸相連。這些方向被描繪在圖4(b)。

第三個例子是3-ppsp byun建造的機器人和[65][見圖5(一個)]。每條腿,驅(qū)動螺絲躺在飛機通過球形接頭中心和正常的棱鏡接頭軸。驅(qū)動器螺絲垂直于軸的,和致動器螺桿是垂直于軸的,這些方向被描繪在圖5(b)。

圖3(a)3-prps機器人提出behi[61]

(b)飛機和致動器螺絲

圖4(a)3自由度機器人提出simaan和shoham[66]

(b)飛機和致動器螺絲的3自由度機器人

圖5(a)3-ppsp機器人提出byun[65]

(b)飛機和致動器螺絲

2、.奇異性條件

雅克(或superbracket)的機器人是分解成普通支架monomials使用麥克米蘭的分解,即(16)。解釋部分3—b機器人,本文認(rèn)為每個鏈有兩個零距驅(qū)動器螺絲通過球形接頭。拓?fù)?這個描述等于行6:3 gsp(或在[53]),這三條線,每經(jīng)過一個雙球面上的接頭平臺(見圖6)。這意味著每對線共享一個公共點(這些點在圖6中)。因此類的機器人被認(rèn)為是在本文中,我們可以使用相同的標(biāo)記點的至于6:3 gsp。六線與相關(guān)各機器人通過雙點,并且,用同樣的方式在圖6。

圖6 6-3 gsp

五、結(jié)果

本文提出一個廣義奇異性分析并聯(lián)機器人組成元素。這些是有一個球形接頭在每個腿鏈的三條腿的6自由度機器人。因為球形關(guān)節(jié)需要驅(qū)動器,螺絲是純粹的力量作用于他們的中心,他們的位置沿鏈?zhǔn)遣恢匾?。組成元素包括144機制不同類型的關(guān)節(jié),每個都有不同的聯(lián)合裝置沿鏈。提出并建立描述幾個機器人出現(xiàn)在列表中。大量的機器人相關(guān)的分析組合不同被認(rèn)為是。奇點的分析是由第一個找到的執(zhí)行機構(gòu)使用互惠的螺絲。然后,借助組合方法和grassmann-cayley方法,得到剛度矩陣行列式在一個可以操作的協(xié)調(diào)自由形式,可以翻譯成一個簡單的幾何條件之后。其定義是幾何條件由執(zhí)行機構(gòu)位置的線條和球形接頭,至少有一個相交點。這個有效的奇異點條件考慮所有組成元素中的機器人。一個比較的結(jié)果與結(jié)果的奇點證明了其他技術(shù)所有先前描述奇異條件實際上是特殊情況下的幾何條件的四架飛機交叉在一個點,一個條件獲取的方法直接在這里提出。

singularity condition of six-degree-of-freedom three-legged parallel robots based on grassmann–cayley algebra patricia ben-horin and moshe shoham, associate member, ieee

abstract this paper addresses the singularity condition of a broad class of six-degree-of-freedom three-legged parallel robots that have one spherical joint somewhere along each , the actuator screws for each leg-chain are grassmann–cayley algebra and the associated superbracket decomposition are used to find the condition for which the jacobian(or rigidity matrix)containing these screws is tools are advantageous since they facilitate manipulation of coordinate-free expressions representing geometric entities, thus enabling the geometrical interpretation of the singularity condition to be obtained more these tools, the singularity condition of(at least)144 combinations of this class is delineated to be the intersection of four planes at one four planes are defined by the locations of the spherical joints and the directions of the zero-pitch terms—grassmann–cayley algebra, singularity, three-legged uction during the last two decades, many researchers have extensively investigated singularities of parallel serial robots that lose degrees of freedom(dofs)in singular configurations, parallel robots might also gain dofs even though their actuators are ore, thorough knowledge of these unstable poses is essential for improving robot design and determining robot path of the principal methods used for finding the singularities of parallel robots is based on calculation of the jacobian determinant in and angeles [1] classified the singularities of closed-loop mechanisms by considering two jacobians that define the relationship between input and output -onge and gosselin [2] reduced the arithmetical operations required to define the jacobian determinant for the gough–stewart platform(gsp), and thus enabled numerical calculation of the obtained polynomial in ov et al.[3]–[5] expanded the classification proposed by gosselin and angeles to define six types of singularity that are derived using equations containing not only the input and output velocities but also explicit passive joint r important tool that has served in the analysis of singularities is the screw theory, first expounded in ball’s 1900 treatise [6] and developed for robotic applications by hunt [7]–[9] and sugimoto et al.[10].several studies have applied this theory to find singularities of parallel robots, for example, [11]–[14].special attention was paid to cases in which the actuators are linear and the representing screws are these cases, the singular configurations were solved by using line geometry, looking for possible actuator-line dependencies [15]–[17].other approaches taken to classify singularities of closed-loop mechanisms can be found in [18]–[22].in this paper, we analyze the singularities of a broad class of three-legged robots, having a spherical joint at any point in each inspanidual focus only on forward kinematics , we find the screws associated with the actuators of each every chain contains a spherical joint, and since the actuator screws are reciprocal to the joint screws, they are zero-pitch screws passing through the spherical we use grassmann–cayley algebra and related developments to get an algebraic equation which originates from the rigidity matrix containing the governing lines of the direct and efficient retrieval of the geometric meaning of the singular configurations is one of the main advantages of the method presented the previous study [53] analyzed only seven architectures of gsp, each having at least three pairs of concurrent joints, this paper expands the singularity analysis to a considerably broader class of robots that have three legs with a spherical joints somewhere along the the reduced determinant and grassmann–cayley operators we obtain one single generic condition for which these robots are singular and provide in a simple manner the geometric meaning of this structure of this paper is as n ii describes in detail the kinematic architecture of the class of parallel robots under n iii contains a brief background on screws and outlines the nature of the actuator screws, which are zero-pitch screws acting on the centers of the spherical n iv contains an introduction to grassmann–cayley algebra which is the basic tool used for finding the singularity section also includes the rigidity matrix(or jacobian)decomposition into coordinate-free section v a general example of this approach is y, section vi compares the results obtained using the present method with results obtained by other tic architecture this paper deals with 6-dof parallel robots that have connectivity six between the base and the moving and roth [54] provided a survey of the possible structures that yield 6-dof based on the mobility formula of grübler and searched for all the possibilities that satisfy this formula with respect to the number of joints connected to any of the gsp and three-legged robots are a subset of the structures with 6-dof listed by shoham and roth.a similar enumeration was provided also by podhorodeski and pittens [55], who found a class of three-legged symmetric parallel robots that have spherical joints at the platform and revolute joints in each leg to be potentially advantageous over other discussed above, most of the reports in the literature limit their analysis to structures with spherical joints located on the moving platform and revolute or prismatic joints as actuated or passive additional ions are the family of 14 robots proposed by simaan and shoham [28] which contain spherical-revolute dyads connected to the platform, and some structures mentioned below which have revolute or prismatic joints on the this classification, we include five types of joints and more optional positions for the spherical deal with robots that have three chains connected to the moving platform, each actuated by two 1-dof joints or one 2-dof chains are not necessarily equal, but all have mobility and connectivity six between the base and the s the spherical joint(s), the joints taken into consideration are prismatic(p), revolute(r), helical(h), cylindrical(c), and universal(u), the first three being 1-dof joints and the last two being 2-dof the possibilities are shown in tables i and list contains only the robots that have equal chains, totaling 144 different structures, but robots with any possible combination of chains can also be considered as membersof this total number of combinations, , is larger than 500 000, calculated as follows:

ing lines this section deals with the screws that determine the platform the robots under consideration have three serial chains, the direction of each actuator screw can be determined by its reciprocity to the other joint screws in the passive spherical joint in each chain forces the actuator screws to have zero-pitch(lines)and to pass through its ore, three flat pencils are created having their centers located at the spherical ing a brief introduction to the screw theory that is extensively treated in [7], [73]–[75];we address the reciprocal screw systems of all the joints listed in section geometric result for the singularity of the aforementioned class of robots is now compared with the results obtained by other approaches in the , we compare the singularity condition described above for the 6-3 gsp platform with the results reported for the line geometry line geometry method distinguishes among several types of singularities, according to the relative geometric condition of he lines along the prismatic actuators [81].we show that all these singularities are particular cases of the condition provided by(17c), which is valid for the three-legged robots under consideration as well as for the 6-3 gsp singular configurations of this structure according to line geometry analysis include five types: 3c, 4b, 4d, 5a, and 5b [17], [36].arity analysis this section determines the singularity condition for the class of robots defined in section first part consists of finding the direction of the actuator lines of action, based on the explanation introduced in section lines pass through the spherical joint center while their directions depend on the distribution and position of the second part includes application of the approach using grassmann–cayley algebra presented in section iv for defining singularity when considering six lines attaching two every pair of lines meet at one point(the spherical joint), the solution for all the cases is symbolically equal, regardless of the points’ location in the leg or the symmetry of the exemplify the solution using three robots from the ion of the actuator screws the first example is the 3-prps robot as proposed by behi [61] [see fig.3(a)].for each leg the actuated screws lie on theplane defined by the spherical joint center and the revolute joint particular,the actuator screw is perpendicular to the axis of , and the actuator screw is perpendicular to the axis of , these directions being depicted in fig.3(b).the second example is the3-usr robot as proposed by simaan et al.[66][see fig.4(a)].every leg has the actuator screws lying on the plane passing through the spherical joint center and containing the revolute joint actuator screw passes through the spherical joint center and intersects the revolute joint axis rly, the actuator screw passes through the spherical joint center and intersects the revolute joint axis and , these directions being depicted in fig.4(b).the third example is the 3-ppsp robot built by byun and cho [65] [see fig.5(a)].for every leg the actuated screws lie on the plane passing through the spherical joint center and being normal to the prismatic joint actuator screw is perpendicular to the axis of , and the actuator screw is perpendicular to the axis of , these directions being depicted in fig.5(b).fig.3.(a)the 3-prps robot as proposed by behi [61].(b)planes and actuator .4.(a)the 3-usr robot as proposed by simaan and shoham [66].(b)planes and actuator

screws of the 3-usr .5.(a)3-ppsp robot as proposed by byun and cho [65].(b)planes and actuator arity condition

the jacobian(or superbracket)of a robot is decomposed into ordinary bracket monomials using mcmillan’s decomposition, namely(16).as explained in section iii-b, all the robots of the class considered in this paper have two zero-pitch actuator screws passing through the spherical joint of each gically, this description is equivalent to the lines of the 6-3 gsp(or in [53]), which has three pairs of lines, each passing through a double spherical joint on the platform(see fig.6).this means that each pair of lines share one common point(in fig.6 these points are , , and).therefore for the class of robots considered in this paper, we can use the same notation of points as for the 6-3 six lines associated with each robot pass through the pairs of points,and , in the same way as in to the common points of the pairs of lines ,and ,denoted , and respectively, many of the monomials of(16)vanish due to(4).fig.6.6-3 sion

this paper presents singularity analysis for a broad family of parallel are 6-dof three-legged robots which have one spherical joint in each the spherical joints entail the actuator screws to be pure forces acting on their centers, their location along the chain is not family includes 144 mechanisms incorporating spanerse types of joints that each has a different joint arrangement along the l proposed and built robots described in the literature appear in this list.a larger number of robots are relevant to this analysis if combinations of different legs are singularity analysis was performed by first finding the lines of action of the actuators using the reciprocity of , with the aid of combinatorial methods and grassmann–cayley operators, the rigidity matrix determinant was obtained in a manipulable coordinate-free form that could be translated later into a simple geometric geometric condition consists of four planes, defined by the actuator lines and the position of the spherical joints, which intersect at least one singularity condition is valid for all the robots in the family under consideration.a comparison of this singularity result with results obtained by other techniques demonstrated that all the previously described singularity conditions are actually special cases of the geometrical condition of four planes intersecting at a point, a condition that was obtained straightforwardly by the method suggested here

四自由度工業(yè)機器人篇四

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

機 器 人

工業(yè)機器人是在生產(chǎn)環(huán)境中以提高生產(chǎn)效率的工具,它能做常規(guī)乏味的裝配線工作,或能做那些對于工人來說是危險的工作,例如,第一代工業(yè)機器人是用來在 核電站中更換核燃料棒,如果人去做這項工作,將會遭受有害的放射線的輻射。工業(yè)機器人亦能工作在裝配線上將小元件裝配到一起,如將電子元件安放在電路印制板,這樣,工人就能從這項乏味的常規(guī)工作中解放出來。機器人也能按程序要求用來拆除炸彈,輔助殘疾人,在社會的很多應(yīng)用場合下履行職能。

機器人可以認(rèn)為是將手臂末端的工具、傳感器和(或)手爪移到程序指定位置的一種機器。當(dāng)機器人到達(dá)位置后,它將執(zhí)行某種任務(wù)。這些任務(wù)可以是焊接、密封、機器裝料、拆卸以及裝配工作。除了編程以及系統(tǒng)的開停之外,一般來說這些工作可以在無人干預(yù)下完成。如下敘述的是機器人系統(tǒng)基本術(shù)語:

1.機器人是一個可編程、多功能的機械手,通過給要完成的不同任務(wù)編制各種動作,它可以移動零件、材料、工具以及特殊裝置。這個基本定義引導(dǎo)出后續(xù)段落的其他定義,從而描繪出一個完整的機器人系統(tǒng)。

2.預(yù)編程位置點是機器人為完成工作而必須跟蹤的軌跡。在某些位

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

置點上機器人將停下來做某些操作,如裝配零件、噴涂油漆或焊接。這些預(yù)編程點貯存在機器人的貯存器中,并為后續(xù)的連續(xù)操作所調(diào)用,而且這些預(yù)編程點想其他程序數(shù)據(jù)一樣,可在日后隨工作需要而變化。因而,正是這種編程的特征,一個工業(yè)機器 人很像一臺計算機,數(shù)據(jù)可在這里儲存、后續(xù)調(diào)用與編譯。

3.機器手是機器人的手臂,它使機器人能彎曲、延伸和旋轉(zhuǎn),提供這些運動的是機器手的軸,亦是所謂的機器人的自由度。一個機器人能有3~16軸,自由度一詞總是與機器人軸數(shù)相關(guān)。

4.工具和手爪不是機器人自身組成部分,但它們是安裝在機器人手臂末端的附件。這些連在機器人手臂末端的附件可使機器人抬起工件、點焊、刷漆、電弧焊、鉆孔、打毛刺以及根據(jù)機器人的要求去做各種各樣的工作。

5.機器人系統(tǒng)還可以控制機器人的工作單元,工作單元是機器人執(zhí)行任務(wù)所處的整體環(huán)境,該單元包括控制器、機械手、工作平臺、安全保護裝置或者傳輸裝置。所有這些為保證機器人完成自己任務(wù)而必須的裝置都包括在這一工作單元中。另外,來自外設(shè)的信號與機器人通訊,通知機器人何時裝配工件、取工件或放工件到傳輸裝置上。機器人系統(tǒng)有三個基本部件:機械手、控制器和動力源。

a.機械手

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

機械手做機器人系統(tǒng)中粗重工作,它包括兩個部分:機構(gòu)與附件,機械手也用聯(lián)接附件基座,圖21-1表示了一機器人基座與附件之間的聯(lián)接情況。

機械手基座通常固定在工作區(qū)域的地基上,有時基座也可以移動,在這種情況下基座安裝在導(dǎo)軌回軌道上,允許機械手從一個位置移到另外一個位置。

正如前面所提到的那樣,附件從機器人基座上延伸出來,附件就是機器人的手臂,它可以是直動型,也可以是軸節(jié)型手臂,軸節(jié)型手臂也是大家所知的關(guān)節(jié)型手臂。

機械臂使機械手產(chǎn)生各軸的運動。這些軸連在一個安裝基座上,然后再連到拖架上,拖架確保機械手停留在某一位置。

在手臂的末端上,連接著手腕(圖21-1),手腕由輔助軸和手腕凸緣組成,手腕是讓機器人用戶在手腕凸緣上安裝不同的工具來做不同的工作。

機械手的軸使機械手在某一區(qū)域內(nèi)執(zhí)行任務(wù),我們將這個區(qū)域為機器人的工作單元,該區(qū)域的大小與機械手的尺寸相對應(yīng),圖21-2列舉了一個典型裝配機器人的工作單元。隨著機器人機械結(jié)構(gòu)尺寸的增加,工作單元的范圍也必須相應(yīng)的增加。

機械手的運動有執(zhí)行元件或驅(qū)動系統(tǒng)來控制。執(zhí)行元件或驅(qū)動系統(tǒng)

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

允許各軸力經(jīng)機構(gòu)轉(zhuǎn)變?yōu)闄C械能,驅(qū)動系統(tǒng)與機械傳動鏈相匹配。由鏈、齒輪和滾珠絲杠組成的機械傳動鏈驅(qū)動著機器人的各軸。

b.控制器

機器人控制器是工作單元的核心??刂破鲀Υ嬷A(yù)編程序供后續(xù)調(diào)用、控制外設(shè),及與廠內(nèi)計算機進(jìn)行通訊以滿足產(chǎn)品更新的需要。

控制器用于控制機械手運動和在工作單元內(nèi)控制機器人外設(shè)。用戶可通過手持的示教盒將機械手運動的程序編入控制器。這些信息儲存在控制器的儲存器中以備后續(xù)調(diào)用,控制器儲存了機器人系統(tǒng)的所有編程數(shù)據(jù),它能儲存幾個不同的程序,并且所有這些程序均能編輯。

控制器要求能夠在工作單元內(nèi)與外設(shè)進(jìn)行通信。例如控制器有一個輸入端,它能標(biāo)識某個機加工操作何時完成。當(dāng)該加工循環(huán)完成后,輸入端接通,告訴控制器定位機械手以便能抓取已加工工件,隨后,機械手抓取一未加工件,將其放置在機床上。接著,控制器給機床發(fā)出開始加工的信號。

控制器可以由根據(jù)事件順序而步進(jìn)的機械式輪鼓組成,這種類型的控制器可用在非常簡單的機械系統(tǒng)中。用于大多數(shù)機器人系統(tǒng)中的控制器代表現(xiàn)代電子學(xué)的水平,是更復(fù)雜的裝置,即它們是由微處理器操縱的。這些微處理器可以是8位、16位或32位處理器。它們可以使得控制器在操作過程中顯得非常柔性。

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

控制器能通過通信線發(fā)送電信號,使它能與機械手各軸交流信息,在機器人的機械手和控制器之間的雙向交流信息可以保持系統(tǒng)操作和位置經(jīng)常更新,控制器亦能控制安裝在機器人手腕上的任何工具。

控制器也有與廠內(nèi)各計算機進(jìn)行通信的任務(wù),這種通信聯(lián)系使機器人成為計算機輔助制造(cam)系統(tǒng)的一個組成部分。

存儲器。給予微處理器的系統(tǒng)運行時要與固態(tài)的存儲裝置相連,這些存儲裝置可以是磁泡,隨機存儲器、軟盤、磁帶等。每種記憶存儲裝置均能貯存、編輯信息以備后續(xù)調(diào)用和編輯。

c.動力源

動力源是給機器人和機械手提供動力的單元。傳給機器人系統(tǒng)的動力源有兩種,一種是用于控制器的交流電,另一種是用于驅(qū)動機械手各軸的動力源,例如,如果機器人的機械手是有液壓和氣壓驅(qū)動的,控制信號便傳送到這些裝置中,驅(qū)動機器人運動。

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

液壓與氣壓系統(tǒng)

僅有以下三種基本方法傳遞動力:電氣,機械和流體。大多數(shù)應(yīng)用系統(tǒng)實際上是將三種方法組合起來而得到最有效的最全面的系統(tǒng)。為了合理地確定采取哪種方法。重要的是了解各種方法的顯著特征。例如液壓系統(tǒng)在長距離上比機械系統(tǒng)更能經(jīng)濟地傳遞動力。然而液壓系統(tǒng)與電氣系統(tǒng)相比,傳遞動力的距離較短。

液壓動力傳遞系統(tǒng)涉及電動機,調(diào)節(jié)裝置和壓力和流量控制,總的來說,該系統(tǒng)包括:

泵:將原動機的能量轉(zhuǎn)換成作用在執(zhí)行部件上的液壓能。閥:控制泵產(chǎn)生流體的運動方向、產(chǎn)生的功率的大小,以及到達(dá)執(zhí)行部件流體的流量。功率大小取決于對流量和壓力大小的控制。

執(zhí)行部件:將液壓能轉(zhuǎn)成可用的機械能。

介質(zhì)即油液:可進(jìn)行無壓縮傳遞和控制,同時可以潤滑部件,使閥體密封和系統(tǒng)冷卻。

聯(lián)接件:聯(lián)接各個系統(tǒng)部件,為壓力流體提供功率傳輸通路,將液體返回油箱(貯油器)。

油液貯存和調(diào)節(jié)裝置:用來確保提供足夠質(zhì)量和數(shù)量并冷卻的液體。

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

液壓系統(tǒng)在工業(yè)中應(yīng)用廣泛。例如沖壓`鋼類工件的磨削幾一般加工業(yè)、農(nóng)業(yè)、礦業(yè)、航天技術(shù)、深??碧健⑦\輸、海洋技術(shù),近海天然氣和石油勘探等行業(yè),簡而言之,在日常生活中有人不從液壓技術(shù)中得到某種益處。

液壓系統(tǒng)成功而又廣泛使用的秘密在于它的通用性和易操作性。液壓動力傳遞不會象機械系統(tǒng)那樣受到機器幾何形狀的制約,另外,液壓系統(tǒng)不會像電氣系統(tǒng)那樣受到材料物理性能的制約,它對傳遞功率幾乎沒有量的限制。例如,一個電磁體的性能受到鋼的磁飽和極限的限制,相反,液壓系統(tǒng)的功率僅僅受材料強度的限制。

企業(yè)為了提高生產(chǎn)率將越來越依靠自動化,這包括遠(yuǎn)程和直接控制生產(chǎn)操作、加工過程和材料處理等。液壓動力之所以成為自動化的組成部分,是因為它有如下主要的特點:

1.控制方便精確

通過一個簡單的操作桿和按扭,液壓系統(tǒng)的操作者便能立即起動,停止、加減速和能提供任意功率、位置精度為萬分之一英寸的位置控制力。圖13-1是一個使飛機駕駛員升起和落下起落架的液壓系統(tǒng),當(dāng)飛行向某方向移動控制閥,壓力油流入液壓缸的某一腔從而降下起落架。飛行員向反方向移動控制閥,允許油液進(jìn)入液壓缸的另一腔,便收回起落架。

2.增力 一個液壓系統(tǒng)(沒有使用笨重的齒輪、滑輪和杠桿)能簡單

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

有效地將不到一盎司的力放大產(chǎn)生幾百噸的輸出。

3.恒力或恒扭矩

只有液壓系統(tǒng)能提供不隨速度變化而變化的恒力或恒扭矩,他可以驅(qū)動對象從每小時移動幾英寸到每分鐘幾百英寸,從每小時幾轉(zhuǎn)到每分鐘幾千轉(zhuǎn)。

4.簡便、安全、經(jīng)濟

總的來說,液壓系統(tǒng)比機械或電氣系統(tǒng)使用更少的運動部件,因此,它們運行與維護簡便。這使得系統(tǒng)結(jié)構(gòu)緊湊,安全可靠。例如 一種用于車輛上的新型動力轉(zhuǎn)向控制裝置一淘汰其他類型的轉(zhuǎn)向動力裝置,該轉(zhuǎn)向部件中包含有人力操縱方向控制閥和分配器。因為轉(zhuǎn)向部件是全液壓的,沒有方向節(jié)、軸承、減速齒輪等機械連接,使得系統(tǒng)簡單緊湊。

另外,只需要輸入很小的扭矩就能產(chǎn)生滿足極其惡劣的工作條件所需的控制力,這對于因操作空間限制而需要小方向盤的場合很重要,這也是減輕司機疲勞度所必須的。

液壓系統(tǒng)的其他優(yōu)點包括雙向運動、過載保護和無級變速控制,在已有的任何動力、系統(tǒng)中液壓系統(tǒng)也具有最大的單位質(zhì)量功率比。

盡管液壓系統(tǒng)具有如此的高性能,但它不是可以解決所有動力傳遞問題的靈丹妙藥。液壓系統(tǒng)也有缺點,液壓油有污染,并且泄露不可能完全避免,另外如果油液滲漏發(fā)生在灼熱設(shè)備附近,大多數(shù)液壓油能引起火災(zāi)。

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

氣壓系統(tǒng)

氣壓系統(tǒng)是用壓力氣體傳遞和控制動力,正如名稱所表明的那樣,氣壓系統(tǒng)通常用空氣(不用其他氣體)作為流體介質(zhì),因為空氣是安全、成本低而又隨處可得的流體,在系統(tǒng)部件中產(chǎn)生電弧有可能點燃泄露物的場合下(使用空氣作為介質(zhì))尤其安全。

在氣壓系統(tǒng)中,壓縮機用來壓縮并提供所需的空氣。壓縮機一般有活塞式、葉片式和螺旋式等類型。壓縮機基本上是根據(jù)理想氣體法則,通過減小氣體體積來增加氣體壓力的。氣壓系統(tǒng)通??紤]采用大的中央空氣壓縮機作為一個無限量的氣源,這類似于電力系統(tǒng)中只要將插頭插入插座邊可獲得電能。用這種方法,壓力氣體可以總氣體源輸送到整個工廠的各個角落,壓力氣體可通過空氣濾清器除去污物,這些污染可能會損壞氣動組件的精密配合部件如閥和汽缸等,隨后輸送到各個回路中,接著空氣流經(jīng)減壓閥以減小氣壓值適合某一回路使用。因為空氣不是好的潤滑油,氣壓系統(tǒng)需要一個油霧器將細(xì)小的油霧注射到經(jīng)過減壓閥減壓空氣中,這有幫助于減少氣動組件精密配合運動件的磨損。

由于來自大氣中的空氣含不同數(shù)量的水分,這些水分是有害的,它可以帶走潤滑劑引起的過分磨損和腐蝕,因此,在一些使用場合中,要用空氣干燥器來除去這些有還的水分。由于氣壓系統(tǒng)直接向大氣排

沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文

氣,會產(chǎn)生過大的噪聲,因此可在氣閥和執(zhí)行組件排氣口安裝銷聲器來降低噪聲,以防止操作人員因接觸噪聲及高速空氣粒子有可能引發(fā)的傷害。

用氣動系統(tǒng)代替液壓系統(tǒng)有以下幾條理由:液體的慣性遠(yuǎn)比氣體大,因此,在液壓系統(tǒng)中,當(dāng)執(zhí)行組件加速減速和閥突然開啟關(guān)閉時,油液的質(zhì)量更是一個潛在的問題,根據(jù)牛頓運動定律,產(chǎn)生加速度運動油液所需的力要比加速同等體積空氣所需的力高出許多倍。液體比氣體具有更大的粘性,這會因為內(nèi)摩擦而引起更大的壓力和功率損失;另外,由于液壓系統(tǒng)使用的液體要與大氣隔絕,故它們需要特殊的油箱和無泄露系統(tǒng)設(shè)計。氣壓系統(tǒng)使用可以直接排到周圍環(huán)境中的空氣,一般來說氣壓系統(tǒng)沒有液體系統(tǒng)昂貴。

然而,由于空氣的可壓縮性,使得氣壓系統(tǒng)執(zhí)行組件不可能得到精確的速度控制和位置控制。氣壓系統(tǒng)由于壓縮機局限,其系統(tǒng)壓力相當(dāng)?shù)停ǖ陀?50psi),而液壓力可達(dá)1000psi之高,因此液壓系統(tǒng)可以是大功率系統(tǒng),而氣動系統(tǒng)僅用于小功率系統(tǒng),典型例子有沖壓、鉆孔、夾緊、組裝、鉚接、材料處理和邏輯控制操作等。

四自由度工業(yè)機器人篇五

the development of industrial robots

industrial robot is a robot, it consists of a drive system and detection sensor device composition, it is a kind of humanoid operating automatic control, can repeat programming, can finish all kinds of assignments in three difficulties in authorship space the electromechanical integration automation production equipment, especially suitable for many varieties, become batch flexible to stabilize and improve the product quality, raise efficiency in production, improve working conditions of the rapid renewal plays an extremely important used industrial robots can gradually improve working conditions, stronger and controllable production capacity, speed up product updating and e production efficiency and guarantee the quality of its products, eliminate dull work, save labor, provide a safe working environment, reduces the labor intensity, and reduce labor risk, improve the machine tool, reduce the workload and reduce process production time and inventory, enhance the competitiveness of technology advances, the development of industrial robot, the process can be spanided into three generations--generation, for demonstration reproduce, and it mainly consists of robot hand controller and demonstration teaching machines composed, can press advance box to record information guide action, the current industry repeated reappearance application of execution second to feel robot, such as powerful sleep touch and vision, it has for some outside information feedback adjustment ability, currently has entered the application generation of intelligent robot it has sense and understanding ability, in the external environment for the working environment changed circumstances, can also successfully complete the task, it is still in the experimental research united states is the birthplace of the robot, as early as in 1961, america's consolidedcontrolcorp and amf companies developed the first practical demonstration emersion 40 years of development, the united states in the world of robotics has been in the lead its technology comprehensive, advanced, adaptability is imported from america in 1967, the first robot in 1976 later, with the rapid development of the microelectronics and the market demand has increased dramatically, japan was labor significant deficiencies in

enterprise, industrial robots by “savior”'s welcome, make its japanese industrial robots get fast development, the number of now whether robots or robot densities are top of the world, known as the “robot kingdom,” robot introduced from germany time than britain and sweden about late 1956, but the labour shortages caused by war, national technical level is higher social environment, but for the development and application of industrial robot provides favorable addition, in germany, for some dangerous prescribed, poisonous or harmful jobs, robot instead of ordinary people to the is the use of robots exploit a wide range of markets, and promote the development of the industrial robot present, the german industrial robots total of the world, which only behind to french government has been more important robot technology, and through a series of research program, support established a complete science and technology system, make the development of the french robot government organization project, pay special attention to the robot research based technique, the focus is on the application research on in by industry support the development application and development of work, both supplement each other, make robots in france enterprises develop rapidly and popularize and make france in the international industrial machine with indispensable if h jamie since the late 1970s, promote and implement a department measures listed support the development of policies and make robots british industrial robots than today's robot powers started to early, and once in japan has made the early r, at this time the government for industrial robots implemented the constraining mistake in britain dust, the robot industry in western europe was almost in the bottom of recent years, italy, sweden, spain, finland, denmark and other countries because of its own domestic robots market in great demand, development at a very fast present, the international on industrial robot company mainly spanided into japanese and european anchuan of japanese are mainly the ethical products, the otc, panasonic, fanluc, not two more, products of the company kawasaki the main asiatic kuka, german cloos, sweden's abb, italy co work pelatiah u and austria gm rial robot in china started in early 1970s, after 30 years development, roughly experienced three stages: in the 1970s and 1980s budding transplanter and the application of the 1990s initialization the 20th century 70's world technology rapid development, the application of industrial robots in world created a climax, in this context, our country in 1972 start developing their industrial after the 1980s, with the further reform and opening, in high technology waves pound, our research and development of robot technology from the government's attention and support, “during the seventh state funds, thanked the parts were set robot and research, completed demonstration emersion type industrial robot complete technology development, developed spray paint, welding, arc welding and handling robot., the national high technology research and development program begin to carry out, after several years research and made a large number of scientific sfully developed a batch of special 9o 2o century since the early, china's national economy achieve two fundamental period of transformation into a a new round of economic restructuring and technological progress, china's industrial robots upsurge in practice and have made strides, and have developed spot welding, welding, assembling, paint, cutting, handling, palletizing etc various uses of industrial robot, and implement a batch of robot application engineering, formed a batch of industrial robots for our country industrialization base, the industrial robot soar laid a compared with the developed countries, china also has the very big disparity of industrial with the development of industrial robot depth and the breadth and raise the level of robot, industrial robots are has been applied in many the traditional automobile manufacturing sector to the manufacturing as mining robots, building robots and hydropower system used for maintenance robots, defense of military, medicine and health, food processing and life service areas such as the application of industrial robots will be more and manufacturing of automobiles is a technology and capital intensive industry, is also the most widely used of industrial robots, accounting for almost to the industry for more than half of the industrial china, the industrial robot first is also used in automobile and engineering machinery car production of industrial robot is a major in the equipment, the brake parts and whole production of arc welding, spot welding, painting, handling, glue, stamping process used in large country is forecast to rise period, entered the automobile ownership in the next few years, car will still growing at around 15 percent the next few years the industrial robot demand will show high growth trend, about 50% in growth, industrial robots in our automobile industry application will get a rapid rial robot in addition to the wide application of in the automotive industry in electronic, food processing, nonmetal processing, daily consumer goods and wood furniture processing industries for

industrial robots demand is growing asia, 2005 72,600 sets, installation industrial robots, compared with 2004 grew by 40%, and application in electronic industry accounted for about 31%.in europe, according to statistics, since 2004 and 2005 in l: ti industry robot in the food processing industry increased 17% the application of left and right sides, in the application of nonmetal processing industry increased 20%, and daily necessities in consumption industries increased by 32% in wood furniture processing industry, up 18% or rial robot in oil has a wide application in, such as sea oil drilling, oil platforms, pipeline detection, refinery, large oil tank and tank welding etc all can use robots to the next few years, sensing technology, laser technology, engineering network technology will be widely used in industrial robots work areas, these technologies can cause the industrial robot application more efficient, high quality, lower is predicted that future robots will in medical and health care, biological technology and industry, education, relief, ocean exploitation, machine maintenance, transportation and agriculture and aquatic products applied china, the industrial robot market share are mostly foreign industrial robots enterprise the gunman in the international, domestic industrial robots enterprise facing great pressure of china is from a ”manufacturing power“ to ”manufacturing power forward,“ chinese manufacturing industry faces and the international community, participate in the international spanision of labor in the great challenge of industrial automation increase immediate, government must can increase the funds for robots and policy support, will give the industry of industrial robots development into new independent brand ”devil robot" moshi special technology company dedicated to providing solutions to the mainboard and robot, is willing with all my colleagues a build domestic industrial robot happy tomorrow!

references electronic measurement and intrumenttations,cambridge university press,1996

工業(yè)機器人的發(fā)展

工業(yè)機器人是機器人的一種,它由操作機.控制器.伺服驅(qū)動系統(tǒng)和檢測傳感器裝置構(gòu)成,是一種仿人操作自動控制,可重復(fù)編程,能在三難空間完成各種作業(yè)的機電一體化的自動化生產(chǎn)設(shè)備,特別適合于多品種,變批量柔性生產(chǎn)。它對穩(wěn)定和提高產(chǎn)品質(zhì)量,提高生產(chǎn)效率,改善勞動條件的快速更新?lián)Q代起著十分重要作用。

廣泛的應(yīng)用工業(yè)機器人,可以逐步改善勞動條件,更強與可控的生產(chǎn)能力,加快產(chǎn)品更新?lián)Q代。提高生產(chǎn)效率和保證產(chǎn)品質(zhì)量,消除枯燥無味的工作,節(jié)約勞動力,提供更安全的工作環(huán)境,降低工人的勞動強度,減少勞動風(fēng)險,提高機床,減少工藝過程中的工作量及降低停產(chǎn)時間和庫存,提高企業(yè)競爭力。

隨著科技的不斷進(jìn)步,工業(yè)機器人的發(fā)展過程可分為三代,第—代,為示教再現(xiàn)型機器人,它主要由機器手控制器和示教盒組成,可按預(yù)先引導(dǎo)動作記錄下信息重復(fù)再現(xiàn)執(zhí)行,當(dāng)前工業(yè)中應(yīng)用最多。第二代為感覺型機器人,如有力覺觸覺和視覺等,它具有對某些外界信息進(jìn)行反饋調(diào)整的能力,目前已進(jìn)入應(yīng)用階段。第三代為智能型機器人它具有感知和理解外部環(huán)境的能力,在工作環(huán)境改變的情況下,也能夠成功地完成任務(wù),它尚處于實驗研究階段。

美國是機器人的誕生地,早在1961年,美國的consolidedcontrolcorp和amf公司聯(lián)合研制了第一臺實用的示教再現(xiàn)機器人。經(jīng)過40多年的發(fā)展,美國的機器人技術(shù)在國際上仍一直處于領(lǐng)先地位。其技術(shù)全面、先進(jìn),適應(yīng)性也很強。

日本在1967年從美國引進(jìn)第一臺機器人,1976年以后,隨著微電子的快速發(fā)展和市場需求急劇增加,日本當(dāng)時勞動力顯著不足,工業(yè)機器人在企業(yè)里受到了“救世主”般的歡迎,使其日本工業(yè)機器人得到快速發(fā)展,現(xiàn)在無論機器人的數(shù)量還是機器人的密度都位居世界第一,素有“機器人王國”之稱。德國引進(jìn)機器人的時間比英國和瑞典大約晚了五六年,但戰(zhàn)爭所導(dǎo)致的勞動力短缺,國民的技術(shù)水平較高等社會環(huán)境,卻為工業(yè)機器人的發(fā)展、應(yīng)用提供了有利條件。此外,在德國規(guī)定,對于一些危險、有毒、有害的工作崗位,必須以機器人來代替普通人的勞動。這為機器人的應(yīng)用開拓了廣泛的市場,并推動了工業(yè)機器人技術(shù)的發(fā)展。目前,德國工業(yè)機器人的總數(shù)占世界第二位,僅次于日本。

法國政府一直比較重視機器人技術(shù),通過大力支持一系列研究計劃,建立了一個完整的科學(xué)技術(shù)體系,使法國機器人的發(fā)展比較順利。在政府組織的項目中,特別注重機器人基礎(chǔ)技術(shù)方面的研究,把重點放在開展機器人的應(yīng)用研究上。而由工業(yè)界支持開展應(yīng)用和開發(fā)方面的工作,兩者相輔相成,使機器人在法國企業(yè)界得以迅速發(fā)展和普及,從而使法國在國際工業(yè)機器人界擁有不可或缺的一席之地。

英國紀(jì)70年代末開始,推行并實施了一系措施列支持機器人發(fā)展的政策,使英國工業(yè)機器人起步比當(dāng)今的機器人大國日本還要早,并曾經(jīng)取得了早期的輝煌。然而,這時候政府對工業(yè)機器人實行了限制發(fā)展的錯誤。這個錯誤導(dǎo)致英國的機器人工業(yè)一蹶不振,在西歐幾乎處于末位。近些年,意大利、瑞典、西班牙、芬蘭、丹麥等國家由于自身國內(nèi)機器人市場的大量需求,發(fā)展速度非常迅速。目前,國際上的工業(yè)機器人公司主要分為日系和歐系。日系中主要有安川、otc、松下、fanluc、不二越、川崎等公司的產(chǎn)品。歐系中主要有德國的kuka、cloos、瑞典的abb、意大利的co毗u及奧地利的工gm公司。

我國工業(yè)機器人起步于20世紀(jì)70年代初期,經(jīng)過30多年發(fā)展,大致經(jīng)歷

了3個階段:70年代萌芽期,80年代的開發(fā)期和90年代的應(yīng)用化期。隨著20世紀(jì)70年代世界科技快速發(fā)展,工業(yè)機器人的應(yīng)用在世界掀起了一個高潮,在這種背景下,我國于1972年開始研制自己的工業(yè)機器人。進(jìn)入20世紀(jì)80年代后,隨著改革開放的不斷深入,在高技術(shù)浪潮的沖擊下,我國機器人技術(shù)的開發(fā)與研究得到了政府的重視與支持,“七五”期間,國家投入資金,對工定機器人及零部件進(jìn)行攻關(guān),完成了示教再現(xiàn)式工業(yè)機器人成套技術(shù)的開發(fā),研制出了噴漆,點焊,弧焊和搬運機器人。,國家高技術(shù)研究發(fā)展計劃開始實施,經(jīng)過幾年研究,取得了一大批科研成果。成功地研制出了一批特種機器人。

從2o世紀(jì)9o年代初期起,我國的國民經(jīng)濟進(jìn)入實現(xiàn)兩個根本轉(zhuǎn)變期,掀起了新一輪的經(jīng)濟體制改革和技術(shù)進(jìn)步熱潮,我國的工業(yè)機器人又在實踐中邁進(jìn)了一大步,先后研制了點焊,弧焊,裝配,噴漆,切割,搬運,碼垛等各種用途的工業(yè)機器人,并實施了一批機器人應(yīng)用工程,形成了一批工業(yè)機器人產(chǎn)業(yè)化基地,為我國機器人產(chǎn)業(yè)的騰飛奠定了基礎(chǔ)。但是與發(fā)達(dá)國家相比,我國工業(yè)機器人還有很大差距。

隨著工業(yè)機器人發(fā)展的深度和廣度以及機器人智能水平的提高,工業(yè)機器人已在眾多領(lǐng)域得到了應(yīng)用。從傳統(tǒng)的汽車制造領(lǐng)域向非制造領(lǐng)域延伸。如采礦機器人、建筑業(yè)機器人以及水電系統(tǒng)用于維護維修的機器人等。在國防軍事、醫(yī)療衛(wèi)生、食品加工、生活服務(wù)等領(lǐng)域工業(yè)機器人的應(yīng)用也越來越多。汽車制造是一個技術(shù)和資金高度密集的產(chǎn)業(yè),也是工業(yè)機器人應(yīng)用最廣泛的行業(yè),幾乎占到整個工業(yè)機器人的一半以上。在我國,工業(yè)機器人最初也是應(yīng)用于汽車和工程機械行業(yè)中。在汽車生產(chǎn)中工業(yè)機器人是一種主要的制動化設(shè)備,在整車及零部件生產(chǎn)的弧焊、點焊、噴涂、搬運、涂膠、沖壓等工藝中大量使用。據(jù)預(yù)測我國正在進(jìn)入汽車擁有率上升時期,在未來幾年里,汽車仍將每年15%左右的速度增長。所以未來幾年工業(yè)機器人的需求將會呈現(xiàn)出高速增長趨勢,年增幅達(dá)到50%左右,工業(yè)機器人在我國汽車行業(yè)的應(yīng)用將得到快速發(fā)展。

工業(yè)機器人除了在汽車行業(yè)的廣泛應(yīng)用,在電子,食品加工,非金屬加工,日用消費品和木材家具加工等行業(yè)對工業(yè)機器人的需求也快速增長。在亞洲,2005年安裝工業(yè)機器人72,600臺,與2004年相比,增長了40%,而應(yīng)用在電子行業(yè)的就占了31%左右。在歐洲地區(qū),據(jù)統(tǒng)計2005年與2004年相l(xiāng):ti業(yè)機器人在食品加工行業(yè)的應(yīng)用增長了17%左右,在非金屬加工行業(yè)的應(yīng)用增長了20%左右,在日用品消費行業(yè)增長了32%,在木材家具加工行業(yè)增長了18%左右。工業(yè)機器人在石油方面也有廣泛的應(yīng)用,如海上石油鉆井、采油平臺、管道的檢測、煉油廠、大型油罐和儲罐的焊接等均可使用機器人來完成。在未來幾年,傳感技術(shù),激光技術(shù),工程網(wǎng)絡(luò)技術(shù)將會被廣泛應(yīng)用在工業(yè)機器人工作領(lǐng)域,這些技術(shù)會使工業(yè)機器人的應(yīng)用更為高效,高質(zhì),運行成本低。據(jù)預(yù)測,今后機器人將在醫(yī)療、保健、生物技術(shù)和產(chǎn)業(yè)、教育、救災(zāi)、海洋開發(fā)、機器維修、交通運輸和農(nóng)業(yè)水產(chǎn)等領(lǐng)域得到應(yīng)用。

在我國,工業(yè)機器人市場份額大部分被國外工業(yè)機器人企業(yè)占據(jù)著。在國際強手面前,國內(nèi)的工業(yè)機器人企業(yè)面臨著相當(dāng)大的競爭壓力。如今我國正從一個“制造大國”向“制造強國”邁進(jìn),中國制造業(yè)面臨著與國際接軌、參與國際分工的巨大挑戰(zhàn),對我國工業(yè)自動化的提高迫在眉睫,政府務(wù)必會加大對機器人的資金投入和政策支持,將會給工業(yè)機器人產(chǎn)業(yè)發(fā)展注入新的動力。擁有自主品牌“妖怪機器人”的莫士特科技公司致力于提供機器人主板和解決方案,愿與各界同仁一道打造國產(chǎn)工業(yè)機器人的美好明天!

【本文地址:http://mlvmservice.com/zuowen/1084549.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔