直線與圓的位置關系聽課筆記(專業(yè)16篇)

格式:DOC 上傳日期:2023-11-11 01:57:14
直線與圓的位置關系聽課筆記(專業(yè)16篇)
時間:2023-11-11 01:57:14     小編:XY字客

各種各樣的工作和學習經(jīng)歷都需要進行總結。寫總結的時候,我們可以參考一些相關的范文和案例,從中獲取靈感和寫作技巧。小編為大家收集了一些優(yōu)秀的總結案例,希望能對大家的寫作有所幫助。

直線與圓的位置關系聽課筆記篇一

重點:的性質(zhì)和判定.因為它是本單元的基礎(如:“切線的判斷和性質(zhì)定理”是在它的基礎上研究的),也是高中解析幾何中研究的基礎.

難點:在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學生較難理解.

3.教法建議。

本節(jié)內(nèi)容需要一個課時.

(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學生為主體,活動式.

第12頁?。

直線與圓的位置關系聽課筆記篇二

已知直線都是正數(shù))與圓相切,則以為三邊長的三角形是________三角形.

三、解答題。

當為何值時,直線與圓有兩個公共點?有一個公共點?無公共點?

四、填空題。

若直線與圓相切,則實數(shù)的值等于________.

圓心為且與直線相切的圓的方程為________.

直線與圓相切,則實數(shù)等于________.

直線與圓相切,則________.

過點作圓的切線,且直線與平行,則與間的距離是________.

過點,作圓的切線,則切線的條數(shù)為________條.

過點的圓與直線相切于點,則圓的方程為________.

五、解答題。

過點作圓的切線,求此切線的方程.。

圓與直線相切于點,且與直線也相切,求圓的方程.。

六、填空題。

由直線上的一點向圓引切線,則切線長的最小值為_____________.

七、解答題。

求滿足下列條件的圓的切線方程:

(1)經(jīng)過點;

(2)斜率為;

(3)過點.。

已知圓的方程為,求過的圓的切線方程.。

八、填空題。

直線被圓截得的弦長等于________.

直線被圓截得的弦長等于________.

直線被圓所截得的弦長為________.

圓截直線所得弦的長度為4,則實數(shù)的值是________.

設直線與圓相交于兩點,若,則圓的面積為________.

直線被圓截得的弦長為________.

直線被圓所截得的弦長為________.

圓心坐標為的圓在直線上截得的弦長為,那么這個圓的方程為________.

過點的直線被圓截得的弦長為,則直線的斜率為________.

過原點的直線與圓相交所得弦的長為2,則該直線的方程為________.

九、解答題。

圓心在直線上,圓過點,且截直線所得弦長為,求圓的方程.。

十、填空題。

過點作圓的弦,其中最短弦的長為________.

十一、解答題。

已知圓,直線.

(1)求證:對,直線與圓總有兩個不同的交點;

(2)若直線與圓交于兩點,當時,求的值.。

設圓上的點關于直線的對稱點仍在圓上,且直線被圓截得的弦長為,求圓的方程.。

已知圓,直線.。

證明:不論取什么實數(shù),直線與圓恒交于兩點。

求直線被圓截得的弦長最小時的方程,并求此時的弦長。

十二、填空題。

圓上到直線的距離等于1的點有________個.

在平面直角坐標系中,已知圓上有且僅有四個點到直線的距離為1,則實數(shù)的取值范圍是________.

設圓上有且僅有兩個點到直線的距離等于1,則圓半徑的取值范圍是________.

直線與曲線有且只有一個公共點,則b的取值范圍是_________。

若直線與圓恒有兩個交點,則實數(shù)的取值范圍為________.

已知點滿足,則的取值范圍是________.

若過點的直線與曲線有公共點,則直線的斜率的取值范圍為。

直線與圓的位置關系聽課筆記篇三

5、過程與方法。

理解直線和圓的三種位置關系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應關系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數(shù)判斷直線與圓的位置關系,能用直線和圓的方程解決一些條件下圓的切線問題;領會數(shù)形結合的數(shù)學思想方法,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力。

6、情感態(tài)度與價值觀。

通過對本節(jié)課知識的探究活動,加深學生對解析法解決幾何問題的認識,從而領悟其中所蘊涵的數(shù)學思想,體驗探索中成功的喜悅,激發(fā)學習熱情,養(yǎng)成良好的學習習慣和品質(zhì)。

教法學法為了實現(xiàn)上述教學目標,本節(jié)課采取以下教學方法:

(1)恰當?shù)睦枚嗝襟w課件,通過學生熟悉的實際生活問題引入課題,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生的問題意識和求知欲,調(diào)動學生主體參與的積極性。

(2)采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學生思維的最近發(fā)展區(qū)上啟發(fā)誘導。

(3)在整個數(shù)學教學過程中,既要體現(xiàn)學生的主體地位,更要強調(diào)教師的主導地位,在科學講授的同時教會學生清晰的思維和嚴謹?shù)耐评怼?/p>

在學法上注重以下幾點:

(2)在用代數(shù)法解決直線與圓的位置關系時,要能夠明確運算方向,把握關鍵步驟,正確的處理較為復雜數(shù)據(jù)。

課堂結構設計:

整個教學過程是四步組成,自主學習,合作探究,老師輔導、課堂展示。共分為八個環(huán)節(jié),復習、獨立訓練、相互探討、老師參與、形成結論、課堂展示、評價(互評師評)、反思。

教學過程設計:

通過問題情境,激發(fā)學生的學習興趣,使學生找到要學的與以學知識之間的聯(lián)系;問題串的設置可讓學生主動參與到學習中來;在判斷方法的形成與應用的探究中,師生的相互溝通調(diào)動學生的積極性,培養(yǎng)團隊精神;知識的生成和問題的解決,培養(yǎng)學生獨立思考的能力,激發(fā)學生的創(chuàng)新思維;通過練習檢測學生對知識的掌握情況;根據(jù)學生在課堂小結中的表現(xiàn)和課后作業(yè)情況,查缺補漏,以便調(diào)控教學。

回顧反思,拓展延伸:

直線與圓的位置關系聽課筆記篇四

20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:

過程與方法目標:

2.通過例題教學,培養(yǎng)學生靈活運用知識的解決能力。

情感與態(tài)度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的關系、關注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉化的辯證唯物主義觀點。

利用多媒體放映落日的動畫,初中數(shù)學教案《數(shù)學教案-直線和圓的位置關系(公開課)》。引導學生從公共點個數(shù)和圓心到直線的.距離兩方面體會直線和圓的不同位置關系。

學生看投影并思考問題。

調(diào)動學生積極主動參與數(shù)學活動中.。

探究新知。

1、通過觀察直線和圓的公共點個數(shù)得出直線和圓相離、相交、相切的定義。

布置作業(yè)。

1、課本第101頁7.3a組第2、3題。

2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。

直線與圓的位置關系聽課筆記篇五

重點:的性質(zhì)和判定。因為它是本單元的基礎(如:“切線的判斷和性質(zhì)定理”是在它的基礎上研究的),也是高中解析幾何中研究的基礎。

難點:在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學生較難理解。

3.教法建議。

本節(jié)內(nèi)容需要一個課時。

(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學生為主體,活動式.

第12頁。

直線與圓的位置關系聽課筆記篇六

三、目的分析:

1、知識目標:

2、能力目標:

要使學生體會用代數(shù)方法處理幾何問題的思路和“數(shù)形結合”的思想方法。

四、教法分析:

1、教學方法:啟發(fā)式講授法、演示法、輔導法。

2、教材處理:

(1)例題1(1)(2)用兩種不同的辦法求解,讓學生自己體會這兩種方法。

通過老師引導和讓學生自己探索解決,反饋學生的解決情況。

(2)增加一個過一點求圓的切線方程的題型,幫助學生增加對直線與圓的認識。

3、學法指導:本節(jié)課的學法是繼續(xù)指導學生把新問題轉化為已有知識解決的化歸思想。

4、教具:多媒體電腦、投影儀、自做多媒體。

五、過程分析:

教學。

環(huán)節(jié)。

教學內(nèi)容。

設計意圖。

新課引入。

1、學生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學生回答的基礎上,通過多媒體演示圓與直線的三種位置關系。讓學生感受到數(shù)學產(chǎn)生于生活,與生活密切相關,并能使學生更好的直觀感受直線和圓的三種位置關系。然后引入本節(jié)課的課題。

2、在上一章,我們在學習了直線的方程后,研究了點和直線、直線與直線的位置關系,本章我們已經(jīng)學習了圓的方程,現(xiàn)在我們要研究直線與圓以及圓與圓的位置關系。

1數(shù)學產(chǎn)生于生活,與生活密切相關。

2、以實際問題引入有利于激發(fā)學生學習數(shù)學的興趣,有利于擴展學生的視野。

新課講解。

一、知識點撥:

答:把圓心到直線的距離d和半徑r比較大?。?/p>

直線與圓的位置關系聽課筆記篇七

:通過觀察、實驗、討論、合作研究等數(shù)學活動使學生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數(shù)量關系對應等價于直線和圓的位置關系”從而實現(xiàn)位置關系與數(shù)量關系的轉化,滲透運動與轉化的數(shù)學思想。

:創(chuàng)設問題情景,激發(fā)學生好奇心;體驗數(shù)學活動中的探索與創(chuàng)造,感受數(shù)學的嚴謹性和數(shù)學結論的正確性,在學習活動中獲得成功的體驗;通過“轉化”數(shù)學思想的運用,讓學生認識到事物之間是普遍聯(lián)系、相互轉化的辨證唯物主義思想。

二、教學重、難點。

難點:學生能根據(jù)圓心到直線的距離d與圓的半徑r之間的數(shù)量關系,揭示直線與圓的位置關系;直線與圓的三種位置關系判定方法的運用。

三、教學設計。

問???題。

設計意圖。

師生活動。

2.圖形中的圓與直線的位置都是一樣的嗎?

師:讓學生之間進行討論、交流,引導學生觀察圖形,導入新課.

生:看圖,并說出自己的看法.

師:引導學生利用類比、歸納的思想,總結直線與圓的位置關系的種類,進一步深化“數(shù)形結合”的數(shù)學思想.

問???題。

設計意圖。

師生活動。

使學生回憶初中的數(shù)學知識,培養(yǎng)抽象概括能力.

師:引導學生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.

生:利用圖形,尋找兩種方法的數(shù)學思想.

師:指導學生閱讀教科書上的例1.

生:閱讀科書上的例1,并完成教科書第128頁的練習題2.

師;分析例1,并展示解答過程;啟發(fā)學生概括判斷直線與圓的位置關系的基本步驟,注意給學生留有總結思考的時間.

生:交流自己總結的步驟.

師:展示解題步驟.

7.通過學習教科書上的例2,你能說明例2中體現(xiàn)出來的數(shù)學思想方法嗎?

進一步深化“數(shù)形結合”的數(shù)學思想.

師:指導學生閱讀并完成教科書上的例2,啟發(fā)學生利用“數(shù)形結合”的數(shù)學思想解決問題.

問???題。

設計意圖。

師生活動。

8.通過例2的學習,你發(fā)現(xiàn)了什么?

明確弦長的運算方法.

師:引導并啟發(fā)學生探索直線與圓的相交弦的求法.

生:通過分析、抽象、歸納,得出相交弦長的運算方法.

9.完成教科書第128頁的練習題1、2、3、4.

師:引導學生完成練習題.

生:互相討論、交流,完成練習題.

10.課堂小結:

教師提出下列問題讓學生思考:

作業(yè):習題4.2a組:1、3.

直線與圓的位置關系聽課筆記篇八

從教學以來,我一直不斷的學習和研究如何使學生在數(shù)學課堂中高效的學習,在探索過程中我發(fā)現(xiàn)教師要想讓學生學好數(shù)學,必須高度重視學生的主動參與課堂學習,讓學生親身體驗學習知識的過程,引導學生在發(fā)現(xiàn)問題、分析問題、解決問題的同時,培養(yǎng)學生的自主學習能力和創(chuàng)新意識?!吨本€與圓的位置關系》是高中學習中一個重要的內(nèi)容,下面我詳細總結一下我講的這節(jié)課。

首先從實際生活出發(fā),引用古詩句“海上升明月,天涯共此時”及海上日出的多媒體展示,引導學生回憶直線和圓的位置關系及判定方法,通過對已有研究方法的揭示,增強學生運用遷移方法研究新問題的意識;接著借助多媒體引出三個問題,讓學生運用初中的知識判斷一下直線和圓的位置關系,鞏固學生初中所學內(nèi)容更好的為本節(jié)課的學習打下基礎,從而引導學生揭示出直線與圓的位置關系與公共點的個數(shù)之間存在著對應關系的本質(zhì)特征;最后,引入輪船遇到臺風的實際問題,讓學生體會源自生活的數(shù)學,思考解決實際問題的方法,在數(shù)與形的相互轉化過程中思考問題。

在我的引導下,提示學生先用初中所學內(nèi)容解決輪船遇臺風問題,學生很輕易的把這個問題解決了,緊接著我又趁熱打鐵,提出一般的`三角形中這個方法是否可以,由此得到由高中知識解決直線與圓的位置關系的方法:幾何法,代數(shù)法。為此,我以問題為導向,以探究問題的方式引導學生自學自悟,為學生提供了自主合作探究的舞臺,讓學生思維在數(shù)學中自由翱翔。通過一系列問題學生不僅加深了對判定直線與圓的位置關系的方法的理解,更重要的是使學生學會運用聯(lián)想、化歸、數(shù)形結合等思想方法去研究問題,促進學生在學會數(shù)學的過程中順利地向會學數(shù)學的方向發(fā)展。

為了提高學生的學習興趣,讓學生有目的的去學,提高學生的學習能力,這節(jié)課設置了大量問題,使學生充分地實踐與探索,不斷地歸納與總結,引導學生發(fā)現(xiàn)規(guī)律、拓展思路。在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉化。

適量的練習、課后作業(yè)及時鞏固了學生的學習,學生需通過動手動腦來完成,使學生對知識點的學習由課內(nèi)延伸到課外。

當然,這節(jié)課有成功之處,也有很多不足,比如,盡管準備的很充分,但是還是有點緊張;雖然我在設計本節(jié)課時是想體現(xiàn)學生自主探究的原則,但是在一些問題提出之后,沒有給予學生足夠的時間思考,限制了學生的思維。此外,對學生引導的語言概括及對學生及時性鼓勵的不是太好,學生的積極性及配合并不高。

在今后的教學中,我會繼續(xù)不斷的學習,提高自己的教學水平,真正讓學生學會數(shù)學、學好數(shù)學,使學生的各項能力在數(shù)學學習中得到更好的發(fā)展和提高,我相信在將來的教學中,我會做得越來越好,真正成為一名合格的教師。

直線與圓的位置關系聽課筆記篇九

本節(jié)課研究圓與圓的位置關系,重點是研究兩圓位置關系的判斷方法,并應用這些方法解決有關的實際問題。《圓與圓的位置關系》在舊教材中比重不大,但是在新課標中,被作為一個獨立的章節(jié),說明新課標對這一章節(jié)的要求已經(jīng)有所提高。教材是在初中平面幾何對圓與圓的位置關系的初步分析的基礎上得到圓與圓的位置關系的判斷方法,北師大版教材中著重強調(diào)了根據(jù)圓心到直線的距離與圓的半徑的關系進行判斷,對用方程的思想去處理位置關系沒作要求,但用方程的思想來解決幾何問題是解析幾何的精髓,是平面幾何問題的深化,它將是以后處理圓錐曲線的基本方法,因此,我增加了用方程的思想來分析位置關系,這樣有利于培養(yǎng)學生數(shù)形結合、經(jīng)歷幾何問題代數(shù)化等解析幾何思想方法及辯證思維能力,其基本思維方法和解決問題的技巧在今后整個圓錐曲線的學習中有著非常重要的意義。

作為解析幾何的一堂課,判斷圓與圓的位置關系,體現(xiàn)的正是解析幾何的思想:用方程處理幾何問題,用幾何方法研究方程性質(zhì)。所以我在教材處理上,對判斷兩圓位置關系用了方程的思想和幾何兩種方法,兩種方法貫穿始終,使學生對解析幾何的本質(zhì)有所了解。

第一,學生學習新知識必須在已有知識和經(jīng)驗的基礎上自主建構與形成。所以,我一開始便提出了三個問題,即復習此節(jié)相關的知識點,通過問題解決,以舊引新,提出新的問題,以類比的方法研究圓與圓的位置關系。配合幾何畫板的動畫演示,啟發(fā)學生思考當初是怎樣研究判斷直線與圓的位置關系的方法?這種方法是不是同樣可以運用到研究圓與圓的位置關系上來?能不能用來判斷圓與圓的位置關系?使學生很自然地從直線與圓的位置關系的判斷方法類比到圓與圓的位置關系的判斷方法。

第二,新的課程標準非常重視學生的自主探究,這是學習方式的一次革命,老師的教授過程固然重要,但學生對知識的掌握是在學生自己對知識有體驗、有獨立的思考和探討的基礎上,才能成為可能。所謂“學在講之前,講在關鍵處”,學生先有一個對知識的認識過程,老師再在關鍵處進行講解,使學生真正完成對知識感知、形成和鞏固的過程,才是對知識最好的吸收。

第三,學生的學習是在教師引導下的有目的的學習,從而教學的過程就是在教師控制下的學生自主學習和合作探究學習的過程,這個過程中的關鍵點是怎么樣有效地控制學生自主學習和合作探究學習的時間和空間,在教學的過程中,我較好地處理了學生學習的空間與時間,既留給學生充分思考與探索的時間與空間,又嚴格限定時間,由此培養(yǎng)學生思維的敏捷性,提高課堂效率。

對于問題探究的題型選擇的一些思考:

第二個問題研究是研究一個半徑變化的圓與定圓相切,求題中參數(shù)變化的問題,這道題中同樣要注意的是相切的兩種情況,并且對于內(nèi)切,要充分結合數(shù)形結合的思想,判斷出兩圓的半徑大小關系。兩題都有一定難度,處理時必須牢牢掌握知識,靈活運用。

2、時間把握。課前復習是有必要的,是為了學生類比舊知識,聯(lián)想新知識,但復習舊知識的時間應該限定在三分鐘以內(nèi),復習時間長會導致鞏固練習的時間不足和問題展開不夠充分。

3、限時訓練。限時訓練的目的是為了讓學生更有效率地做題,限定時間過長或是過短都不利于學生提高數(shù)學能力,這點還有待研究。

直線與圓的位置關系聽課筆記篇十

“國培計劃”初中數(shù)學——陳曉峰(江西省寧都五中)。

節(jié)課的教學,我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現(xiàn)象,體驗到數(shù)學來源于實踐。對生活中的數(shù)學問題發(fā)生好奇,這是學生最容易接受的學習數(shù)學的好方法。新課標下的數(shù)學教學的基本特點之一就是密切關注數(shù)學與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學,“想”數(shù)學,讓學生真正感受到生活之中處處有數(shù)學。

2.在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

3.新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數(shù)學,學生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2.雖然我在設計本節(jié)課時是體現(xiàn)讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數(shù)量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

直線與圓的位置關系聽課筆記篇十一

"思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。

在《直線和圓的位置關系》一課教學后,感受頗多,現(xiàn)分享如下:

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數(shù)學知識,體驗數(shù)學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現(xiàn)三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數(shù)學,“想”數(shù)學,體會到數(shù)學知識無處不在,應用數(shù)學無處不有。這也符合“數(shù)學教學應從生活經(jīng)驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協(xié)作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。 最后由學生小結這一知識點,我板書在黑板上,培養(yǎng)學生用數(shù)學語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,由于此題要學生回到生活中去運用數(shù)學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

一堂課教學下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:

1、教師在課堂應當以引導者的身份出現(xiàn),把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。

3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)"授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

直線與圓的位置關系聽課筆記篇十二

“思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數(shù)學知識,體驗數(shù)學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現(xiàn)三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數(shù)學,“想”數(shù)學,體會到數(shù)學知識無處不在,應用數(shù)學無處不有。這也符合“數(shù)學教學應從生活經(jīng)驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協(xié)作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。最后由學生小結這一知識點,我板書在黑板上,培養(yǎng)學生用數(shù)學語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,由于此題要學生回到生活中去運用數(shù)學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

一堂課教學下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:。

1、教師在課堂應當以引導者的身份出現(xiàn),把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。

3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

將本文的word文檔下載到電腦,方便收藏和打印。

直線與圓的位置關系聽課筆記篇十三

并深刻剖析直線是圓的切線的判定條件和直線與圓相切的性質(zhì);對重要的結論及時。

(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學。

新課程理念及新基礎教育理念都提倡“把課堂還給學生,讓課堂充滿生命活力”,讓學生真正“動起來”,動不應當是表面的、外在的,而應當使學生的思維處于活躍狀態(tài),積極思考問題,這種內(nèi)在的、深層的動,更要落實,動靜結合,收放適度,動得有序,動而不亂。課堂教學要的不是熱鬧場面,而是對問題的深入研究和思考。首先要設計好問題,針對不同意見和問題引導學生展開討論、辯論,抓住學生發(fā)言中的問題,及時給以矯正。當教師提出問題讓學生探索時,學生自己尋找答案時,要放手讓學生活動,但要避免學生興奮過度或活動過量。今后再教學本節(jié)課仍應倡導提高學生的問題意識,以對問題的探究來構筑本節(jié)課教學的主題。但是,教師待學生的問題提完后,與學生一道對問題進行歸類,找出學生思維和知識的核心問題,以此組織課堂教學,并相機解決其他問題。仍應放權給學生,給他們想、做、說的機會,讓他們討論、質(zhì)疑、交流,圍繞某一個問題展開辯論。教師應當給學生時間和權利,讓學生充分進行思考,給學生充分表達自己思維的機會。但是,應關注學生的參與程度,有的學生的參與只是一種表面上的行為參與。要看學生的思維是否活躍,關鍵是學生所回答的問題、提出的問題,是否建立在一定的思維層次上,是否會引起其他學生的積極思考,還是學生的自我需要。也就是說我們要關注學生思維的狀態(tài)與學習互動的狀態(tài)。

直線與圓的位置關系聽課筆記篇十四

“思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也。”反思意識人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數(shù)學知識,體驗數(shù)學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現(xiàn)三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數(shù)學,“想”數(shù)學,體會到數(shù)學知識無處不在,應用數(shù)學無處不有。這也符合“數(shù)學教學應從生活經(jīng)驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協(xié)作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。最后由學生小結這一知識點,我板書在黑板上,培養(yǎng)學生用數(shù)學語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,由于此題要學生回到生活中去運用數(shù)學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

一堂課教學下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:。

1、教師在課堂應當以引導者的身份出現(xiàn),把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。

3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

直線與圓的位置關系聽課筆記篇十五

本節(jié)課,我先讓學生在課前自行完成教學案中“課前預習與導學”這一部分,情況良好。上課后先信息反饋進行評講,然后引導學生回憶了點與圓的位置關系及如何用數(shù)量關系來判斷點與圓的位置關系。接著以《海上日出》圖創(chuàng)設情景,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關系,給出定義,聯(lián)系實際,由學生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由小“練習”進行應用,最后通過“例題”“課堂檢測”去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1、在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

2、新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在小練習之后我及時地進行總結歸納方法,讓學生在以后解決實際問題過程中能一下子找到切入點,培養(yǎng)學生解決實際問題的能力。

同時,我也感覺到本節(jié)課的教學有不妥之處,主要有以下三點:

1、學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。講得過多,學生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W生類比點與圓的位置關系下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、對于我們學生的情況,初三的教學始終沒有擺脫灌輸式教學,盡管課上也讓學生自主操作、思考,但老師講的太多,沒有給予學生足夠的探索、交流的時間,勢必會影響到部分學生的思維,限制了學生的發(fā)展。所以,我們也要學會該“放手時就放手”,大膽地讓學生去思考,也許會有意外的收獲。

3、對教材的把握,對學生的實情,在備課時都要考慮。在選題時不僅要照顧到基礎薄弱的同學,也要照顧到基礎好些的同學,適時選做。對于有些題可以適當?shù)剡M行變式訓練,拓展靈活運用,活躍學生的思維。

總之,在今后的數(shù)學教學中還有很多需要我學習和掌握的東西,希望能和學生們一起共同進步,真正成為一名合格的數(shù)學教師。

直線與圓的位置關系聽課筆記篇十六

這是我第一次進入初三進行教學,即緊張又興奮。經(jīng)過一個學期的歷練,在校領導和組內(nèi)老教師的無私幫助下我有了一些進步?,F(xiàn)以《直線和圓的位置關系》第一課時為例,反思如下。

在初三的教學過程中,我?guī)缀跏锹犚还?jié)上一節(jié)。而集體備課也給了我很大的幫助。通過集體備課和聽課,在《直線和圓的位置關系》這節(jié)課中,我首先引導學生回憶了點與圓的位置關系及所對應的點到圓心的距離與圓半徑的數(shù)量關系。從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關系,給出定義,聯(lián)系實際,由學生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1、在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

2、新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在做一做之后我安排了兩道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”“公路邊的學校會不會受到噪聲的影響?”培養(yǎng)學生解決實際問題的能力。由于這兩題要學生回到生活中去運用數(shù)學,學生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。講得過多,學生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W生類比點與圓的位置關系下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、雖然我在設計本節(jié)課時是體現(xiàn)讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數(shù)量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。并在進行下面的解題時體現(xiàn)出來。教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,不能想當然,否則會影響學生對知識的消化吸收。

總之,在今后的數(shù)學教學中還有很多需要我學習和掌握的東西,希望能和學生們一起共同進步,真正成為一名合格的數(shù)學教師。

【本文地址:http://mlvmservice.com/zuowen/10502760.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔