作為一個重要的素材,總結(jié)可以幫助我們更好地了解自己的成長和進(jìn)步。如何提高寫作能力是許多人關(guān)注的問題,可以通過多讀書、多寫作、多思考來不斷提升。在下面這篇文章中,我們可以了解到一些成功團(tuán)隊總結(jié)的經(jīng)驗和教訓(xùn)。
直線與圓的位置關(guān)系聽課筆記篇一
5、過程與方法。
理解直線和圓的三種位置關(guān)系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應(yīng)關(guān)系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數(shù)判斷直線與圓的位置關(guān)系,能用直線和圓的方程解決一些條件下圓的切線問題;領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力。
6、情感態(tài)度與價值觀。
通過對本節(jié)課知識的探究活動,加深學(xué)生對解析法解決幾何問題的認(rèn)識,從而領(lǐng)悟其中所蘊涵的數(shù)學(xué)思想,體驗探索中成功的喜悅,激發(fā)學(xué)習(xí)熱情,養(yǎng)成良好的學(xué)習(xí)習(xí)慣和品質(zhì)。
教法學(xué)法為了實現(xiàn)上述教學(xué)目標(biāo),本節(jié)課采取以下教學(xué)方法:
(1)恰當(dāng)?shù)睦枚嗝襟w課件,通過學(xué)生熟悉的實際生活問題引入課題,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生的問題意識和求知欲,調(diào)動學(xué)生主體參與的積極性。
(2)采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學(xué)生思維的最近發(fā)展區(qū)上啟發(fā)誘導(dǎo)。
(3)在整個數(shù)學(xué)教學(xué)過程中,既要體現(xiàn)學(xué)生的主體地位,更要強調(diào)教師的主導(dǎo)地位,在科學(xué)講授的同時教會學(xué)生清晰的思維和嚴(yán)謹(jǐn)?shù)耐评怼?/p>
在學(xué)法上注重以下幾點:
(2)在用代數(shù)法解決直線與圓的位置關(guān)系時,要能夠明確運算方向,把握關(guān)鍵步驟,正確的處理較為復(fù)雜數(shù)據(jù)。
課堂結(jié)構(gòu)設(shè)計:
整個教學(xué)過程是四步組成,自主學(xué)習(xí),合作探究,老師輔導(dǎo)、課堂展示。共分為八個環(huán)節(jié),復(fù)習(xí)、獨立訓(xùn)練、相互探討、老師參與、形成結(jié)論、課堂展示、評價(互評師評)、反思。
教學(xué)過程設(shè)計:
通過問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生找到要學(xué)的與以學(xué)知識之間的聯(lián)系;問題串的設(shè)置可讓學(xué)生主動參與到學(xué)習(xí)中來;在判斷方法的形成與應(yīng)用的探究中,師生的相互溝通調(diào)動學(xué)生的積極性,培養(yǎng)團(tuán)隊精神;知識的生成和問題的解決,培養(yǎng)學(xué)生獨立思考的能力,激發(fā)學(xué)生的創(chuàng)新思維;通過練習(xí)檢測學(xué)生對知識的掌握情況;根據(jù)學(xué)生在課堂小結(jié)中的表現(xiàn)和課后作業(yè)情況,查缺補漏,以便調(diào)控教學(xué)。
回顧反思,拓展延伸:
直線與圓的位置關(guān)系聽課筆記篇二
薛老師執(zhí)教的高三文科復(fù)習(xí)課:《直線與圓的位置關(guān)系》,首先從一個引例出發(fā),讓學(xué)生嘗試作圖和驗證,得出知識要點,繼而在此基礎(chǔ)上繼續(xù)研究直線方程和軌跡等問題。例題只有一個,但小題很多,題題遞進(jìn),環(huán)環(huán)相扣,在此環(huán)節(jié)上教師以學(xué)生訓(xùn)練為主,教師講授和引導(dǎo)為輔,共同完成本節(jié)課的整體教學(xué)內(nèi)容。
我聽了薛老師的這節(jié)課認(rèn)為本節(jié)課設(shè)計高度重視學(xué)生的主動參與、親自操作,讓學(xué)生從中去體驗學(xué)習(xí)知識的過程,同時,也注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。整體看來這節(jié)課的優(yōu)點很多,很值得我去學(xué)習(xí)。
總結(jié)起來,大概有以下幾個特點。
(一)注重一個“滲透”——德育滲透。
在數(shù)學(xué)教學(xué)中,我們常常把德育教育與辯證唯物主義、愛國主義情懷聯(lián)系在一起,借助古今中外數(shù)學(xué)史不惜把數(shù)學(xué)課上成政治課,卻成為一堂蹩腳的課。其實,通過數(shù)學(xué)問題的發(fā)生和解決過程的教學(xué),培養(yǎng)與鍛煉學(xué)生知難而進(jìn)的堅強意志,敗而不餒的心理素質(zhì),一絲不茍的學(xué)習(xí)品質(zhì),勤于思考的良好學(xué)風(fēng),勇于探索的創(chuàng)新精神,實事求是的科學(xué)態(tài)度,這也是是德育教育,更是數(shù)學(xué)本質(zhì)上的德育教育。本課薛老師把這種德育教育滲透到教學(xué)的每一個環(huán)節(jié),力求“潤物細(xì)無聲”。當(dāng)學(xué)生解題遇到困難時,教師能給予耐心的引導(dǎo)。但,在課堂上,處理第(3)小題第二問時,有一名男生利用圓的定義很巧妙地給出了軌跡方程,薛老師可能沒有很好地把握表揚的機會,而是詢問學(xué)生有否最后算出答案,顯得有些匆促。
(二)堅持兩個“原則”
1、例題設(shè)計注重分層教學(xué),堅持面向全體學(xué)生的原則。
題目母體來源于學(xué)生現(xiàn)有教輔書《全品》,卻在原題基礎(chǔ)上進(jìn)行了分層遞進(jìn)的改編,讓不同的學(xué)生都有不同的收獲。以學(xué)生的最近發(fā)展區(qū)為指向,充分尊重了學(xué)生現(xiàn)有的認(rèn)知水平和個性差異,為不同層次的學(xué)生采用適合自己個性的方法進(jìn)行學(xué)習(xí)創(chuàng)造了條件。
2、教學(xué)過程授人以漁,堅持以學(xué)生發(fā)展為本的原則。
讓學(xué)生深刻經(jīng)歷:通過作圖和求解基本例題回憶知識結(jié)構(gòu)——通過嘗試深化知識內(nèi)容——通過遞進(jìn)擴展知識聯(lián)系,教會學(xué)生研究的方法,而不是結(jié)果。
(三)落實三個“容量”——知識量、活動量和思維量。
本節(jié)課所選內(nèi)容以解析幾何為平臺,卻可以集函數(shù)性質(zhì)、圖像、方程、不等式于一體,例題只有一題,但以此展開的小題卻逐層遞進(jìn)和推進(jìn),容量大,難度高??上驳氖?,薛老師通過合理運用現(xiàn)代技術(shù)和整合例題,成功地豐富了知識量;加強探索與過程教學(xué),有效地落實了思維量;突出學(xué)生板演與探究教學(xué),巧妙地增加了活動量,值得借鑒。
(四)實現(xiàn)四個“轉(zhuǎn)變”——學(xué)生角色從被動到主動;教師角色從傳授到指導(dǎo);學(xué)習(xí)理念從封閉到開放;學(xué)習(xí)形式從單一到多元。
本課初步實現(xiàn)了“四個轉(zhuǎn)變”是由于采用了探究式的教學(xué)策略,為學(xué)生提供開放性的學(xué)習(xí)內(nèi)容、開放性的教育資源和開放性的教學(xué)形式。特別是向?qū)W生提供了更多的機會和時間,讓學(xué)生嘗試和探究、合作和交流、歸納和總結(jié),最大限度地提高學(xué)生學(xué)習(xí)活動的自由度,促使學(xué)生思維空間的充分開放。
(五)培養(yǎng)五種“能力”——應(yīng)用能力、探究能力、反思與提問能力、交流合作能力和創(chuàng)新能力。
本課從引入開始,充分放手讓學(xué)生動腦、動口、動手,使研究問題得以逐個深入,難點得以一個個突破,能力得以一點點培養(yǎng)。事實上,解析幾何復(fù)習(xí)課,重在數(shù)形結(jié)合,重在幾何性質(zhì),重在靜動結(jié)合,課堂貴在“生動”,所謂“生動”,是指“生”出“動”。要樹立生本意識,立足學(xué)生“可動”;設(shè)置問題探究,引領(lǐng)學(xué)生“會動”;課前充分預(yù)設(shè),不怕學(xué)生“亂動”;及時表揚肯定,激勵學(xué)生“愿動”。
但是我認(rèn)為這節(jié)課也有一些值得探討的問題:
第一、老師講的還是太多。聽說杜郎口中學(xué)要求老師每節(jié)課講課時間不能超過10分鐘,否則是不合格的。一堂課,就只有40分鐘,老師講多了,學(xué)生自然就參與少了。這樣的后果就會導(dǎo)致學(xué)生具體體驗時間不夠,同時規(guī)范操作和演練也不夠。
第二、在學(xué)生回答引入題時,假設(shè)直線方程時,學(xué)生沒有考慮到斜率是否存在的情況,這時,老師沒有及時進(jìn)行補充和糾正。一個很明顯的后果就是導(dǎo)致在(2)問的板演中,學(xué)生解答出錯。
第三,學(xué)生板演時沒有很好地結(jié)合圖像進(jìn)行解題,這時,老師應(yīng)該要適時引導(dǎo)學(xué)生作好草圖。凸顯解題時要從宏觀到微觀,從直覺到精確,從定性到定量分析。
第四,本節(jié)課最大的特色就是很好的整合了例題,以一題可以掃遍所有的直線與圓的有關(guān)知識點,這是一種復(fù)習(xí)習(xí)慣和策略。教師在這個點上應(yīng)該要向?qū)W生強調(diào),引導(dǎo)學(xué)生今后復(fù)習(xí)也應(yīng)該有意識地進(jìn)行整合和提升,做到既“重復(fù)”,又“學(xué)習(xí)”,這才是復(fù)習(xí)。
第五,本節(jié)課還有一個線索,就是前面的題目基本上能借助幾何性質(zhì)進(jìn)行解題,而最后一問必須采用解析幾何的思路,就是用代數(shù)的方法解題,這實際上要求老師要進(jìn)行總結(jié),告訴學(xué)生直線與圓的位置關(guān)系解題時,先考慮幾何性質(zhì),再借助代數(shù)方法解決,這不僅是一般的解題思路,也為后面的直線與橢圓的位置關(guān)系埋下伏筆。
總之,這是一堂原生態(tài)的高三復(fù)習(xí)課,讓我獲益匪淺。以上僅是一家之言,在此權(quán)當(dāng)拋磚引玉,謝謝大家!
直線與圓的位置關(guān)系聽課筆記篇三
一、課程目標(biāo)分析:
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:在平面解析幾何初步的教學(xué)中,教師應(yīng)幫助學(xué)生經(jīng)歷如下過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。
二、教材分析:
1、教材的地位和作用:
《直線與圓的位置關(guān)系》這一節(jié)內(nèi)容出現(xiàn)在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學(xué)主要是讓學(xué)生體會到用代數(shù)方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎(chǔ)。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應(yīng)用,也為后一小節(jié)《圓與圓的位置關(guān)系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內(nèi)容,起著貫穿始終、應(yīng)用反饋的重要作用,而且是貫徹“用代數(shù)方法處理幾何問題”思想和“數(shù)形結(jié)合”方法的重要的反映內(nèi)容和工具。在本章中的作用非常重要。
2、教材重點、難點。
直線與圓的位置關(guān)系聽課筆記篇四
20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:
過程與方法目標(biāo):
2.通過例題教學(xué),培養(yǎng)學(xué)生靈活運用知識的解決能力。
情感與態(tài)度目標(biāo):讓學(xué)生從運動的觀點來觀察直線和圓相交、相切、相離的關(guān)系、關(guān)注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領(lǐng)悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點。
利用多媒體放映落日的動畫,初中數(shù)學(xué)教案《數(shù)學(xué)教案-直線和圓的位置關(guān)系(公開課)》。引導(dǎo)學(xué)生從公共點個數(shù)和圓心到直線的.距離兩方面體會直線和圓的不同位置關(guān)系。
學(xué)生看投影并思考問題。
調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.。
探究新知。
1、通過觀察直線和圓的公共點個數(shù)得出直線和圓相離、相交、相切的定義。
布置作業(yè)。
1、課本第101頁7.3a組第2、3題。
2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。
直線與圓的位置關(guān)系聽課筆記篇五
已知直線都是正數(shù))與圓相切,則以為三邊長的三角形是________三角形.
三、解答題。
當(dāng)為何值時,直線與圓有兩個公共點?有一個公共點?無公共點?
四、填空題。
若直線與圓相切,則實數(shù)的值等于________.
圓心為且與直線相切的圓的方程為________.
直線與圓相切,則實數(shù)等于________.
直線與圓相切,則________.
過點作圓的切線,且直線與平行,則與間的距離是________.
過點,作圓的切線,則切線的條數(shù)為________條.
過點的圓與直線相切于點,則圓的方程為________.
五、解答題。
過點作圓的切線,求此切線的方程.。
圓與直線相切于點,且與直線也相切,求圓的方程.。
六、填空題。
由直線上的一點向圓引切線,則切線長的最小值為_____________.
七、解答題。
求滿足下列條件的圓的切線方程:
(1)經(jīng)過點;
(2)斜率為;
(3)過點.。
已知圓的方程為,求過的圓的切線方程.。
八、填空題。
直線被圓截得的弦長等于________.
直線被圓截得的弦長等于________.
直線被圓所截得的弦長為________.
圓截直線所得弦的長度為4,則實數(shù)的值是________.
設(shè)直線與圓相交于兩點,若,則圓的面積為________.
直線被圓截得的弦長為________.
直線被圓所截得的弦長為________.
圓心坐標(biāo)為的圓在直線上截得的弦長為,那么這個圓的方程為________.
過點的直線被圓截得的弦長為,則直線的斜率為________.
過原點的直線與圓相交所得弦的長為2,則該直線的方程為________.
九、解答題。
圓心在直線上,圓過點,且截直線所得弦長為,求圓的方程.。
十、填空題。
過點作圓的弦,其中最短弦的長為________.
十一、解答題。
已知圓,直線.
(1)求證:對,直線與圓總有兩個不同的交點;
(2)若直線與圓交于兩點,當(dāng)時,求的值.。
設(shè)圓上的點關(guān)于直線的對稱點仍在圓上,且直線被圓截得的弦長為,求圓的方程.。
已知圓,直線.。
證明:不論取什么實數(shù),直線與圓恒交于兩點。
求直線被圓截得的弦長最小時的方程,并求此時的弦長。
十二、填空題。
圓上到直線的距離等于1的點有________個.
在平面直角坐標(biāo)系中,已知圓上有且僅有四個點到直線的距離為1,則實數(shù)的取值范圍是________.
設(shè)圓上有且僅有兩個點到直線的距離等于1,則圓半徑的取值范圍是________.
直線與曲線有且只有一個公共點,則b的取值范圍是_________。
若直線與圓恒有兩個交點,則實數(shù)的取值范圍為________.
已知點滿足,則的取值范圍是________.
若過點的直線與曲線有公共點,則直線的斜率的取值范圍為。
直線與圓的位置關(guān)系聽課筆記篇六
本節(jié)課由蔡**老師執(zhí)教,主要有三部分組成。首先前面兩個問題通過復(fù)習(xí)前幾課學(xué)過的點到直線的距離公式以及兩條直線的位置關(guān)系的判定,為下面例子中判斷直線與圓的位置關(guān)系作好鋪墊。緊接著通過回顧直線與圓的三種位置關(guān)系引入新課,并結(jié)合圖形深入探究每種關(guān)系中圓心到直線的距離d與圓的半徑r的大小關(guān)系以及交點個數(shù)的情況。再通過例題的講解與練習(xí)的訓(xùn)練去總結(jié)直線和圓的位置關(guān)系所反映出來的數(shù)量關(guān)系。最后師生對本節(jié)課知識點進(jìn)行共同小結(jié),完成本節(jié)課的整體教學(xué)內(nèi)容。
聽了這節(jié)課之后,我認(rèn)為本節(jié)課的整體思路清晰、流暢,結(jié)構(gòu)合理,重點突出,較好地完成了本節(jié)課的教學(xué)目標(biāo)。在引導(dǎo)學(xué)生歸納出直線與圓的`位置關(guān)系的數(shù)量關(guān)系后再進(jìn)行相關(guān)的例題講解和習(xí)題訓(xùn)練,確保了學(xué)生對本節(jié)課重點知識的掌握。不過,個人認(rèn)為本節(jié)課還是有一些值得探討的問題:1、例1是對本節(jié)課所學(xué)知識的應(yīng)用,是本節(jié)課的重點及難點,應(yīng)該著重分析這塊。學(xué)生對帶有絕對值符號的c的范圍并不能很好地理解,因涉及先前學(xué)過的內(nèi)容,可舉個適當(dāng)小例子幫助學(xué)生回顧,如:,則的范圍是什么等等。2、個人覺得練習(xí)一中判斷直線與圓的位置關(guān)系時,圓心到直線的距離計算得d=,讓學(xué)生求k的范圍難度太大。本來學(xué)生才剛掌握點到直線的距離公式,還不能很好熟練的運用,現(xiàn)在式子中又有絕對值又有根號求k的范圍,學(xué)生的積極性很容易被打壓,應(yīng)當(dāng)換個適當(dāng)難度的,及時提高學(xué)生的積極性,培養(yǎng)他們的興趣。3、應(yīng)讓學(xué)生多動手、動口回答問題,及時鞏固所學(xué)知識。
本節(jié)課是在直線和直線的基礎(chǔ)上進(jìn)一步學(xué)習(xí)的內(nèi)容,也是后面學(xué)習(xí)直線與圓的方程的應(yīng)用的基礎(chǔ),起著承上啟下的作用,而且三種位置關(guān)系的研究方法和思路基本一直,都是從研究位置關(guān)系開始進(jìn)而研究位置關(guān)系而發(fā)生的數(shù)量關(guān)系,教師可以用類比的教學(xué)方式使學(xué)生掌握這種學(xué)習(xí)方法。其實,一堂課的教學(xué)很大程度上受教學(xué)細(xì)節(jié)的影響,比如:語言的描述是否準(zhǔn)確,是否及時對學(xué)生進(jìn)行表揚等。每次聽完課,我都會拿自己進(jìn)行比較,看看還有哪些自己沒做到的,或是沒注意的,然后多多實踐,盡量充實自己,收獲不少啊。
直線與圓的位置關(guān)系聽課筆記篇七
楊跟上。
一:教材:
人教版九年義務(wù)教育九年級數(shù)學(xué)上冊二:學(xué)情分析。
初三學(xué)生已經(jīng)具備一定的獨立思考和探索能力,并能在探索過程中形成自己的觀點,能在傾聽別人意見的過程中逐漸完善自己的想法,因此本節(jié)課設(shè)計了探究活動,給學(xué)生提供探索與交流的空間,體現(xiàn)知識的形成過程。
三教學(xué)目標(biāo)(知識,技能,情感態(tài)度、價值觀)。
1、知識與技能。
能綜合運用以前的數(shù)學(xué)知識解決與本節(jié)有關(guān)的實際問題。
3.情感態(tài)度與價值觀。
(1)通過和點與圓的位置關(guān)系的類比,學(xué)習(xí)直線與圓的位置關(guān)系,培養(yǎng)學(xué)生類比的思維方法。
(2)培養(yǎng)學(xué)生的相互合作精神四:教學(xué)重點與難點:
五:教學(xué)方法:
啟發(fā)探究。
六、教學(xué)環(huán)境及資源準(zhǔn)備。
1、教學(xué)環(huán)境:學(xué)校多媒體教室。2.教學(xué)資源。
(1).教師多媒體課件,(2)學(xué)生準(zhǔn)備硬幣或其他類似圓的用具。
1、自主學(xué)習(xí)策略:通過提出問題讓學(xué)生思考,幫助學(xué)生學(xué)會探索直線與圓的位置關(guān)系關(guān)系。
2、合作探究策略:通過學(xué)生動手操作與相互交流,激發(fā)學(xué)生學(xué)習(xí)興趣,讓學(xué)生在輕松愉快的教學(xué)氣氛下之下掌握直線與圓的位置關(guān)系。
3、理論聯(lián)系實際策略;通過學(xué)生綜合運用數(shù)學(xué)知識解決直線與圓的位置關(guān)系的實際問題,培養(yǎng)學(xué)生利用知識解決實際問題的能力。
教學(xué)流程:
一.復(fù)習(xí)回顧,導(dǎo)入新課。
由點和圓的位置關(guān)系設(shè)計了兩個問題,讓學(xué)生獨立思考,然后回答問題,為下面做準(zhǔn)備。
二:合作交流,探求新知。
第一步,學(xué)生對直線與圓的公共點個數(shù)變化情況的探索。
通過學(xué)生動手操作和探索,然后相互交流,并畫出圖形,得出直線與圓的公共點個數(shù)的變化情況。
第二步,師生共同歸納出直線與圓相交、相切等有關(guān)概念。
1.設(shè)圓o的半徑為r,圓心o到直線的距離為d,那么直線與圓在不同的位置關(guān)系下,d與r有什么樣的數(shù)量關(guān)系?請你分別畫出圖形,認(rèn)真觀察和分析圖形,類比點和圓的位置關(guān)系,看看d和r什么數(shù)量關(guān)系。
我設(shè)計了兩個問題,使學(xué)生學(xué)會通過計算圓心到直線的距離,來判斷直線與圓的位置關(guān)系。四:鞏固提高:
在本節(jié)的教學(xué)中,我設(shè)計了兩個練習(xí)、一個作業(yè)加以鞏固,使學(xué)生能更好的掌握本節(jié)內(nèi)容。
直線與圓的位置關(guān)系聽課筆記篇八
b.會根據(jù)直線和圓的方程用代數(shù)法和幾何法判斷直線與圓的位置關(guān)系;
c.掌握直線和圓的位置關(guān)系判定的應(yīng)用,會求已知圓的交線和切線方程。
(2)能力目標(biāo)
讓學(xué)生通過觀察,分析,總結(jié)歸納出根據(jù)直線與圓的方程來判斷直線與圓的位置關(guān)系的方法,培養(yǎng)學(xué)生分析問題解決問題的能力,讓學(xué)生對坐標(biāo)法有進(jìn)一步的了解,并能用參數(shù)法、數(shù)形結(jié)合的方法去分析、解決相應(yīng)的數(shù)學(xué)問題,同時訓(xùn)練學(xué)生數(shù)學(xué)思維,培養(yǎng)學(xué)生尋求一題多解的能力。
(3)情感目標(biāo)
通過學(xué)生自己動手實驗和探索,培養(yǎng)學(xué)生動手能力和發(fā)現(xiàn)問題的能力;通過師生互動,生生互動的教學(xué)活動過程,形成學(xué)生的體驗性認(rèn)識,體會成功的愉悅,提高數(shù)學(xué)學(xué)習(xí)的興趣,樹立學(xué)好數(shù)學(xué)的信心,培養(yǎng)鍥而不舍的鉆研精神和合作交流的科學(xué)態(tài)度。
重點:直線和圓的三種位置關(guān)系
難點:直線和圓的三種位置關(guān)系的性質(zhì)和判定的應(yīng)用
教學(xué)方法:問題探究式、啟發(fā)式引導(dǎo)、參與式探究、互動式討論
學(xué)習(xí)方法:自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)。
教學(xué)手段:借助多媒體動態(tài)演示,構(gòu)建學(xué)生探究式學(xué)習(xí)的教學(xué)環(huán)境。
1、創(chuàng)設(shè)情景、引入新課;
2、引導(dǎo)啟發(fā)、探索新知;
3、講練結(jié)合、鞏固新知;
4、知識拓展、深化提高;
5、小結(jié)新知,畫龍點睛
6、布置作業(yè),復(fù)習(xí)鞏固;
重新閱讀課本本節(jié)相關(guān)內(nèi)容并預(yù)習(xí)下一節(jié)課內(nèi)容。
直線與圓的位置關(guān)系是高考的考點之一,是在學(xué)生已有的平面幾何知識基礎(chǔ)上進(jìn)行教學(xué),以點與圓的位置關(guān)系上升為直線與圓的位置關(guān)系,從簡單到復(fù)雜,從幾何特征到代數(shù)問題(坐標(biāo)法)的教學(xué)過程,它應(yīng)用比較廣泛,同時也為后面圓和圓的位置關(guān)系作了鋪墊,對后面的解題及相關(guān)數(shù)學(xué)問題的解決將起到重要的作用,且本節(jié)是直線與圓錐曲線位置關(guān)系的基礎(chǔ),故要求學(xué)生充分掌握。
針對上述情況,我精心設(shè)計教學(xué)過程,借助多媒體動態(tài)演示直線和圓的位置關(guān)系,直觀形象地展示了直線與圓的位置關(guān)系,化抽象為具體,以便學(xué)生更好的.理解他們之間的關(guān)系及其幾何特征,再引導(dǎo)學(xué)生把幾何形式的結(jié)論轉(zhuǎn)化為代數(shù)形式;教學(xué)過程中采用問題探究式、參與式探究、互動式討論等教學(xué)方法,為學(xué)生自主探究、合作交流構(gòu)建一個好的平臺;分層次設(shè)置例題,讓全體學(xué)生都得到提升;講解例題時應(yīng)用啟發(fā)式引導(dǎo)教學(xué)方法,不斷訓(xùn)練學(xué)生數(shù)學(xué)思維,借助圖象分析題意,加深學(xué)生對數(shù)形結(jié)合思想了解;新課結(jié)束后,引導(dǎo)學(xué)生小結(jié)本課內(nèi)容,培養(yǎng)學(xué)生歸納總結(jié)的能力。
直線與圓的位置關(guān)系聽課筆記篇九
重點:的性質(zhì)和判定.因為它是本單元的基礎(chǔ)(如:“切線的判斷和性質(zhì)定理”是在它的基礎(chǔ)上研究的),也是高中解析幾何中研究的基礎(chǔ).
難點:在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉(zhuǎn)換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學(xué)生較難理解.
3.教法建議。
本節(jié)內(nèi)容需要一個課時.
(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學(xué)生為主體,活動式.
第12頁?。
直線與圓的位置關(guān)系聽課筆記篇十
三、目的分析:
1、知識目標(biāo):
2、能力目標(biāo):
要使學(xué)生體會用代數(shù)方法處理幾何問題的思路和“數(shù)形結(jié)合”的思想方法。
四、教法分析:
1、教學(xué)方法:啟發(fā)式講授法、演示法、輔導(dǎo)法。
2、教材處理:
(1)例題1(1)(2)用兩種不同的辦法求解,讓學(xué)生自己體會這兩種方法。
通過老師引導(dǎo)和讓學(xué)生自己探索解決,反饋學(xué)生的解決情況。
(2)增加一個過一點求圓的切線方程的題型,幫助學(xué)生增加對直線與圓的認(rèn)識。
3、學(xué)法指導(dǎo):本節(jié)課的學(xué)法是繼續(xù)指導(dǎo)學(xué)生把新問題轉(zhuǎn)化為已有知識解決的化歸思想。
4、教具:多媒體電腦、投影儀、自做多媒體。
五、過程分析:
教學(xué)。
環(huán)節(jié)。
教學(xué)內(nèi)容。
設(shè)計意圖。
新課引入。
1、學(xué)生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學(xué)生回答的基礎(chǔ)上,通過多媒體演示圓與直線的三種位置關(guān)系。讓學(xué)生感受到數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān),并能使學(xué)生更好的直觀感受直線和圓的三種位置關(guān)系。然后引入本節(jié)課的課題。
2、在上一章,我們在學(xué)習(xí)了直線的方程后,研究了點和直線、直線與直線的位置關(guān)系,本章我們已經(jīng)學(xué)習(xí)了圓的方程,現(xiàn)在我們要研究直線與圓以及圓與圓的位置關(guān)系。
1數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān)。
2、以實際問題引入有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,有利于擴展學(xué)生的視野。
新課講解。
一、知識點撥:
答:把圓心到直線的距離d和半徑r比較大?。?/p>
直線與圓的位置關(guān)系聽課筆記篇十一
:通過觀察、實驗、討論、合作研究等數(shù)學(xué)活動使學(xué)生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數(shù)量關(guān)系對應(yīng)等價于直線和圓的位置關(guān)系”從而實現(xiàn)位置關(guān)系與數(shù)量關(guān)系的轉(zhuǎn)化,滲透運動與轉(zhuǎn)化的數(shù)學(xué)思想。
:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生好奇心;體驗數(shù)學(xué)活動中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性,在學(xué)習(xí)活動中獲得成功的體驗;通過“轉(zhuǎn)化”數(shù)學(xué)思想的運用,讓學(xué)生認(rèn)識到事物之間是普遍聯(lián)系、相互轉(zhuǎn)化的辨證唯物主義思想。
二、教學(xué)重、難點。
難點:學(xué)生能根據(jù)圓心到直線的距離d與圓的半徑r之間的數(shù)量關(guān)系,揭示直線與圓的位置關(guān)系;直線與圓的三種位置關(guān)系判定方法的運用。
三、教學(xué)設(shè)計。
問???題。
設(shè)計意圖。
師生活動。
2.圖形中的圓與直線的位置都是一樣的嗎?
師:讓學(xué)生之間進(jìn)行討論、交流,引導(dǎo)學(xué)生觀察圖形,導(dǎo)入新課.
生:看圖,并說出自己的看法.
師:引導(dǎo)學(xué)生利用類比、歸納的思想,總結(jié)直線與圓的位置關(guān)系的種類,進(jìn)一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.
問???題。
設(shè)計意圖。
師生活動。
使學(xué)生回憶初中的數(shù)學(xué)知識,培養(yǎng)抽象概括能力.
師:引導(dǎo)學(xué)生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.
生:利用圖形,尋找兩種方法的數(shù)學(xué)思想.
師:指導(dǎo)學(xué)生閱讀教科書上的例1.
生:閱讀科書上的例1,并完成教科書第128頁的練習(xí)題2.
師;分析例1,并展示解答過程;啟發(fā)學(xué)生概括判斷直線與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有總結(jié)思考的時間.
生:交流自己總結(jié)的步驟.
師:展示解題步驟.
7.通過學(xué)習(xí)教科書上的例2,你能說明例2中體現(xiàn)出來的數(shù)學(xué)思想方法嗎?
進(jìn)一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.
師:指導(dǎo)學(xué)生閱讀并完成教科書上的例2,啟發(fā)學(xué)生利用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.
問???題。
設(shè)計意圖。
師生活動。
8.通過例2的學(xué)習(xí),你發(fā)現(xiàn)了什么?
明確弦長的運算方法.
師:引導(dǎo)并啟發(fā)學(xué)生探索直線與圓的相交弦的求法.
生:通過分析、抽象、歸納,得出相交弦長的運算方法.
9.完成教科書第128頁的練習(xí)題1、2、3、4.
師:引導(dǎo)學(xué)生完成練習(xí)題.
生:互相討論、交流,完成練習(xí)題.
10.課堂小結(jié):
教師提出下列問題讓學(xué)生思考:
作業(yè):習(xí)題4.2a組:1、3.
直線與圓的位置關(guān)系聽課筆記篇十二
并深刻剖析直線是圓的切線的判定條件和直線與圓相切的性質(zhì);對重要的結(jié)論及時。
(2)在教學(xué)中,以“觀察——猜想——證明——剖析——應(yīng)用——歸納”為主線,開展在教師組織下,以學(xué)生為主體,活動式教學(xué)。
新課程理念及新基礎(chǔ)教育理念都提倡“把課堂還給學(xué)生,讓課堂充滿生命活力”,讓學(xué)生真正“動起來”,動不應(yīng)當(dāng)是表面的、外在的,而應(yīng)當(dāng)使學(xué)生的思維處于活躍狀態(tài),積極思考問題,這種內(nèi)在的、深層的動,更要落實,動靜結(jié)合,收放適度,動得有序,動而不亂。課堂教學(xué)要的不是熱鬧場面,而是對問題的深入研究和思考。首先要設(shè)計好問題,針對不同意見和問題引導(dǎo)學(xué)生展開討論、辯論,抓住學(xué)生發(fā)言中的問題,及時給以矯正。當(dāng)教師提出問題讓學(xué)生探索時,學(xué)生自己尋找答案時,要放手讓學(xué)生活動,但要避免學(xué)生興奮過度或活動過量。今后再教學(xué)本節(jié)課仍應(yīng)倡導(dǎo)提高學(xué)生的問題意識,以對問題的探究來構(gòu)筑本節(jié)課教學(xué)的主題。但是,教師待學(xué)生的問題提完后,與學(xué)生一道對問題進(jìn)行歸類,找出學(xué)生思維和知識的核心問題,以此組織課堂教學(xué),并相機解決其他問題。仍應(yīng)放權(quán)給學(xué)生,給他們想、做、說的機會,讓他們討論、質(zhì)疑、交流,圍繞某一個問題展開辯論。教師應(yīng)當(dāng)給學(xué)生時間和權(quán)利,讓學(xué)生充分進(jìn)行思考,給學(xué)生充分表達(dá)自己思維的機會。但是,應(yīng)關(guān)注學(xué)生的參與程度,有的學(xué)生的參與只是一種表面上的行為參與。要看學(xué)生的思維是否活躍,關(guān)鍵是學(xué)生所回答的問題、提出的問題,是否建立在一定的思維層次上,是否會引起其他學(xué)生的積極思考,還是學(xué)生的自我需要。也就是說我們要關(guān)注學(xué)生思維的狀態(tài)與學(xué)習(xí)互動的狀態(tài)。
直線與圓的位置關(guān)系聽課筆記篇十三
"思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也。”反思意識人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
在《直線和圓的位置關(guān)系》一課教學(xué)后,感受頗多,現(xiàn)分享如下:
開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標(biāo)準(zhǔn)要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結(jié)論更準(zhǔn)確。 最后由學(xué)生小結(jié)這一知識點,我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標(biāo)下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認(rèn)識到自己需要繼續(xù)努力。歸納主要有以下三點:
1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達(dá)到精而準(zhǔn)。
3、在處理課后練習(xí)時,做的不夠細(xì)致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)"授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識。
直線與圓的位置關(guān)系聽課筆記篇十四
這節(jié)課,我由生活中的情景——日落引入,讓學(xué)生發(fā)現(xiàn)地平線和太陽位置關(guān)系的變化,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進(jìn)行應(yīng)用,最后去解決實際問題。通過本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點:
1。由日落引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到數(shù)學(xué)無處不在,無時不有。
2。在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,讓學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3。新課標(biāo)下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
“國培計劃”初中數(shù)學(xué)——陳曉峰(江西省寧都五中)。
節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點:
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標(biāo)下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。
直線與圓的位置關(guān)系聽課筆記篇十五
本節(jié)課研究圓與圓的位置關(guān)系,重點是研究兩圓位置關(guān)系的判斷方法,并應(yīng)用這些方法解決有關(guān)的實際問題?!秷A與圓的位置關(guān)系》在舊教材中比重不大,但是在新課標(biāo)中,被作為一個獨立的章節(jié),說明新課標(biāo)對這一章節(jié)的要求已經(jīng)有所提高。教材是在初中平面幾何對圓與圓的位置關(guān)系的初步分析的基礎(chǔ)上得到圓與圓的位置關(guān)系的判斷方法,北師大版教材中著重強調(diào)了根據(jù)圓心到直線的距離與圓的半徑的關(guān)系進(jìn)行判斷,對用方程的思想去處理位置關(guān)系沒作要求,但用方程的思想來解決幾何問題是解析幾何的精髓,是平面幾何問題的深化,它將是以后處理圓錐曲線的基本方法,因此,我增加了用方程的思想來分析位置關(guān)系,這樣有利于培養(yǎng)學(xué)生數(shù)形結(jié)合、經(jīng)歷幾何問題代數(shù)化等解析幾何思想方法及辯證思維能力,其基本思維方法和解決問題的技巧在今后整個圓錐曲線的學(xué)習(xí)中有著非常重要的意義。
作為解析幾何的一堂課,判斷圓與圓的位置關(guān)系,體現(xiàn)的正是解析幾何的思想:用方程處理幾何問題,用幾何方法研究方程性質(zhì)。所以我在教材處理上,對判斷兩圓位置關(guān)系用了方程的思想和幾何兩種方法,兩種方法貫穿始終,使學(xué)生對解析幾何的本質(zhì)有所了解。
第一,學(xué)生學(xué)習(xí)新知識必須在已有知識和經(jīng)驗的基礎(chǔ)上自主建構(gòu)與形成。所以,我一開始便提出了三個問題,即復(fù)習(xí)此節(jié)相關(guān)的知識點,通過問題解決,以舊引新,提出新的問題,以類比的方法研究圓與圓的位置關(guān)系。配合幾何畫板的動畫演示,啟發(fā)學(xué)生思考當(dāng)初是怎樣研究判斷直線與圓的位置關(guān)系的方法?這種方法是不是同樣可以運用到研究圓與圓的位置關(guān)系上來?能不能用來判斷圓與圓的位置關(guān)系?使學(xué)生很自然地從直線與圓的位置關(guān)系的判斷方法類比到圓與圓的位置關(guān)系的判斷方法。
第二,新的課程標(biāo)準(zhǔn)非常重視學(xué)生的自主探究,這是學(xué)習(xí)方式的一次革命,老師的教授過程固然重要,但學(xué)生對知識的掌握是在學(xué)生自己對知識有體驗、有獨立的思考和探討的基礎(chǔ)上,才能成為可能。所謂“學(xué)在講之前,講在關(guān)鍵處”,學(xué)生先有一個對知識的認(rèn)識過程,老師再在關(guān)鍵處進(jìn)行講解,使學(xué)生真正完成對知識感知、形成和鞏固的過程,才是對知識最好的吸收。
第三,學(xué)生的學(xué)習(xí)是在教師引導(dǎo)下的有目的的學(xué)習(xí),從而教學(xué)的過程就是在教師控制下的學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的過程,這個過程中的關(guān)鍵點是怎么樣有效地控制學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的時間和空間,在教學(xué)的過程中,我較好地處理了學(xué)生學(xué)習(xí)的空間與時間,既留給學(xué)生充分思考與探索的時間與空間,又嚴(yán)格限定時間,由此培養(yǎng)學(xué)生思維的敏捷性,提高課堂效率。
對于問題探究的題型選擇的一些思考:
第二個問題研究是研究一個半徑變化的圓與定圓相切,求題中參數(shù)變化的問題,這道題中同樣要注意的是相切的兩種情況,并且對于內(nèi)切,要充分結(jié)合數(shù)形結(jié)合的思想,判斷出兩圓的半徑大小關(guān)系。兩題都有一定難度,處理時必須牢牢掌握知識,靈活運用。
2、時間把握。課前復(fù)習(xí)是有必要的,是為了學(xué)生類比舊知識,聯(lián)想新知識,但復(fù)習(xí)舊知識的時間應(yīng)該限定在三分鐘以內(nèi),復(fù)習(xí)時間長會導(dǎo)致鞏固練習(xí)的時間不足和問題展開不夠充分。
3、限時訓(xùn)練。限時訓(xùn)練的目的是為了讓學(xué)生更有效率地做題,限定時間過長或是過短都不利于學(xué)生提高數(shù)學(xué)能力,這點還有待研究。
直線與圓的位置關(guān)系聽課筆記篇十六
本節(jié)課教學(xué)我所面對的傳授對象是聾啞學(xué)生,根據(jù)聾生的特點在學(xué)生觀察教材123頁三幅照片時,我立刻告訴學(xué)生你說的對,這就是直線和圓的三種關(guān)系:相交、相切和相離。我認(rèn)為是數(shù)學(xué)課而不是語文課,數(shù)學(xué)課只注重學(xué)生的觀察思維能力,不追求學(xué)生的語言表達(dá)能力和概括能力。
還有因為手語的手勢再多再細(xì)也不可能表達(dá)出所有的抽象的甚至連豐富的語言都不好表述的東西,因此在講解數(shù)學(xué)時,我追求細(xì)致,不要想很簡單,很明顯,而一帶而過。因此,教學(xué)時我多次強化學(xué)生對直線與圓的三種關(guān)系的理解,為學(xué)生探究點到直線的距離d和圓半徑r的大小關(guān)系。
然而數(shù)學(xué)教學(xué)時,該細(xì)的地方還是要細(xì),這需要教師自己的把握,在學(xué)生輕而易舉回答出來的問題時,有時要帶領(lǐng)學(xué)生深入思考,并多問個為什么?比如在本課學(xué)生總結(jié)出:“圓的切線垂直于過切點的直徑”時。養(yǎng)成學(xué)生深入思考的好習(xí)慣,不要想當(dāng)然!
直線與圓的位置關(guān)系聽課筆記篇十七
節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點:
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標(biāo)下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。
直線與圓的位置關(guān)系聽課筆記篇十八
本節(jié)課,我先讓學(xué)生在課前自行完成教學(xué)案中“課前預(yù)習(xí)與導(dǎo)學(xué)”這一部分,情況良好。上課后先信息反饋進(jìn)行評講,然后引導(dǎo)學(xué)生回憶了點與圓的位置關(guān)系及如何用數(shù)量關(guān)系來判斷點與圓的位置關(guān)系。接著以《海上日出》圖創(chuàng)設(shè)情景,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由小“練習(xí)”進(jìn)行應(yīng)用,最后通過“例題”“課堂檢測”去解決實際問題。通過本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點:
1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
2、新課標(biāo)下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在小練習(xí)之后我及時地進(jìn)行總結(jié)歸納方法,讓學(xué)生在以后解決實際問題過程中能一下子找到切入點,培養(yǎng)學(xué)生解決實際問題的能力。
同時,我也感覺到本節(jié)課的教學(xué)有不妥之處,主要有以下三點:
1、學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。講得過多,學(xué)生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W(xué)生類比點與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、對于我們學(xué)生的情況,初三的教學(xué)始終沒有擺脫灌輸式教學(xué),盡管課上也讓學(xué)生自主操作、思考,但老師講的太多,沒有給予學(xué)生足夠的探索、交流的時間,勢必會影響到部分學(xué)生的思維,限制了學(xué)生的發(fā)展。所以,我們也要學(xué)會該“放手時就放手”,大膽地讓學(xué)生去思考,也許會有意外的收獲。
3、對教材的把握,對學(xué)生的實情,在備課時都要考慮。在選題時不僅要照顧到基礎(chǔ)薄弱的同學(xué),也要照顧到基礎(chǔ)好些的同學(xué),適時選做。對于有些題可以適當(dāng)?shù)剡M(jìn)行變式訓(xùn)練,拓展靈活運用,活躍學(xué)生的思維。
總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進(jìn)步,真正成為一名合格的數(shù)學(xué)教師。
【本文地址:http://mlvmservice.com/zuowen/10357921.html】