人教八年級(jí)上數(shù)學(xué)教案大全(18篇)

格式:DOC 上傳日期:2023-11-10 09:38:20
人教八年級(jí)上數(shù)學(xué)教案大全(18篇)
時(shí)間:2023-11-10 09:38:20     小編:QJ墨客

教案是教師在備課過(guò)程中進(jìn)行教學(xué)準(zhǔn)備的重要依據(jù),它對(duì)于提高教學(xué)質(zhì)量和效果具有重要作用。編寫教案時(shí),首先要明確教學(xué)目標(biāo),確保教學(xué)內(nèi)容的針對(duì)性和效果。優(yōu)秀的教案應(yīng)當(dāng)注重學(xué)生的能力培養(yǎng)和素質(zhì)提升。

人教八年級(jí)上數(shù)學(xué)教案篇一

一、教學(xué)目標(biāo):理解分式乘方的運(yùn)算法則,熟練地進(jìn)行分式乘方的運(yùn)算。

二、重點(diǎn)、難點(diǎn)。

1、重點(diǎn):熟練地進(jìn)行分式乘方的運(yùn)算。

2、難點(diǎn):熟練地進(jìn)行分式乘、除、乘方的混合運(yùn)算。

3、認(rèn)知難點(diǎn)與突破方法。

順其自然地推導(dǎo)可得:

===,即=。(n為正整數(shù))。

歸納出分式乘方的法則:分式乘方要把分子、分母分別乘方。

三、例、習(xí)題的意圖分析。

1、p17例5第(1)題是分式的乘方運(yùn)算,它與整式的乘方一樣應(yīng)先判。

斷乘方的結(jié)果的符號(hào),在分別把分子、分母乘方。第(2)題是分式的乘除與乘方的混合運(yùn)算,應(yīng)對(duì)學(xué)生強(qiáng)調(diào)運(yùn)算順序:先做乘方,再做乘除。.

2、教材p17例5中象第(1)題這樣的分式的乘方運(yùn)算只有一題,對(duì)于初學(xué)者來(lái)說(shuō),練習(xí)的量顯然少了些,故教師應(yīng)作適當(dāng)?shù)难a(bǔ)充練習(xí)。同樣象第(2)題這樣的分式的乘除與乘方的混合運(yùn)算,也應(yīng)相應(yīng)的增加幾題為好。

分式的乘除與乘方的混合運(yùn)算是學(xué)生學(xué)習(xí)中重點(diǎn),也是難點(diǎn),故補(bǔ)充例題,強(qiáng)調(diào)運(yùn)算順序,不要盲目地跳步計(jì)算,提高正確率,突破這個(gè)難點(diǎn)。

四、課堂引入。

計(jì)算下列各題:

(1)==()(2)==()。

(3)==()。

[提問(wèn)]由以上計(jì)算的結(jié)果你能推出(n為正整數(shù))的結(jié)果嗎?

五、例題講解。

(p17)例5.計(jì)算。

[分析]第(1)題是分式的乘方運(yùn)算,它與整式的乘方一樣應(yīng)先判斷乘方的結(jié)果的符號(hào),再分別把分子、分母乘方。第(2)題是分式的乘除與乘方的混合運(yùn)算,應(yīng)對(duì)學(xué)生強(qiáng)調(diào)運(yùn)算順序:先做乘方,再做乘除。

六、隨堂練習(xí)。

1、判斷下列各式是否成立,并改正。

(1)=(2)=。

(3)=(4)=。

2、計(jì)算。

(1)(2)(3)。

(4)5)。

(6)。

七、課后練習(xí)。

計(jì)算。

(1)(2)。

(3)(4)。

八、答案:

六、1.(1)不成立,=(2)不成立,=。

(3)不成立,=(4)不成立,=。

2、(1)(2)(3)(4)。

(5)(6)。

七、(1)(2)(3)(4)。

人教八年級(jí)上數(shù)學(xué)教案篇二

一、教學(xué)目標(biāo):

1.理解并掌握矩形的判定方法.

二、重點(diǎn)、難點(diǎn)。

1.重點(diǎn):矩形的判定.

2.難點(diǎn):矩形的判定及性質(zhì)的綜合應(yīng)用.

三、例題的意圖分析。

本節(jié)課的三個(gè)例題都是補(bǔ)充題,例1在的一組判斷題是為了讓學(xué)生加深理解判定矩形的條件,老師們?cè)诮虒W(xué)中還可以適當(dāng)?shù)卦僭黾右恍┡袛嗟念}目;例2是利用矩形知識(shí)進(jìn)行計(jì)算;例3是一道矩形的判定題,三個(gè)題目從不同的角度出發(fā),來(lái)綜合應(yīng)用矩形定義及判定等知識(shí)的.

四、課堂引入。

1.什么叫做平行四邊形?什么叫做矩形?

2.矩形有哪些性質(zhì)?

3.矩形與平行四邊形有什么共同之處?有什么不同之處?

通過(guò)討論得到矩形的判定方法.

矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形.

矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.

(指出:判定一個(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)。

人教八年級(jí)上數(shù)學(xué)教案篇三

1、教材p140探究欄目的意圖。

(1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法。

(2)、加深了對(duì)“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。

這個(gè)探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級(jí)下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。

2、教材p140的思考的意圖。

(2)、幫助學(xué)生理解表中所表達(dá)出來(lái)的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。

3、p141利用計(jì)算器計(jì)算平均值。

這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對(duì)比。一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過(guò)程有差別亦不同,再者,各種計(jì)算器的使用說(shuō)明書都有詳盡介紹,同時(shí)也說(shuō)明在今后中考趨勢(shì)仍是不允許使用計(jì)算器。所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡(jiǎn)單。統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了。

人教八年級(jí)上數(shù)學(xué)教案篇四

采用教材原有的引入問(wèn)題,設(shè)計(jì)的幾個(gè)問(wèn)題如下:

(1)、請(qǐng)同學(xué)讀p140探究問(wèn)題,依據(jù)統(tǒng)計(jì)表可以讀出哪些信息。

(2)、這里的組中值指什么,它是怎樣確定的?

(3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?

(4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。

人教八年級(jí)上數(shù)學(xué)教案篇五

1、理解分式的基本性質(zhì)。

2、會(huì)用分式的基本性質(zhì)將分式變形。

二、重點(diǎn)、難點(diǎn)。

1、重點(diǎn):理解分式的基本性質(zhì)。

2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。

3、認(rèn)知難點(diǎn)與突破方法。

教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過(guò)復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

三、例、習(xí)題的意圖分析。

1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。

2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。

3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào)。這一類題教材里沒(méi)有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。

“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5.

四、課堂引入。

1、請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

2、說(shuō)出與之間變形的過(guò)程,與之間變形的過(guò)程,并說(shuō)出變形依據(jù)?

3、提問(wèn)分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。

五、例題講解。

p7例2.填空:

[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。

p11例3.約分:

[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式。

p11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

(補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào)。

[分析]每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變。

解:=,=,=,=,=。

六、隨堂練習(xí)。

1、填空:

(1)=(2)=。

(3)=(4)=。

2、約分:

(1)(2)(3)(4)。

3、通分:

(1)和(2)和。

(3)和(4)和。

4、不改變分式的值,使下列分式的分子和分母都不含“-”號(hào)。

(1)(2)(3)(4)。

七、課后練習(xí)。

1、判斷下列約分是否正確:

(1)=(2)=。

(3)=0。

2、通分:

(1)和(2)和。

3、不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào)。

(1)(2)。

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2、(1)(2)(3)(4)-2(x-y)2。

3、通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

4、(1)(2)(3)(4)。

人教八年級(jí)上數(shù)學(xué)教案篇六

平行四邊形定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等;

平行四邊形的對(duì)角相等。

平行四邊形的對(duì)角線互相平分。

平行四邊形的判定。

1.兩組對(duì)邊分別相等的四邊形是平行四邊形。

2.對(duì)角線互相平分的四邊形是平行四邊形;

3.兩組對(duì)角分別相等的四邊形是平行四邊形;

4.一組對(duì)邊平行且相等的四邊形是平行四邊形。

三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

直角三角形斜邊上的中線等于斜邊的一半。

矩形的定義:有一個(gè)角是直角的平行四邊形。

矩形的性質(zhì):矩形的四個(gè)角都是直角;

矩形的對(duì)角線平分且相等。

人教八年級(jí)上數(shù)學(xué)教案篇七

上節(jié)課我們認(rèn)識(shí)了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來(lái)學(xué)習(xí)。

二、展示目標(biāo),自主學(xué)習(xí):

自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁(yè)——4頁(yè)內(nèi)容,完成下列任務(wù):

1、請(qǐng)比較與0的大小,你得到的結(jié)論是:________________________。

2、完成3頁(yè)“探究”中的填空,你得到的結(jié)論是____________________。

3、看例2是怎樣利用性質(zhì)進(jìn)行計(jì)算的。

4、完成4頁(yè)“探究”中的填空,你得到的結(jié)論是:____________________。

5、看懂例3,有困難可與同伴交流或問(wèn)老師。

人教八年級(jí)上數(shù)學(xué)教案篇八

學(xué)習(xí)目標(biāo):

1、鞏固對(duì)整式乘法法則的理解,會(huì)用法則進(jìn)行計(jì)算。

2、在學(xué)生大量實(shí)踐的基礎(chǔ)上,是學(xué)生認(rèn)識(shí)單項(xiàng)式乘以單項(xiàng)式法則是整式乘法的關(guān)鍵,“多乘多”、“單乘多”都轉(zhuǎn)化為單項(xiàng)式相乘。

3、在通過(guò)學(xué)生練習(xí)中,體會(huì)運(yùn)算律是運(yùn)算的通性,感受轉(zhuǎn)化思想。。

4、進(jìn)一步培養(yǎng)學(xué)生有條理的思考和表達(dá)能力。

學(xué)習(xí)重點(diǎn):整式乘法的法則運(yùn)用。

學(xué)習(xí)難點(diǎn):整式乘法中學(xué)生思維能力的培養(yǎng)。

學(xué)習(xí)過(guò)程。

1.學(xué)習(xí)準(zhǔn)備。

1.你能寫出整式乘法的法則嗎?試一試。

2.談?wù)勗谡匠朔ǖ膶W(xué)習(xí)過(guò)程中,你有什么收獲?有什么不足?

利用課下時(shí)間和同學(xué)交流一下,能解決嗎?

2.合作探究。

1.練習(xí)。

(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)。

(3)(2x104)(6x105)(4)(x)?2x3?(-3x2)。

2、結(jié)合上面練習(xí),談?wù)勗趩雾?xiàng)式乘單項(xiàng)式運(yùn)算中怎樣進(jìn)行計(jì)算?要注意些什么?

3、練習(xí)。

(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)。

(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)。

4、結(jié)合上面練習(xí),體會(huì)單項(xiàng)式乘多項(xiàng)式、多項(xiàng)式乘多項(xiàng)式運(yùn)算中,都是以單項(xiàng)式乘單項(xiàng)式為基礎(chǔ)、運(yùn)用乘法分配律進(jìn)行計(jì)算。

3.自我測(cè)試。

1、3x2?(-4xy)?(-xy)=。

2、若(mx3)?(2xn)=-8x18,則m=。

3、一個(gè)長(zhǎng)方體的長(zhǎng)、寬、高分別為3x-4,2x和x,它的體積是。

4、若m2-2m=1,則2m2-4m+的值是。

5、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11。

6、當(dāng)(x2+mx+8)(x2-3x+n)展開(kāi)后,如果不含x2和x3的項(xiàng),求(-m)3n的值.

7、計(jì)算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=-.

8、(北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。

9、某公園要建如圖所示的形狀的草坪(陰影部分),求鋪設(shè)草坪多少m2?若每平。

方米草坪260元,則為修建該草坪需投資多少元?

人教八年級(jí)上數(shù)學(xué)教案篇九

1、掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。

2、使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系。

3、會(huì)根據(jù)簡(jiǎn)單的條件畫出平行四邊形,并說(shuō)明畫圖的依據(jù)是哪幾個(gè)定理。

1、通過(guò)“探索式試明法”開(kāi)拓學(xué)生思路,發(fā)展學(xué)生思維能力。

2、通過(guò)教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問(wèn)題,解決問(wèn)題的能力。

通過(guò)一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。

通過(guò)學(xué)習(xí),體會(huì)幾何證明的方法美。

構(gòu)造逆命題,分析探索證明,啟發(fā)講解。

1、教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用。

2、教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理。

(強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理)。

人教八年級(jí)上數(shù)學(xué)教案篇十

(一)、知識(shí)與技能:

(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。

(二)、過(guò)程與方法:

(1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

(2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

(3)通過(guò)對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。

(三)、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。

二、教學(xué)重點(diǎn)和難點(diǎn)。

重點(diǎn):因式分解的概念及提公因式法。

難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

三、教學(xué)過(guò)程。

教學(xué)環(huán)節(jié):

活動(dòng)1:復(fù)習(xí)引入。

看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

設(shè)計(jì)意圖:

注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。

活動(dòng)2:導(dǎo)入課題。

p165的探究(略);

2.看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?

設(shè)計(jì)意圖:

引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

活動(dòng)3:探究新知。

看誰(shuí)算得準(zhǔn):

計(jì)算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根據(jù)上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

活動(dòng)4:歸納、得出新知。

比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:

a(a+1)(a-1)=a3-a。

a3-a=a(a+1)(a-1)。

在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

人教八年級(jí)上數(shù)學(xué)教案篇十一

1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

2.了解開(kāi)方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。

算術(shù)平方根的概念。

根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

1、提出問(wèn)題:(書p68頁(yè)的問(wèn)題)

你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)

這個(gè)問(wèn)題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.

一般地,如果一個(gè)正數(shù)x的平方等于a,即=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開(kāi)方數(shù).規(guī)定:0的算術(shù)平方根是0.

也就是,在等式=a (x0)中,規(guī)定x = .

2、試一試:你能根據(jù)等式:=144說(shuō)出144的算術(shù)平方根是多少嗎?并用等式表示出來(lái).

3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如表示25的算術(shù)平方根。

4、例1求下列各數(shù)的算術(shù)平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69練習(xí)1、2

怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?

方法1:課本中的方法,略;

方法2:

可還有其他方法,鼓勵(lì)學(xué)生探究。

問(wèn)題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?

大正方形的邊長(zhǎng)是,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?

建議學(xué)生觀察圖形感受的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.

1、這節(jié)課學(xué)習(xí)了什么呢?

2、算術(shù)平方根的具體意義是怎么樣的?

3、怎樣求一個(gè)正數(shù)的算術(shù)平方根

p75習(xí)題13.1活動(dòng)第1、2、3題

人教八年級(jí)上數(shù)學(xué)教案篇十二

本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).

本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時(shí)候,容易混淆,幫助學(xué)生認(rèn)識(shí)定理及其逆定理的區(qū)別,這是本節(jié)的難點(diǎn).

本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式.提出問(wèn)題讓學(xué)生想,設(shè)計(jì)問(wèn)題讓學(xué)生做,錯(cuò)誤原因讓學(xué)生說(shuō),方法與規(guī)律讓學(xué)生歸納.教師的作用在于組織、點(diǎn)撥、引導(dǎo),促進(jìn)學(xué)生主動(dòng)探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主人.具體說(shuō)明如下:

學(xué)生前面,學(xué)習(xí)過(guò)線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問(wèn)題:在垂直平分線上任取一點(diǎn)p,它到線段兩端的距離有何關(guān)系?學(xué)生會(huì)很容易得出“相等”.然后學(xué)生完成證明,找一名學(xué)生的證明過(guò)程,進(jìn)行投影總結(jié).最后,由學(xué)生將上述問(wèn)題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理.這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過(guò)程,真正做到心領(lǐng)神會(huì).

線段垂直平分線的定理及逆定理的證明都比較簡(jiǎn)單,學(xué)生學(xué)習(xí)一般沒(méi)有什么困難,這一節(jié)的難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),教學(xué)時(shí)采用與角的平分線的性質(zhì)定理和逆定理對(duì)照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識(shí)這兩個(gè)定理的區(qū)別和聯(lián)系.

人教八年級(jí)上數(shù)學(xué)教案篇十三

《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過(guò)程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實(shí)現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動(dòng)方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢(shì),為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具?!苯處熯\(yùn)用現(xiàn)代多媒體信息技術(shù)對(duì)教學(xué)活動(dòng)進(jìn)行創(chuàng)造性設(shè)計(jì),發(fā)揮計(jì)算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來(lái),可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺(jué)化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過(guò)程和實(shí)質(zhì),展示數(shù)學(xué)思維的形成過(guò)程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。

本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過(guò)《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識(shí)結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時(shí)知道身在何處,使知識(shí)體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。

本班經(jīng)歷了一年多課改實(shí)踐,學(xué)生對(duì)運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫板》這一工具進(jìn)行簡(jiǎn)單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂(lè)于在教師的指導(dǎo)下主動(dòng)與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識(shí)于實(shí)踐的過(guò)程。

本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺(tái)電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實(shí)驗(yàn)室,以研究電動(dòng)門的機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成并進(jìn)行解釋與應(yīng)用過(guò)程。組員相互配合分別測(cè)量、搜集、分析、整理特殊四邊形的邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度等數(shù)據(jù),并總結(jié)其性質(zhì),通過(guò)人機(jī)對(duì)話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯?dòng)態(tài)、直觀地演示出來(lái)。在此過(guò)程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺(jué)主動(dòng)地探究新知識(shí)的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等多方面得到發(fā)展。

1、初步理解特殊四邊形性質(zhì);

2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;

1、了解特殊四邊形性質(zhì)的形成過(guò)程;

2、初步了解探究新知識(shí)的一些方法;

1、了解特殊四邊形在日常生活中的應(yīng)用;

2、學(xué)生在觀察、歸納、類比及實(shí)驗(yàn)教學(xué)活動(dòng)中,體會(huì)成功后的喜悅;

3、初步具有感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。

教學(xué)環(huán)境:

多媒體計(jì)算機(jī)網(wǎng)絡(luò)教室。

教學(xué)課型:

試驗(yàn)探究式。

教學(xué)重點(diǎn):

特殊四邊形性質(zhì)。

教學(xué)難點(diǎn):

特殊四邊形性質(zhì)的發(fā)現(xiàn)。

一、設(shè)置情景,提出問(wèn)題。

提出問(wèn)題:

1、電動(dòng)門的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?

2、在開(kāi)(關(guān))門過(guò)程中這些四邊形是如何變化的?

3、你還發(fā)現(xiàn)了什么?

解決問(wèn)題:

學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

當(dāng)我們學(xué)習(xí)完本節(jié)知識(shí)后,其他問(wèn)題就容易解決了。

(意圖:用《幾何畫板》的動(dòng)態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問(wèn)題的求知欲望。)。

二、整體了解,形成系統(tǒng)。

本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個(gè)體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。

提出問(wèn)題:

1、本章主要研究哪些特殊四邊形?

2、從哪幾方面研究這些特殊四邊形?

解決問(wèn)題:

學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個(gè)別指導(dǎo)。

1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。

3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒(méi)有圖形。

(意圖:學(xué)生自主觀察、分組討論了解本章知識(shí)結(jié)構(gòu),從而形成系統(tǒng);通過(guò)假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識(shí))。

三、個(gè)體研究、總結(jié)性質(zhì)。

1、平行四邊形性質(zhì)。

提出問(wèn)題:

在平行四邊形的形狀、位置、大小變化過(guò)程中,請(qǐng)觀察數(shù)據(jù)并找出邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度相對(duì)不變的性質(zhì)。

解決問(wèn)題:

教師引導(dǎo)學(xué)生拖動(dòng)b點(diǎn)(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對(duì)不變的要素。

在圖形變化過(guò)程中,

(1)對(duì)邊相等;

(2)對(duì)角相等;

(3)通過(guò)ao=co、bo=do,可得對(duì)角線互相平分;

(4)通過(guò)鄰角互補(bǔ),可得對(duì)邊平行;

(5)內(nèi)外角和都等于360度;

(6)鄰角互補(bǔ);

……。

指導(dǎo)學(xué)生填表:

平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。

菱形性質(zhì)。

梯形性質(zhì)等腰梯形性質(zhì)。

直角梯形性質(zhì)。

(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。

按照平行四邊形性質(zhì)的探索思路,分別研究:

2、矩形性質(zhì);

3、菱形性質(zhì);

4、正方形性質(zhì);

5、梯形性質(zhì);

6、等腰梯形性質(zhì);

7、直角梯形的性質(zhì)。

(意圖:學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗(yàn)到科學(xué)探索的樂(lè)趣。)。

教師總結(jié):

(意圖:掌握畫箭頭的方法,使學(xué)生了解事物個(gè)體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時(shí)間。)。

四、聯(lián)系生活,解決問(wèn)題。

解決問(wèn)題:

學(xué)生操作電腦,觀察圖形、分組討論,教師個(gè)別指導(dǎo)。

學(xué)生在分別演示開(kāi)(關(guān))門過(guò)程中,觀察數(shù)據(jù)并總結(jié):邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度的變化引起四邊形的形狀、大小、位置的變化。

四邊形具有不穩(wěn)定性,而三角形沒(méi)有這個(gè)特點(diǎn)……。

(意圖:使學(xué)生體會(huì)到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力,體會(huì)成功后的喜悅。)。

五、小結(jié)。

1.研究問(wèn)題從整體到局部的方法;

2.主要從邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度三方面研究特殊四邊形性質(zhì)。

六、作業(yè)。

1.平行四邊形內(nèi)角中,既有兩個(gè)相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

2.觀察實(shí)際生活中的電動(dòng)門,在開(kāi)(關(guān))門過(guò)程中特殊四邊形的變化。

針對(duì)教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計(jì)方案,預(yù)計(jì)下列學(xué)習(xí)效果:

利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過(guò)學(xué)生自主測(cè)量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。

在問(wèn)題引入、了解整體、測(cè)量個(gè)體、總結(jié)性質(zhì)的過(guò)程中,符合事物的認(rèn)識(shí)規(guī)律及探究新知識(shí)的一般方法,初步形成感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。

由于個(gè)體差異,針對(duì)教學(xué)目標(biāo)難以達(dá)到的個(gè)別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過(guò)師生之間、學(xué)生之間的對(duì)話交流及時(shí)指導(dǎo),使教學(xué)目標(biāo)得以實(shí)現(xiàn)。

人教八年級(jí)上數(shù)學(xué)教案篇十四

教學(xué)。

目標(biāo)(含重點(diǎn)、難點(diǎn))及。

設(shè)置依據(jù)教學(xué)目標(biāo)。

1、了解多面體、直棱柱的有關(guān)概念.2、會(huì)認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.。

3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長(zhǎng)方形(含正方形)等特征.。

教學(xué)重點(diǎn)與難點(diǎn)。

教學(xué)過(guò)程。

內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡(jiǎn)明設(shè)計(jì)意圖二度備課(即時(shí)反思與糾正)。

一、創(chuàng)設(shè)情景,引入新課。

析:學(xué)生很容易回答出更多的答案。

師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國(guó)的迪思尼樂(lè)園、德國(guó)的古堡風(fēng)光,中國(guó)北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

二、合作交流,探求新知。

1.多面體、棱、頂點(diǎn)概念:

2.合作交流。

師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。

學(xué)生活動(dòng):(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語(yǔ)言描。

述其特征。)。

師:同學(xué)們?cè)儆懻撘幌?,能否把自己的語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言。

學(xué)生活動(dòng):分小組討論。

說(shuō)明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動(dòng)探究中發(fā)現(xiàn)知識(shí),充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

師:請(qǐng)大家找出與長(zhǎng)方體,立方體類似的物體或模型。

析:舉出實(shí)例。(找出區(qū)別)。

師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;

側(cè)面都是長(zhǎng)方形含正方形。

長(zhǎng)方體和正方體都是直四棱柱。

3.反饋鞏固。

完成“做一做”

析:由第(3)小題可以得到:

直棱柱的相鄰兩條側(cè)棱互相平行且相等。

4.學(xué)以至用。

出示例題。(先請(qǐng)學(xué)生單獨(dú)考慮,再作講解)。

析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的創(chuàng)造性思維習(xí)慣)。

最后完成例題中的“想一想”

5.鞏固練習(xí)(學(xué)生練習(xí))。

完成“課內(nèi)練習(xí)”

三、小結(jié)回顧,反思提高。

師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?

合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。

直棱柱有以下特征:

有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;

側(cè)面都是長(zhǎng)方形含正方形。

例題中的把首飾盒看成是由兩個(gè)直三棱柱、直四棱柱的組合,或著是兩個(gè)直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。

板書設(shè)計(jì)。

作業(yè)布置或設(shè)計(jì)作業(yè)本及課時(shí)特訓(xùn)。

人教八年級(jí)上數(shù)學(xué)教案篇十五

正比例函數(shù)的概念。

2、內(nèi)容解析。

一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過(guò)對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn)。

對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問(wèn)題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問(wèn)題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。

本節(jié)課主要是通過(guò)對(duì)生活中大量實(shí)際問(wèn)題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。

基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。

1、目標(biāo)。

(1)經(jīng)歷正比例函數(shù)概念的形成過(guò)程,理解正比例函數(shù)的概念;

(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想。

2、目標(biāo)解析。

達(dá)成目標(biāo)(1)的標(biāo)志是:通過(guò)對(duì)實(shí)際問(wèn)題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。

達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問(wèn)題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問(wèn)題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想。

正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問(wèn)題進(jìn)行分析過(guò)程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問(wèn)題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的`每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過(guò)大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過(guò)程學(xué)生有一定難度。

因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過(guò)程。

人教八年級(jí)上數(shù)學(xué)教案篇十六

1.理解分式的基本性質(zhì).

2.會(huì)用分式的基本性質(zhì)將分式變形.

二、重點(diǎn)、難點(diǎn)。

1.重點(diǎn):理解分式的基本性質(zhì).

2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.

3.認(rèn)知難點(diǎn)與突破方法。

教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過(guò)復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

三、例、習(xí)題的意圖分析。

1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。

2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。

3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒(méi)有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。

“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

四、課堂引入。

1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

2.說(shuō)出與之間變形的過(guò)程,與之間變形的過(guò)程,并說(shuō)出變形依據(jù)?

3.提問(wèn)分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).

五、例題講解。

p7例2.填空:

[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.

p11例3.約分:

[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.

p11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.

(補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).

[分析]每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.

解:=,=,=,=,=。

六、隨堂練習(xí)。

1.填空:

(1)=(2)=。

(3)=(4)=。

2.約分:

3.通分:

(1)和(2)和。

(3)和(4)和。

4.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).

七、課后練習(xí)。

1.判斷下列約分是否正確:

(1)=(2)=。

(3)=0。

2.通分:

(1)和(2)和。

3.不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2.(1)(2)(3)(4)-2(x-y)2。

3.通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

人教八年級(jí)上數(shù)學(xué)教案篇十七

認(rèn)知基礎(chǔ):學(xué)生在七年級(jí)下冊(cè)第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對(duì)變量間互相依存的關(guān)系有了一定的認(rèn)識(shí),但對(duì)于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認(rèn)知方式和思維深度上對(duì)學(xué)生有較高的要求,學(xué)生在理解和運(yùn)用時(shí)會(huì)有一定的難度。

活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在七年級(jí)下冊(cè)《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實(shí)例額,體會(huì)了變量之間相互依賴關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識(shí)圖能力和主動(dòng)參與、合作的意識(shí)和初步的觀察、分析、抽象概括的能力。

知識(shí)與技能目標(biāo):

(1)初步掌握函數(shù)概念,能判斷兩個(gè)變量之間的關(guān)系是否可以看作函數(shù)。

(2)根據(jù)兩個(gè)變量之間的關(guān)系式,給定其中一個(gè)變量的值相應(yīng)的會(huì)求出另一個(gè)變量的值。

(3)會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為函數(shù)問(wèn)題。

過(guò)程與方法目標(biāo):

(1)通過(guò)函數(shù)概念初步形成利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

(2)經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感態(tài)度與價(jià)值觀目標(biāo):

(1)經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。

(2)能主動(dòng)從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

人教八年級(jí)上數(shù)學(xué)教案篇十八

教學(xué)目標(biāo):

1、知道一次函數(shù)與正比例函數(shù)的意義.

2、能寫出實(shí)際問(wèn)題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.

3、滲透數(shù)學(xué)建模的思想,使學(xué)生體會(huì)到數(shù)學(xué)的抽象性和廣泛的應(yīng)用性.

4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

教學(xué)重點(diǎn):對(duì)于一次函數(shù)與正比例函數(shù)概念的理解.

教學(xué)難點(diǎn):根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.

教學(xué)方法:結(jié)構(gòu)教學(xué)法、以學(xué)生“再創(chuàng)造”為主的教學(xué)方法。

教學(xué)過(guò)程:

1、復(fù)習(xí)舊課。

前面我們學(xué)習(xí)了函數(shù)的相關(guān)知識(shí),(教師在黑板上畫出本章結(jié)構(gòu)并讓學(xué)生說(shuō)出前三。

2、引入新課。

就象以前我們學(xué)習(xí)方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時(shí)一樣,我們?cè)趯W(xué)習(xí)了函數(shù)這個(gè)概念以后,要學(xué)習(xí)一些具體的函數(shù),今天我們要學(xué)習(xí)的是一次函數(shù).顧名思義,誰(shuí)能根據(jù)一次函數(shù)這個(gè)名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學(xué)生完全具備這種類比的能力,所以要快、不要耽誤太多時(shí)間叫幾個(gè)同學(xué)回答就可以了.教師將學(xué)生的正確的例子寫在黑板上)。

這些函數(shù)有什么共同特點(diǎn)呢?(注意根據(jù)學(xué)生情況適當(dāng)引導(dǎo),看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號(hào)內(nèi)用紅字強(qiáng)調(diào))那么y叫做x的一次函數(shù).特別地,當(dāng)b=0時(shí),一次函數(shù)就成為(是常數(shù),)。

3、例題講解。

例1、某油管因地震破裂,導(dǎo)致每分鐘漏出原油30公升。

(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。

(2)破裂3.5小時(shí)后,共漏出原油多少公升。

分析:y與x成正比例。

解:(1)(2)(升)。

例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開(kāi)始她每個(gè)月可以得到150元的零用錢,小丸子計(jì)劃每月將零用錢的60%存入銀行,用以購(gòu)買她期盼已久的cd隨身聽(tīng)(價(jià)值1680元)。

(1)列出小丸子的銀行存款(不計(jì)利息)y與月數(shù)x的函數(shù)關(guān)系式;。

(2)多長(zhǎng)時(shí)間以后,小丸子的銀行存款才能買隨身聽(tīng)?

分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。

例3、已知函數(shù)是正比例函數(shù),求的值。

分析:本題考察的是正比例函數(shù)的概念。

解:

4、小結(jié)。

由學(xué)生對(duì)本節(jié)課知識(shí)進(jìn)行總結(jié),教師板書即可.

5、布置作業(yè)。

書面作業(yè):1、書后習(xí)題2、自己寫出一個(gè)實(shí)際中的一次函數(shù)的例子并進(jìn)行討論。

【本文地址:http://mlvmservice.com/zuowen/10166485.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔